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Abstract— A class of wireless multicast utility optimization
problems are considered. Assume network utility is only a func-
tion of link throughput and nodes’ transmission power. Under a
set of physical layer assumptions, the impact of physical and data-
link layer configurations to the upper layers in a wireless network
can be characterized using a configuration graph. Network layer
utility optimization can consequently be carried out via iterations
that optimize network layer algorithms over the configuration
graph and revise physical, data-link layer configurations to
improve the configuration graph. For a class of wireless multicast
networks with optimal network coding, the number of point-
to-multipoint links involved in network utility optimization is
only polynomial, as opposed to exponential, in the number of
nodes. This leads to a reduced complexity in exhaustive searching
algorithms, such as optimal utility maximization. Consequently,
simulations of these algorithms for moderate-sized networks
become feasible. 1

I. INTRODUCTION

Unlike a wireline network, whose topology can be modeled
by a graph, a wireless network can only be characterized by
a bunch of nodes with channels between them being specified
using statistical models. Extending the graphic model to wire-
less networks faces two key challenges. First, in principle, a
wireless node can deliver information reliably to another node
at a positive rate so long as the channel gain between them
is not strictly zero. Achievable throughput over a wireless
link strongly depends on the communication activities over
other neighboring links. Without detailed physical and link
layer specifications, using a fixed topology graph to model a
wireless network is not informative. Second, due to the open
nature of wireless medium, it is possible for a wireless node
to communicate common information to multiple receivers
simultaneously [1] using the same power and bandwidth of
a point-to-point transmission. When such transmissions are
modeled by point-to-multipoint links (termed hyperarc links
[2]), the total number of feasible links in a wireless network
can be exponential in the number of nodes. Consequently,
network optimization requiring an exhaustive search over all
links can be overly complex even for moderate-sized networks.

In this paper, we first consider the modeling of wireless
networks in a class of constrained network utility maximiza-
tion problems. Assume both network utility and constraints
are only functions of link throughput and nodes’ transmission
power. Under a set of physical layer assumptions, we show
that, the impact of physical and data-link layer configurations

1This work was supported by National Science Foundation under Grant
CCF-0728826.

in a wireless network can be characterized by a configuration
graph (defined in Section II, and firstly introduced in [4]),
which is similar to a wireline network topology graph. If
both the utility function and the constraint functions are
convex in throughput and transmission power, optimal network
utility can be obtained using iterative algorithms that optimize
network layer operations over the configuration graph and
incrementally revise physical, data-link layer configurations
to improve the configuration graph.

Next, we consider a class of utility optimization problems
for wireless multicast networks with optimal intra-session
network coding. We show that the total number of links
involved in the iterative optimization is only polynomial in the
number of nodes2. With this result, complexity of exhaustive
searching algorithms, such as optimal utility maximization, is
reduced from double exponential to exponential in the number
of nodes. The exponential complexity is due to the necessity of
searching link activation combinations. Furthermore, we show
that, by carefully exploiting fundamental properties of wireless
communication and network coding, practical complexity of
exhaustive searching algorithms can be made significantly
lower than its theoretic value. Consequently, computer sim-
ulations of optimal multicast utility maximization becomes
feasible for moderate-sized networks, and this is important in
providing performance benchmarks for other low complexity
suboptimal algorithms.

II. SYSTEM MODEL

Consider a wireless network with node set V . We define
a hyperarc link eiJ from node i to a node set J , if i can
deliver common information simultaneously and directly to
all nodes in J . We say eiJ achieves a throughput of μiJ if
i communicates common information directly to all nodes
in J at rate μiJ with a negligible error probability. We
assume time is slotted. Each slot is long enough to support
close link throughput approximations using the corresponding
information capacity results3.

Assume static channel conditions. We define a commu-
nication realization C(t) as the simultaneous activation of
a set of links, together with their physical layer configu-
rations4. Each communication realization C(t) determines a

2But it is still exponential in the number of multicast destinations.
3This assumption can be relaxed by replacing the information theoretic

capacity with rate estimation under none-zero error probability and finite
codeword length constraints [5].

4Although not necessary, it is helpful to assume that the configuration
should not involve any time-sharing operation within one time slot.



region of link throughput vectors achievable within time slot
t, denoted by C(t). Because a communication realization
C(t) completely specifies the physical layer configuration,
it determines the average transmission power of the nodes,
denoted by a vector p(t) = p(C(t)), in time slot t. We define a
transmission schedule S = {C(0), C(1), . . . , C(T −1)} as the
periodic extension of a communication realization sequence
C(0), C(1), . . . , C(T − 1), with T being the period and C(t)
being the communication realization of time slots kT + t,
k = 0, 1, . . . ,∞. Each transmission schedule S determines
a region of achievable link throughput vectors, denoted by
S. The average transmission power of the nodes specified
by transmission schedule S equals p(S) = 1

T

∑T−1
t=0 p(t) =

1
T

∑T−1
t=0 p(C(t)). An illustration of links, communication

realizations, and transmission schedule is given in Figure 1.
The physical and link layer model described above implies

two key assumptions. First, we only distinguish successful
and non-successful transmissions over each link. A successful
transmission requires all receivers of the link should obtain
the transmitted message reliably, which implies decoding and
forward, as opposed to amplifying and forward, for informa-
tion relay. Second, messages transmitted over different links
are encoded and decoded independently at the physical layer.
There is no joint encoding among multiple transmitters or
joint decoding (e.g. successive interference cancellation) over
multiple links at the physical layer.

Given a transmission schedule S = {C(0), . . . , C(T − 1)},
we choose an achievable link throughput vector μ(t) ∈ C(t),
for each C(t). Construct a configuration graph G(V, E, μ) =
G(S) with E being the union of links of all communication
realizations. We use rate vector μ = 1

T

∑
t μ(t) to specify a

hyper-cubic region {μ̃|μ̃ ≤ μ} of link throughput vectors
achievable on G(V, E, μ), i.e., μ̃ ∈ S for all μ̃ ≤ μ.
We term μ the configuration rate vector of G(V, E, μ). An
illustration of the relation between a transmission schedule and
a configuration graph is given in Figure 1. Note that the idea

a comm. realization
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Fig. 1. An illustration of configuration graph construction.

of representing the impact of a transmission schedule using a
configuration graph was originally proposed in [6], although
the concept of “configuration graph” was formally introduced
in [4]. Given a fixed transmission schedule S, the configuration
rate vector μ is similar to the link capacity vector in a wireline
network topology graph in the sense that all link throughput
vectors μ̃ ≤ μ are achievable under the same set of physical
and link layer configurations.

Now consider a class of network utility maximization prob-
lems formulated as

max
S,μ∈S

U(μ, p), s.t. H(μ, p) ≤ 0, (1)

where, given a transmission schedule S, we assume both the
utility U(μ, p) and the constraints H(μ, p) are functions
of the link throughput μ ∈ S achievable under S, and the
transmission power p determined by S. Because μ ∈ S, (1)
can be equivalently written as

max
S,μ,G(V,E,μ)=G(S)

U(μ, p), s.t. H(μ, p) ≤ 0, (2)

where μ is now the configuration rate vector of the configu-
ration graph G(V, E, μ) constructed based upon S.

Note that in a practical system, expressions of the U(μ, p)
and the H(μ, p) functions may depend on network layer
operations, as illustrated in the following example.

Example 1: Consider a multi-hop wireless network with a
source node s multicasting common information reliably to a
set of destination nodes D. Denote the multicast throughput
by RsD. Consider the following utility optimization problem.

max
S,RsD(μ),μ∈S

U(RsD, p), s.t. p − P ≤ 0. (3)

Given S, RsD = RsD(μ) can be written as a function of a
link throughput vector μ ∈ S. However, the exact expression
of RsD(μ) depends on the network layer protocol. If we
assume optimal network coding, and let μ be the configuration
rate vector of a configuration graph G(V, E, μ) = G(S), then
RsD equals the max-flow rate of the minimum s − D cut
of G(V, E, μ), which is the sum configuration rates of links
crossing the minimum cut that separates s from at least one
destination node in D [3][2].

III. ITERATIVE NETWORK UTILITY OPTIMIZATION

Consider the network utility optimization problem given
in (2). When the utility function U(μ, p) is concave and
the constraint functions H(μ, p) are convex in μ and p
(e.g. Example 1 with U(RsD, p) = RsD), (2) is a convex
optimization problem. The unique optimal solution (μ, p)∗ can
be obtained by solving

min
S,μ,G(V,E,μ)=G(S)

max
λ≥0

L(μ, p, λ),

L(μ, p, λ) = −U(μ, p) + λT H(μ, p), (4)

where L(μ, p, λ) is the Lagrangian function and λ ≥ 0 is the
vector of Lagrangian multipliers.

In a practical wireless network, it is often difficult to deter-
mine whether a (μ, p) pair is supported by any transmission
schedule. Consequently, (4) can only be solved via iterative
and constructive updates of the transmission schedule. Next,
we show that, given a fixed Lagrangian parameter λ ≥ 0,
L(μ, p, λ) in (4) can indeed be minimized monotonically via
iterative and incremental updates of S.

Definition 1: Let S1 = {C1(0), C1(1), . . . , C1(T1 − 1)}
and S2 = {C2(0), C2(1), . . . , C2(T2−1)} be two transmission
schedules. We say S2 is incrementally different from S1 if



there exists a nonnegative integer k such that T2 = kT1 + 1,
and for all nonnegative integers k̃ < k and t ≤ T1 − 1, we
have C2(k̃T1 + t) = C1(t).

Theorem 1: Let Lλ(μ, p) = L(μ, p, λ) in (4) for a given
λ. Define L∗

λ as L∗
λ = minS,μ,G(V,E,μ)=G(S) Lλ(μ, p). Let

S1 be a transmission schedule whose transmission power
vector is p1. Let μ1 be the configuration rate vector of a
configuration graph G1(V, E, μ1) constructed based upon S1.
If Lλ(μ1, p1) > L∗

λ, then there exists another transmission
schedule S2 with transmission power vector p2 and a con-
figuration rate vector μ2 of G2(V, E, μ2) constructed based
upon S2, such that,

1. S2 is incrementally different from S1.
2. Lλ(μ2, p2) < Lλ(μ1, p1).

Proof: By assumption, Lλ(μ, p) is convex in (μ, p).
Since Lλ(μ1, p1) > L∗

λ, we can find a transmission schedule
S̃ = {C̃(0), . . . , C̃(T̃ − 1)} with p(S̃) = p̃, and a rate vector
μ̃ ∈ S̃ , such that(

∂Lλ(μ1, p1)
∂μ

)T

μ̃ +
(

∂Lλ(μ1, p1)
∂p

)T

p̃ < 0, (5)

where ∂Lλ(μ1,p1)

∂μ and ∂Lλ(μ1,p1)

∂p are partial sub-derivatives
of Lλ(μ, p) at (μ1, p1).

Since p(S̃) = p̃, μ̃ ∈ S̃ , we can find a sequence of
(μ̃(t), p̃(t)) pairs, t ∈ {0, . . . , T̃ − 1}, to satisfy p̃(t) =
p(C̃(t)), μ̃(t) ∈ C̃(t), ∀t, and μ̃ = 1

T̃

∑T̃−1
t=0 μ̃(t), p̃ =

1
T̃

∑T̃−1
t=0 p̃(t). Hence there exists a j ∈ {0, . . . , T̃ − 1}, such

that the (μ̃(j), p̃(j)) pair corresponding to communication
realization C̃(j) satisfies(

∂Lλ(μ1, p1)
∂μ

)T

μ̃(j) +
(

∂Lλ(μ1, p1)
∂p

)T

p̃(j) < 0. (6)

Consequently, we can find a positive integer k to satisfy

Lλ(μ1, p1) > Lλ

(
kT1μ1 + μ̃(j)

kT1 + 1
,
kT1p1 + p̃(j)

kT1 + 1

)
. (7)

Now construct a transmission schedule S2 =
{C2(0), C2(1), . . . , C2(T2 − 1)} with T2 = kT1 + 1.
For all nonnegative integers k̃ < k and t ≤ T1−1, we choose
C2(k̃T1 + t) = C1(t), where C1(t) is the tth communication
realization of S1. We also let C2(T2 − 1) = C̃(j). With this
construction, S2 is only incrementally different from S1, and
Lλ(μ2, p2) < Lλ(μ1, p1) according to (7).

Theorem 1 implies that (4) can be solved via iterative
updates of λ and (μ, p) pair, where each update of (μ, p) pair
only involves an incremental update, as opposed to a direct
construction, of the transmission schedule. This extended the
similar iterative optimization framework proposed in [4].

IV. CONSTRAIN THE NUMBER OF HYPERARC LINKS

According to the proof of Theorem 1, the key task of the
incremental transmission schedule update is to find a single
communication realization C̃(j) with p̃(j) = p(C̃(j)) and
μ̃(j) ∈ C̃(j), such that updating (μ, p) in the direction of
(μ̃(j), p̃(j)) improves the Lagrangian utility. The complexity

of an exhaustive search of the communication realizations is
exponential in the number of feasible links, and is therefore
double exponential in the number of nodes since, in principle,
the number of feasible links is exponential in the number
of nodes. In this section, we show that the link throughput
region determined by an arbitrary communication realization
possesses a hyper-coordinate-convexity property. Due to this
property, for the class of multicast utility optimization prob-
lems considered in Example 1, optimal utility can be achieved
by searching a number of links that is only polynomial in the
number of nodes. This consequently reduces the complexity
of exhaustive searching algorithms from double exponential to
exponential in the number of nodes.

Definition 2: Let ν be a vector whose each element νiJ

corresponds to a feasible link eiJ . We say ν is a throughput
degrading vector if there exists a node i, two node subsets J ,
J̃ ⊂ J , and a constant δ ≥ 0, such that νiJ = −δ, νiJ̃ = δ,
and all other elements of ν equal 0.

Let μd, μ be two link throughput vectors. We say μd is
a degraded version of μ if μd − μ equals the summation of
some throughput degrading vectors.

Definition 3: A link throughput vector region Γ is hyper-
coordinate convex if for all throughput vectors μ̃, we have
μ̃ ∈ Γ so long as there exist μ, μd, with μ ∈ Γ, μd being a
degraded version of μ, and μ̃ ≤ μd.

Lemma 1: Link throughput vector region C determined by
any communication realization C is hyper-coordinate convex.

Proof: Multicasting common information from node i to
a node set J can be achieved using any hyperarc link e iJ̃ so
long as J̃ ⊇ J .

Theorem 2: Consider the class of multicast networks given
in Example 1. Assume optimal network coding. Assume R sD

is achievable under a transmission schedule S with power p.
Then we can construct a configuration graph G(V, E, μ) =
G(S) based upon S with μ ∈ S, such that RsD is no larger
than the max-flow of the minimum s− D cut of G(V, E, μ),
and μ satisfies μiJ = 0, ∀i, J, |J | > |D|.

Proof: By assumption, we can construct a configuration
graph G(V, E, μ̃) based upon S with μ̃ ∈ S, such that RsD

is no larger than the max-flow of the minimum s − D cut
of G(V, E, μ̃). According to [2, Thoerem 2], we can find a
set of virtual link throughput x̃

(d)
iJj ≥ 0, each being defined

for an arm eiJj (j ∈ J) of a link eiJ corresponding to one
destination d, such that

μ̃iJ ≥
∑
j∈J

x̃
(d)
iJj , ∀(i, J), eiJ ∈ E, d ∈ D,

∑
{J|(i,J),eiJ∈E}

∑
j∈J

x̃
(d)
iJj −

∑
{j|(j,I),ejI∈E,i∈I}

x̃
(d)
jIi = σ

(d)
i ,

∀i ∈ V, t ∈ T, (8)

where σ
(d)
s = RsD , σ

(d)
d = −RsD , and σ

(d)
i�=s,d = 0.

Next, we will show that, by applying a recursive throughput
degrading algorithm, μ̃ can be degraded to μ that satisfies

1. μiJ = 0, ∀i, J, |J | > |D|.



2. There exists a set of virtual link throughput x
(d)
iJj ≥ 0

such that the following inequalities hold.

μiJ ≥
∑
j∈J

x
(d)
iJj , ∀(i, J), eiJ ∈ E, d ∈ D,

∑
{J|(i,J),eiJ∈E}

∑
j∈J

x
(d)
iJj −

∑
{j|(j,I),ejI∈E,i∈I}

x
(d)
jIi = σ

(d)
i ,

∀i ∈ V, d ∈ D. (9)

The throughput degrading algorithm is described below.

Initialization: Let μ = μ̃ and x
(d)
iJj = x̃

(d)
iJj , ∀i, J, j, d.

Step 1: Find a link eiJ with |J | > |D| and μiJ > 0. The
algorithm stops if such a link does not exist.

Step 2: If for all d ∈ D and j ∈ J , x
(d)
iJj = 0, we choose

an arbitrary j ∈ J . Define a throughput degrading vector ν
by νiJ = −μiJ , νij = μiJ , and set all other elements of ν at
zero. We degrade μ by μ = μ + ν. Go to Step 1.

Step 3: Assume we can find d ∈ D and j ∈ J ,
such that x

(d)
iJj > 0. Define a positive constant δ by δ =

min
j∈J,d∈D,x

(d)
iJj

>0
x

(d)
iJj . For every d ∈ D, we define a node

index jd as follows. If x
(d)
iJj = 0 for all j ∈ J , we let

jd = NULL. Otherwise, jd = argmin
j∈J,x

(d)
iJj

>0
x

(d)
iJj .

Define node subset J̃ as the collection of the jd indices,
J̃ = {jd|d ∈ D, jd 	= NULL}. Define a throughput degrading
vector ν by νiJ = −δ, νiJ̃ = δ, and set all other elements of
ν at zero. We degrade μ by μ = μ + ν. For each d ∈ D, we
also revise x

(d)
iJj and x

(d)

iJ̃j
as follows. If jd 	= NULL, we let

x
(d)

iJ̃jd
= x

(d)

iJ̃jd
+ δ and x

(d)
iJjd

= x
(d)
iJjd

− δ.
Go to Step 1.
The above algorithm reduces μiJ monotonically for all links

eiJ with |J | > |D|. The degraded throughput is allocated to
link eiJ̃ in Steps 2 and 3 with |J̃ | ≤ |D|. Therefore, when
the algorithm stops, we must have μiJ = 0 for all |J | > |D|,
and μ is a degraded version of μ̃. Because (9) is satisfied in
every step, it remains satisfied when the algorithm stops. The
validity of (9) implies that RsD is no larger than the max-flow
of the minimum s−D cut of configuration graph G(V, E, μ).
In other words, RsD is achievable on G(V, E, μ) with optimal
network coding.

Theorem 2 implies that, for the multicast utility optimization
considered in Example 1, in terms of achieving optimal utility,
one only needs to consider links eiJ with |J | ≤ |D|. In other
words, (3) can be equivalently written as

max
S,RsD(μ∈S),μiJ=0 ∀eiJ with |J|>|D|

U(RsD, p), s.t. p−P ≤ 0.

(10)
The maximum number of links involved in solving (10)
optimally is only polynomial in the number of nodes |V |
(but is still exponential in |D|). It is straightforward to extend
this conclusion to utility optimization problems with a more
general set of constraints. It is also straightforward to extend

the conclusion to networks with multiple multicast sessions
and optimal intra-session network coding.

V. FURTHER COMPLEXITY REDUCTION FOR ALGORITHMS

INVOLVING SEARCH OF LINK COMBINATIONS

Consider the class of multicast utility optimization problems
in Example 1. Assume the network contains N nodes with one
multicast session from 1 source to D destinations. The number

of feasible links equals N
∑D

i=1

(
N − 1

i

)
∝ O(ND+1).

This number equals 50 for a network with N = 5 and
D = 2, which means the complexity of an exhaustive search
of link activation combinations equals 250. In this section, we
show that by exploiting fundamental properties of wireless
communication and network coding, the practical complexity
of link combination search can be significantly reduced. With
the reduced complexity, simulations of optimal utility max-
imization in moderate-sized networks with around 25 nodes
and a multicast session from 1 source to 4 destinations become
feasible.

A well known property of wireless communication is that
a wireless node cannot simultaneously transmit and receive
information in the same channel. Consequently, link activa-
tions involving the transmission-reception conflict at any node
should not be considered in the communication realization
construction. With the exploitation of this property, the number
of link activation combinations in a network with N = 5, D =
2, is reduced to 5117 (obtained via enumeration). However,
this number equals 14680149 for a network with N = 7, D =
2. Clearly, exploiting the wireless communication property
alone is not enough to enable the simulation of optimal utility
maximization for a reasonable-sized network.

A key property of optimal network coding is that, given
a configuration graph, throughput of a multicast session is
bottlenecked by the maximum flow of the minimum s − D
cut. Therefore, when searching for a communication realiza-
tion to incrementally update the transmission schedule, the
communication realization should not involve links that do not
contribute to any of the minimum s−D cuts. To introduce the
principle of exploiting this property for complexity reduction,
we will first present the detailed iterative utility optimization
algorithm in the following.

Given a configuration graph G(V, E, μ) constructed base
upon transmission schedule S. For any destination d ∈ D, we
define γd(G) as a cut that separates source s from d. Without
causing any confusion, the cut value is also denoted by γ d(G).
According to the network coding property, utility optimization
problem (3) can be equivalently written as

max
S,μ,G(V,E,μ)=G(S)

U

(
min
d∈D

min
γd

γd(G), p
)

, s.t. p − P ≤ 0.

(11)
This problem can be further transformed to

min
λd≥0,

∑
d∈D

λd=1
min

λγd
≥0,
∑

γd
λγd

=1
max

S,μ,G(V,E,μ)=G(S)



U

(∑
d∈D

λd

∑
γd

λγd
γd(G), p

)
, s.t. p − P ≤ 0,

(12)

where we have introduced several sets of auxiliary variables,
{λd, ∀d ∈ D}, and {λγd

, ∀γd} for each d ∈ D.
Consequently, we can obtain the optimal solution of the

problem using the following iterative algorithm.

Initialization: Construct an arbitrary transmission schedule
and the corresponding configuration graph. Initialize λ d and
λγd

for all γd and d ∈ D.

Step 1: Update λd as

λd = λd − δ1
∂U(RsD, p)

∂RsD

∑
γd

λγd
γd(G), ∀d ∈ D, (13)

where δ1 > 0 is a small step size parameter. Then normalize
λd to satisfy λd ≥ 0 for all d ∈ D and

∑
d∈D λd = 1.

Step 2: For each d ∈ D, update λγd
as

λγd
= λγd

− δ2
∂U(RsD, p)

∂RsD
λdγd(G), ∀d ∈ D, (14)

where δ2 > 0 is a small step size parameter. Then normalize
λγd

to satisfy λγd
≥ 0 and

∑
γd

λγd
= 1 for each d ∈ D.

Step 3: Construct a communication realization C with
throughput region C and power p(C) < P . Let γd(C) be the
sum throughput of links in C that cross cut γd. Communication
realization C should be constructed to maximize

∂U(RsD, p)
∂RsD

∑
d∈D

λd

∑
γd

λγd
γd(C) +

[
∂U(RsD, p)

∂p

]T

p(C).

(15)
Carry out an incremental update of the transmission schedule
S using communication realization C.

Go to Step 1 till convergence.
We say a cut γd is “effective” if λγd

	= 0. The key idea of
complexity reduction is to maintain a small list of effective
cuts in the iterative algorithm, such that, when constructing
the communication realization C in Step 3, hyperarc link e iJ

with at least one arm eiJj not crossing any effective cut should
not be considered.

Assume for each d ∈ D, the system maintains a list of
effective s−d cuts, denoted by Γd. The list is initially empty.
Let ε > 0 be a small threshold parameter (e.g. ε = 0.3). We
add an extra step, Step 1.5, into the iterative algorithm.

Step 1.5: For each d ∈ D, find a minimum s − d cut
γ∗

d in the configuration graph G(V, E, μ) and add γ ∗
d into

the cut list Γd (with a small λγd
value). For all γd ∈ Γd, if

γd(G) ≥ (1+ ε)γ∗
d(G), remove the cut γd from the list. After

that, normalize λγd
to satisfy λγd

≥ 0 and
∑

γd
λγd

= 1 for
each d ∈ D.

Note that Step 1.5 corresponds to an aggressive update of
the λγd

variables. Due to page limitations, discussions on the
optimality of the revised iterative algorithm is skipped.

VI. SIMULATION RESULTS

Consider a grid network with 16 nodes. Locations of the
nodes are set at (xr, yr), where x, y ∈ {0, 1, 2, 3} and r = 2
is a distance parameter. Assume source node s = (0, 0)
wants to multicast common information to three destinations
d1 = (0, 3r), d2 = (3r, 3r), d3 = (3r, 0). We assume in each
time slot, a node can at most transmit over one link with a
fixed transmission power of P = 100. This assumption is made
to avoid the challenge of transmission power optimization in
(15). The channel gain between two nodes A and B at distance
rAB is set at hAB = 1/r3

AB. Assume additive Gaussian noise
with zero mean and unit variance. We set ε = 0.3 and use
an adaptive step size adjustment algorithm whose detailed
specification is skipped. The solid curve in Figure 2 shows the
achieved multicast throughput obtained by the revised iterative
algorithm. With complexity reduction, the maximum number
of link activation combinations searched by the algorithm in
one iteration is 3449. For performance comparison, the dashed
curve shows the achieved throughput if only point-to-point
transmission is allowed.
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Fig. 2. Iterative multicast utility maximization for a network with 16 nodes
and one multicast session with 3 destinations. Solid curve: achieved multicast
throughput with hyperarc links. Dashed curve: achieved multicast throughput
with unicast links.
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