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Abstract—In an energy-efficient wireless communication
system, transmit powers are minimized subject to predetermined
signal-to-interference ratio (SIR) requirements. In this paper, a
general framework for distributed stochastic power control (PC)
algorithms is proposed, where the transmit powers are updated
based on stochastic approximations. The proposed algorithms are
distributed in the sense that no global information is needed in
the power updates. Interference to each user is estimated locally
via noisy observations. Two types of stochastic PC algorithms are
studied: standard stochastic PC algorithms where the interference
estimator is unbiased, and quasi-standard stochastic PC algo-
rithms where the interference estimator is biased. The conditions
under which the stochastic PC algorithms converge to the unique
optimal solution are identified. Corresponding to two classes
of iteration step-size sequences, two types of convergence, the
probability one convergence and convergence in probability, are
shown for both algorithms based on recent results in the stochastic
approximation literature.

Based on the theoretical results, some well-known stochastic PC
algorithms, such as stochastic PC with matched filter receivers,
and joint stochastic PC with blind minimum mean-squared error
(MMSE) interference suppression, are revisited; several new sto-
chastic PC algorithms, such as stochastic PC with minimum-power
base-station assignment, and stochastic PC with limited diversity,
are proposed. It is shown that these algorithms fall into either the
standard or the quasi-standard stochastic PC framework. Simula-
tion results are given to illustrate the performance of the proposed
algorithms in practical systems.

Index Terms—Distributed algorithms, stochastic approxima-
tion, stochastic power control.

I. INTRODUCTION

INCE power is an important and limited resource in
S wireless communication systems, power control (PC) al-
gorithms that minimize the transmission power while ensuring
the quality of service (QoS) have been widely studied in the
literature. Earlier work on PC viewed the problem as con-
strained optimization, and found the optimal transmit power for
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each user by solving the optimization problem directly [2]-[4].
Such algorithms are “centralized” since they assume that the
optimization problem is solved at a centralized server using
the knowledge of some global parameters such as the channel
gains of all users to all base stations. When the size of the
system increases, computational complexity and acquiring the
knowledge of such global parameters become serious issues.
Mainly due to this reason, many distributed PC algorithms
have been developed [5], [6]. A general framework for the PC
problem is developed in [7] where the PC problem is reduced
to finding the smallest power vector p that satisfies p > I(p),
where I(p) is the interference vector, whose ith component I;
is the generalized interference user ¢ experiences. Although
I(p) may take different closed-form expressions in different PC
problems, it was shown in [7] that, if the interference function
I(p) is standard (see detailed definition in Section II), then the
iteration p(n + 1) = I(p(n)) converges to the unique com-
ponentwise smallest feasible power vector. Such an iterative
algorithm requires only local information and hence can be
carried out in a distributed fashion. It also significantly reduces
the complexity of the PC and allows the wireless systems to
adapt the transmission powers to the possibly time-varying
system parameters.

The algorithms studied in [7] are deterministic in the sense
that they require the perfect knowledge of the received inter-
ference power. However, in a practical system, the interference
power can only be estimated using noisy observations. Sto-
chastic PC that uses noisy interference estimates was first
considered in [8]. Under the assumption of conventional
matched filter receivers, [8] showed that the stochastic PC,
which updates the power vector iteratively using stochastic
approximations, converges to the optimal power vector in
the mean square error (MSE) sense as long as the step-size
sequence in the iteration meets certain requirements. These
results were later extended to the cases when a linear receiver
or a decision feedback receiver is used [9], [10]. A fast PC
algorithm with averaging was also proposed in [10]. The
common feature of [8] and [10] is that, for both cases, the
deterministic interference function is linear in transmit powers.
Among the iterative PC algorithms, the joint PC and receiver
optimization algorithm also attracted special attention. The
convergence of the deterministic version was studied in [11]
and the stochastic implementation was studied in [12], where a
local convergence was shown for the stochastic PC algorithm
given that the step size sequence satisfies certain requirements.
Unlike the deterministic iterative PC, where the convergence
was proved for a general class of algorithms [7], a common
feature on the convergence results for stochastic PC in [8], [12],
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[10] is that they assume specific closed-form expressions for
the interference function.

The stochastic PC algorithms proposed in [8], [12], [10]
are based on stochastic approximation methods, which were
introduced in [13] and [14]. Since then, stochastic approx-
imation-based algorithms have been studied extensively in
many different contexts including communications, signal
processing, and neural networks. These methods update the
system state variable iteratively using noise-corrupted control
variables. Under certain conditions on the system dynamics,
when the iteration step size is decreased suitably, the effect
of the noise can be made small, and the stochastic iterations
converge asymptotically to the equilibrium point of the corre-
sponding deterministic iterations. Usually, different types of
convergence can be proved under different assumptions on the
step-size sequence. Although various convergence proofs for
general stochastic approximation algorithms are available in the
literature, verifying the validity of the conditions under which
these convergence proofs are carried out in specific practical
problems, such as a stochastic PC problem, is not always easy,
depending on the system specifications and the methods used
in the proofs.

In this paper, we propose a general framework for stochastic
PC algorithms where the transmitted powers are iteratively
updated in a stochastic approximation fashion, using the noisy
estimates of the interference. We consider the general PC
problem where the deterministic interference function is stan-
dard, and it satisfies the Lipschitz condition (defined later). We
define two types of stochastic interference functions. When the
interference estimate is unbiased and a “growing condition”
is satisfied by the estimation noise, we term the stochastic in-
ference function the standard stochastic interference function.
Similar to [7], we call the stochastic iterative PC algorithm
which is obtained using a standard stochastic interference
function, a standard stochastic PC algorithm. We show that
the stochastic PC algorithms studied in [8] and [10] fall into
this category. However, in the case when PC is combined
with additional parameter optimization, such as joint PC and
receiver filter optimization, and joint PC and base station as-
signment, the interference estimator may not be unbiased. For
such situations, we define the stochastic interference estimate
as the quasi-standard stochastic interference function, if the
estimation bias satisfies an additional “bias condition.” We call
the corresponding iterative PC algorithm the quasi-standard
stochastic power control algorithm.

Under certain conditions on the step-size sequence, we show
that both algorithms (standard and quasi-standard) converge to
the solution of the deterministic power control problem. Two
types of convergence are proved for both standard and quasi-
standard stochastic PC algorithms, corresponding to different
conditions on the step-size sequence. When the step size is de-
creasing, and is decreasing faster than a certain rate, we show
that both algorithms converge to the componentwise minimum
power vector with probability one. In the case when the step size
is decreasing slowly, we show that both algorithms converge to
the minimum power vector in probability. The latter proof also
indicates that, if the step size is fixed at a small constant «*, the
power vector will concentrate around the optimal power vector.
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Although we present results for both standard and quasi-stan-
dard stochastic PC algorithms, we provide proofs only for the
quasi-standard stochastic PC algorithms, since every standard
stochastic PC algorithm is also a quasi-standard algorithm. The
proofs provided in this paper are based on the recent literature on
stochastic approximation methods [15], [16]. Specifically, in the
convergence proofs, we focus on verifying the conditions of [15,
Theorem 4.3] and [16, Theorem 2.3] while most of the details
that already appeared in [15] and [16] are skipped. However,
since the proof for the probability one convergence is relatively
short, for the convenience of the reader, a brief but complete
proof is given in the Appendix B.

Based on the theoretical analysis, we revisit the problem of
stochastic PC with matched filter receivers [8]. We verify that it
falls into the standard stochastic PC algorithm category. The joint
stochastic PC and blind minimum MSE (MMSE) interference
suppression [11], [9] is also revisited. Several new stochastic PC
algorithms, including stochastic PC with minimum-power base
station assignment, and stochastic PC with limited diversity,
are proposed. By verifying that they are all quasi-standard
stochastic PC algorithms, the convergence of these algorithms
are established. For all these stochastic PC algorithms, modified
versions, that allow parallel implementation of the stochastic
PC and the parameter optimization, are presented. In such
implementations, the PC algorithm does not have to wait for the
convergence of the parameter optimization between consecutive
power updates. It is also shown via these examples that failing
to meet the conditions on the quasi-standard stochastic PC
interference estimates may result in divergence of the algorithm,
or the convergence of the algorithm to an undesired power
vector.

The rest of the paper is organized as follows. In Section II,
we present the definitions of standard deterministic PC algo-
rithm [7], the standard stochastic PC algorithm, and the quasi-
standard stochastic PC algorithm. The convergence analysis is
presented in Section III. Examples of joint stochastic PC with
blind MMSE interference suppression, the stochastic PC with
minimum-power base station assignment, and the stochastic PC
with limited diversity are proposed in Section IV. For each of
these algorithms, we verify that they are either standard or quasi-
standard. Computer simulation results are given in Section V to
illustrate the performance of the proposed algorithms in prac-
tical systems. Conclusions are given in Section VI.

II. STANDARD AND QUASI-STANDARD PC ALGORITHMS

Suppose p is the power vector whose ith component, p;, is the
transmit power of user ¢. The signal-to-interference ratio (SIR)
requirements of all users can be expressed as a single vector
inequality as shown in [7]

p > I(p) ey

where I(p) = [I1(p), ..., Ix(p)]T is the interference function,
and K is the number of users. Suppose I(p) is standard as de-
fined by the following [7].

Definition 1: Interference function I(p) is standard if for all
p > 0, the following properties are satisfied.
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* Positivity. I(p) > 0.
* Monotonicity. If p > p’, then I(p) > I(p’).
¢ Scalability. For all n > 1, nI(p) > I(np).

It is shown in [7] that, if the PC is feasible, then the determin-
istic PC algorithm

p(n+1) = I(p(n)) (2)

converges to the componentwise smallest feasible power vector
p*. In fact, the inequality in (1) is satisfied with equality at p*,
i.e., p* = I(p*). Furthermore, for all «, such that 0 < o < 1,
since (1 — a)p+ al(p) is also a standard interference function,
the PC algorithm

p(n+1) = (1 - a)p(n) + al(p(n)) 3)

converges to p*, as well.

The above algorithm is deterministic in the sense that it
requires perfect knowledge of I(p). In practical systems, we
cannot know I(p) perfectly, but we may have a random esti-
mate of I(p), denoted as I(p, @), with 8 denoting the estimation
noise. Consider now the following stochastic PC algorithm:

p(n+1) = (1 —a(n))p(n) + a(n)I(p(n),0(n)) 4

where I(p(n),8(n)) is the noisy estimate of I(p(n)), and ct(n)
is the step size at the nth iteration. We define the standard sto-
chastic interference function as follows.

Definition 2: Stochastic interference function I (p,0) is stan-
dard if for all p > 0, the following properties are satisfied.

* Mean condition. £/ [j(p, 9) |p} = I(p), and I(p) is a stan-
dard deterministic interference function.
* Lipschitz condition. There exits a constant K1 > 0, such

that
[ (p1) — I(p2)|I* < Kllp1 — p2|*. )
e Growing condition. There exits a constant K» > 0, such
that
E[I1(p.6) - 1)) < K01+ [pl). ©)

When the stochastic interference function is standard, we call
(4) a standard stochastic PC algorithm. It is easy to verify that
the stochastic PC algorithms that have been studied in [8] and
[10] are standard.

Although it seems that the mean condition in Definition 2 is
quite natural, it may not be satisfied when there is an additional
parameter optimization combined with the PC problem. Assume
that the deterministic interference function can be written as
I(p) = I(p, X*(p)), where X*(p) is an additional set of pa-
rameters obtained via minimizing a cost function J(p, X), i.e.,

X*(p) = argmin J(p, X). )

In the joint PC and MMSE interference suppression [11], [9], for
example, X is the receiver filter coefficients, and J(p, X) is the
deterministic interference when p and X are given. We choose
the filter coefficients to minimize all components of J(p, X),
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and X*(p) turns out to be the MMSE filter coefficients for all
users, given p.

Due to the distributed optimization requirements and the sto-
chastic nature of the problem, usually, we cannot guarantee that
we choose X exactly at the optimal value. Hence,

E [1(p.0)lp] = I(p)

may not be true in general. In a general joint stochastic PC and
parameter optimization problem, we assume that

E [1(p.6)lp] = 1(9) + 9(p). @®)

We define the quasi-standard stochastic interference function as
follows.

Definition 3: Stochastic interference function I(p,8) is
quasi-standard if for all p > 0, the following properties are
satisfied.

¢ Mean condition. £ [j (p, 0)|p} = I(p)+g(p), where I(p)

is a standard deterministic interference function, and g(p)
is a bias term.

e Bias condition. There exits a constant X3 > 0 and a se-
quence 1 > ((n) > 0, such that

lg(p(n))I| < B(n)K3(1 + [[p(n)])- ©

e Lipschitz condition. There exits a constant K7 > 0, such
that

11(p1) — I(p2)II> < Killp1 — p2lI>.

* Growing condition. There exits a constant Ko > 0, such
that

E [113.6) — I(p) - 90)|lp] < K21+ [lpll"). (1)

(10)

Note that a standard stochastic interference function is also
quasi-standard, but the converse is not true. Whether an inter-
ference function is standard or quasi-standard depends on the
design of the estimator. A biased quasi-standard interference es-
timator does not necessarily exclude the possibility that one may
be able to design another estimator which is standard, for the
same system.

III. CONVERGENCE OF STANDARD AND QUASI-STANDARD
STOCHASTIC PC ALGORITHMS

In this section, we study the convergence of standard and
quasi-standard stochastic PC algorithms. We show that the al-
gorithms converge to the optimal power vector when the step-
size sequence satisfies certain conditions. Two different types
of convergence results are shown under different choices of the
step-size sequence. The proofs presented in this paper are based
on, and modified from, the recent papers on stochastic approx-
imation methods, specifically, [15, Theorem 4.3] and [16, The-
orem 2.3]. We only present proofs and necessary discussion that
verify the conditions of [15, Theorem 4.3] and [16, Theorem
2.3], except that for the case of probability one convergence, a
brief but complete proof of Theorem 1 is given in Appendix B.
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Throughout this section, we assume that the PC problem is fea-
sible, i.e., there exits a power vector p that satisfies the inequality
in (1).

A. Convergence of the Mean Ordinary Differential Equation

Consider the deterministic PC algorithm in (3). Define a func-
tion V(p) by
VoV(p)=p—1I(p), V(@)=0 (12)
where V,, represents the gradient operator with respect to p.
Since I(p) is Lipschitz continuous, from (3), we obtain [17]

V(p(n+1)) = V(p(n)) —allp(n) —I(p(n))|*+0(a®). (13)

Hence, if p(n) # p* and « is small enough, we have V(p(n +
1)) < V(p(n)). Noting that the PC algorithm (3) converges to
p* from any initial point forall 0 < « < 1,if p(0) # p*, we can
always find a sequence p(0),...,p(n), ... such that V(p(0)) >
-+ > V(p(n)) and p(n) — p* as n — oo. Therefore, we have

V(p) >0, Vp#p".

(14)
This shows that V(p) is a Lyapunov function.

Define the points of time as t(n) = Z?;Ol a(7). In (3), we
subtract p(n) from both sides and then divide both sides by
a(n). Let a(n) — 0. Then, the deterministic PC algorithm can
be approximated by the following ordinary differential equation
(ODE):

dp

o = () = I(p(1))]- (15)
We term (15) as the characteristic ODE of the PC algorithm.
Since the evolution of (15) is indeed a gradient descent search
that minimizes V' (p), from the preceding analysis, we can see
that p(t) — p* as t — oo.

B. Probability One Convergence

In this subsection, we present the conditions under which the
stochastic PC algorithms converge to p* with probability one.
We first show a bound on the power vector, which will be useful
in the convergence proof of the main result.

Lemma 1: There exists a constant K4 > 0, such that

Ipll* < Ka(1+|lp — I(p)|1?). (16)

The proof of Lemma 1 is given in Appendix A.

Next in Theorem 1, we characterize the conditions on the it-
eration step-size sequence such that the stochastic PC algorithm
converges to p* with probability one.

Theorem 1: Suppose the stochastic interference I(p(n)) is
standard and the step-size sequence satisfies

a7
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Or, if the stochastic interference I(p(n)) is quasi-standard and
the step-size sequence satisfies

oo oo oo

Z a(n) = oo, Z a(n)? < oo, Z a(n)B(n) < 0o

n=0 n=0 n=0
(18)

with 3(n) being the sequence given in the bias condition (9),
then the power vector in the corresponding standard or quasi-
standard stochastic PC algorithm in (4) converges to p* with
probability one.

The proof of this theorem is based on the proof of [15, The-
orem 4.3] with the help of Lemma 1, and the well-known mar-
tingale convergence theorem [18]. Since the proof is relatively
short, for the sake of completeness, we give a complete proof of
Theorem 1 in Appendix B.

C. Convergence in Probability

Due to the requirements on robustness and the capability
to track time-varying environments, the iteration step-size se-
quences of many practical systems are not allowed to decrease
to zero. In this subsection, we study the situation when either
Yoo pa(n)? < oo, or Yo7 a(n)B(n) < oo, or both are vio-
lated. These include the situation when the step-size sequence
decreases to zero slowly, and the situation when the step size is
fixed at a small constant. We study the quasi-standard stochastic
PC algorithm only; the standard stochastic PC case is covered
by simply setting the bias term to zero. Since the proof of the
main result given in Theorem 4 in this section can be derived
from the proof of [16, Theorem 2.3] with minor modifications,
we focus on verifying the conditions of [16, Theorem 2.3] and
only sketch the main steps of the proof.

We first define the scaled ODE and the limit ODE. The con-
vergence of the limit ODE is an important condition imposed in
[16].

Given r > 0, define the scaled interference function I,.(p) as

I(r
1= 1", (19)
Correspondingly, we define the scaled ODE as
d;
L = —p) - L)) 20)
which can be written equivalently as
dr
ZF — —lrp(t) — I(rp(1)]: @1

Since p* — I(p*) = 0, pi: = 7 is the only equilibrium, and is
also a globally stable equilibrium of (20).

According to the scalability assumption in Definition 1, if
r > 1, then I,.(p) < I(p). Therefore, noting that I,.(p) > 0,
lim, o I,-(p) exists. Define the limit of the scaled interference

function as

I.(p) = lim I(p) = lim I(:”). (22)
Define the limit ODE as
d
L = —[p(t) — Lo(p(1))] (23)

dt

Then, we have the following theorem.
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Theorem 2: p_ = 0 is an asymptotically stable equilibrium,
and is the only equilibrium for the limit ODE (23).

The proof of Theorem 2 is given in Appendix C.
In the quasi-standard stochastic PC algorithm, define

w(p,0) = I(p.6) — I(p) — g(p).

Similar to (19), we define the scaled noise and the scaled bias
as

(24)

0
w(p,8) = 220 ) 2 I o)
T r
When r > 1, from (9) and (11), we obtain
E [|lw,(p. 0)|*p] < K2(1+ [Ipll*)
llg-(p(n))ll < B(n)Ks(1+[lp()[).  (26)

Both Theorem 2 and (26) are key results for the proof of the
following theorem, which is one of the major steps toward the
proof of the main result.

Theorem 3: Suppose there exist «* > 0 and N > 0, such
that a(n) < a* and B(n) < Va*,V¥n > N, then in the quasi-
standard stochastic PC algorithm, we can find a constant K7 <
oo that satisfies

lim sup E [||p(n)||*] < K. 27

The proof can be carried out by following the proof of [16,
Theorem 2.1], where the result of Theorem 2 is needed. Al-
though the bias term, g(p), is not considered in [16], it can
be taken into consideration by straightforward modifications to
[16]; therefore, the proof is omitted in this paper.

Since Theorem 2 plays an important role in proving
Theorem 3, which is indeed the major challenge in proving the
main convergence result, it is worthwhile to explain briefly the
purpose of showing Theorem 2. In standard and quasi-standard
stochastic PC algorithms, the dynamics driven by the ODE
is regarded as “force of convergence” since the deterministic
PC iteration converges to the optimal solution. The dynamics
driven by the noise is regarded as “force of divergence” because
it can drive the power vector away from the optimal value.
Since the limit ODE characterizes the system dynamics when
|lp||> — oo, the convergence of the limit ODE implies that, the
“force of convergence” is strong enough to dominate the system
dynamics when ||p||? is large. This leads to the conclusion that
E[||p||?] is asymptotically bounded, as presented in Theorem 3.

Next, we present in the following theorem the main conver-
gence result when the step size sequence is decreasing slowly,
or is fixed at a small constant.

Theorem 4: Let a* > 0 as introduced in Theorem 3. For any
€ > 0, there exists Kg = Kg(€), which is nor a function of a*,
such that in the quasi-standard stochastic PC algorithm
—p*|| > ¢) < Kza™.

lim sup P(p(n) (28)

Here P(A) denotes the probability of event A.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 51, NO. 7, JULY 2005

Theorem 4 can be proved by following the proof of [16, The-
orem 2.3], and making necessary modifications to include the
bias term. Hence, it is omitted in this paper.

From Theorem 4, if a(n) — 0 and 8(n) — 0, for any
e > 0, P(lp(n) — p*|| < €) — 1. In other words, p(n) con-
verges to p* in probability. It is important to note that this re-
sult is obtained without requiring either Y~ ; a(n)? < oo or
Yo a(n)B(n) < oco.In addition, when the step-size sequences
a(n) and B(n) are fixed, respectively, at small constants, (28)
indicates that the power vector will be concentrated around the
optimal value. However, usually the error between the power
vector and the optimal value does not vanish for nonvanishing
step-size sequences; this is the price we have to pay for the ca-
pability of adapting to time-varying environments.

IV. EXAMPLES OF STANDARD AND QUASI-STANDARD
STOCHASTIC PC ALGORITHMS

In this section, we present several examples of stochastic PC
algorithms; the deterministic versions of these PC algorithms
have been studied in [7], [11], and [10]. In the stochastic imple-
mentations, we address the case when the step-size sequence
decreases to zero asymptotically. However, as supported by
Theorem 4, a practical system can certainly set the iteration
step size at a fixed small constant.

A. System Model

Consider the uplink of a symbol synchronous wireless code-
division multiple-access (CDMA) system with K users and M
base stations. The chip matched filter output at the assigned base
station of user ¢ can be written as

K
2=y /Pivhijbis; +vi
7j=1

(29)

where p; is the transmit power of user j; h;; is the channel gain
of user j to the assigned base station of user 7; b; and s; are the
transmitted information symbol and the normalized signature
sequence of user j, respectively; v; is a white Gaussian noise
vector with zero mean and E[v;v]] = 021, where I is the iden-
tity matrix.

One should note that (29) also models the situation of receiver
beamforming, as presented in [19], [20]. Suppose each base sta-
tion is equipped with L antennas. Denote h;;; as the channel
gain from user j to the /th antenna (I € {1, ..., L}) of the base
station assigned to user 7. The chip matched filter output of the
lth antenna at the base station of user ¢ can be written as

K
Zil = Z \/p_j\/ hil]'bij + v
j=1

(30)

where v;; is a white Gaussian noise vector with zero mean

and E[v;w}] = o%I. Now, stack the matched filter outputs

of the L antennas together Define 2; = [21,...,25]%;
T T Define h;; = Zlel hii;, and consider

v, = [vh,...,v5]
hLl_] T
L_] '

T
hir;
21 6T
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as the equivalent spreading sequence of user 5 (with a spreading
factor of NL). We can write the stacked chip matched filter
output as

K
Z; = Z\/p—j\/hijbjéj+'”i~ 31D
=1

It is easily seen that (31) and (29) fall into the same category.!
For simplicity, in this paper, we focus on the notation of (29).
Assume that the user symbols are detected by linear filters at
the base stations. Let ¢; denote the receiver filter of user ¢ at its
assigned base station. The receiver filter output of user ¢ is

K
Yi = Z VPV hij(el8j)b; + el v;. (32)
j=1

B. Fixed Base Station Assignment With Matched Filter
Receiver

The deterministic and stochastic versions of the PC problem
when the base station uses conventional matched filters to detect
user signals was studied in [7] and [8], respectively. In this case,
¢; = 8;. Suppose that ~; is the SIR target of user ¢, then the
deterministic interference function can be written as [7]

L(p) = 7= | D pihis(sT ) + 07 (33)
"\
The stochastic estimate of I;(p) is [8]
I = Z—Zy? — YiDi- (34)

From (32) and using the fact that b; and b; are independent of
each other, and independent of vy, for all ¢ # 7, k, we can easily
verify that [8]

ElLlp] = -

T (3%)

ijhij(sfsj)Q +0% | = L(p)
J#i

which is the mean condition in Definition 2. Since I(p) is linear
in p, the Lipschitz condition in Definition 2 follows immedi-
ately. Also, it is not difficult to see that I satisfies the growing
condition in Definition 2. Hence, I is a standard stochastic in-
terference function.

C. Fixed Base Station Assignment With Blind MMSE Receiver

The deterministic and stochastic implementations of the joint
PC and MMSE interference suppression were studied in [11],
[9], [12], and [1], respectively. In this subsection, we show that
the stochastic version of the PC algorithm falls into the quasi-
standard category.

From (32), the SIR of user i can be written as

Pihn(CZTSiV

SIR; = :
> jziihij(el 87)% + o*(cle;)

(36)

Define

J oy Djeipihij(el8;)? + o%(cl )
z(p~, ci) - h_“ (CTS,L‘)2

(37

INote that this conclusion only applies to the systems where a fixed single
base station is assigned to each user.
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where ; is the SIR target of user ¢. Then the QoS requirements
of the users can be written as

pi > Ji(p.ci).

Now, consider the filter coefficients ¢; as an optimization param-
eter. Since we want to minimize the powers, we should choose
¢; such that J;(p, ¢;) is minimized for each user. Define

(38)

I;(p) = min J;(p, ¢;). (39)
Note that ¢; that minimizes J;(p, ¢;) is the scaled version of the
well-known MMSE filter [21]

C; = kiAi_lsi (40)

where A; = 3., pjhi;8;8] + o°I and k; > 0 is an arbitrary
constant. Substituting (40) into (39), we get

i 1
Lip) = hii sTA; s,
It has been shown in [11] that I(p) is a standard determin-
istic interference function, and the corresponding deterministic
PC algorithm converges to the componentwise minimum power
vector.

In the stochastic implementation of the combined PC and
filter optimization, we assume that the information of other users
is not available at the receiver, and therefore, A; and ¢} cannot
be computed directly. Consequently, one has to construct the op-
timum filter coefficients ¢} by using the local information only.
When the powers are fixed, such a construction can be done by
using the blind MMSE method introduced in [22]. The blind
MMSE adaptation rule can be summarized as [22]

ci(l+1) =ci() — p(Des (DT z;(1)(2:(1) — 87 z:(1)85)  (42)

where [ is the iteration index and (1) is the step size for the /th
iteration in the blind MMSE algorithm. In this algorithm, ¢; is
initialized with an arbitrary vector satisfying ¢;(0)7s; = 1.1t
is shown in [22] using the results of [23] that, for given fixed
powers, p(n), if u(l) satisfies

Zu(l) =oo and 2:;;(1)2 < oo
1=0 1=0

(41)

then (42) converges to ¢;(n)* when! — oo with probability one.
Since (42) is also a stochastic approximation algorithm, given
p(n), we can write the characteristic ODE of (42) as

dci
— = ~ 2Bl z:()(2:(1) - 87 2:(1)s:) p]
= — Q(AZ — siszTAi)ci- (43)
Since ‘fft is linear in ¢;, it is easily seen that if ¢} is a glob-

ally asymptotically stable equilibrium for (43), it must be a
globally exponentially asymptotically stable equilibrium [24].
Therefore, according to [16, Theorem 2.3], (42) converges to
¢i(n)* also in the MSE sense as long as the step-size sequence
satisfies Y ,° u(l) = oo and p(l) — 0.2

However, before performing the nth iteration on the sto-
chastic PC (4), in order to ensure ¢;(n) = ¢;(n)*, one has to
perform an infinite number of iterations of (42). This is not
acceptable in practical systems. When the number of blind

2Similar results can also be found in [22] and [25].
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MMSE iterations between the power updates is finite, we can
write ¢;(n) as

CL(TL) = OL'(’IL)* + ’U)L(TL) 44)

Since (42) converges to ¢;(n)* in the MSE sense, we can always
choose (1) and the number of iterations such that

E [|lw;(n)|I*|p(n)] < B(n) (45)

is satisfied. Here K9 > 0 is an arbitrary constant, and 3(n) is a
sequence as in (9).
Define the stochastic estimate of I;(n) as

7 Vi
Ii(n) = 7= [(ei(n)"2i(n))* = pi(n)hai] -
Then, unlike the previous case where the stochastic version of
the PC algorithm was standard, in this case we show that the
stochastic version of the PC algorithm is quasi-standard.

(46)

Theorem 5: I(n) in (46) is a quasi-standard stochastic inter-
ference function if (44) and (45) are satisfied.

The proof of Theorem 5 is presented in Appendix D.

Theorem 5 shows the convergence of the joint stochastic PC
and filter optimization algorithm under the condition that (45)
is satisfied by the filter updates between the power updates.
Hence, one may still need to perform a large number of itera-
tions of the blind MMSE (42) between two power updates (4) in
order to ensure that (45) holds. Obviously, when 5(n) — 0, the
number of steps required on the blind MMSE iteration grows to
infinity. Noting that when «(n) is small, ¢*(n + 1) differs from
¢*(n) only slightly, we can initialize the blind MMSE iteration
of ¢(n+1) by e(n) which is an estimate of ¢*(n). Based on this
basic principle, we propose a modified version of the algorithm,
which is similar to the one given in [9], as follows.

Combined stochastic PC and receiver optimization:
1. Initialize the iteration counter n = 0. Initialize p, ¢;(0) =

2. ‘?z compute I;(n) via

Ii(n :%i[ (m) = pi(n)ha] . (47)
3. Vi, compute ¢;(n) via

¢i(n) = ei(n)"zi(n)(2i(n) — 8] 2i(n)s;).  (48)
4. Vi, update p;(n + 1) and ¢;(n + 1) by

pi(n+1) =pi(n) = ap(n)(pi(n) = Ii(n))

¢i(n+1) =ei(n) — aci(n)éi(n) (49)

where «,(n), a.i(n) are the step-size sequences for the
PC and blind MMSE updates, respectively.
5. As in [22], perform

(ci(n + 1)T3i — 1)3i

to ensure that ¢;(n + 1)T's; = 1 holds.
6. Stop when the power and filter coefficients converge. Oth-
erwise, let n = n + 1, and go to step 2. O

ct-(n—i—l) :ci(n—i—l)— (50)

In the above algorithm, we update the power vector and the
filter coefficients in parallel, i.e., the PC algorithm does not wait
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for the convergence of the blind MMSE. Furthermore, we use
different notations on the step-size sequences of the PC and
the blind MMSE to indicate that they are not necessarily the
same. However, we should clarify that, since parallel update in-
troduces correlation between the noises in the PC and filter op-
timizations, the convergence proof in Theorems 1 and 4 do not
ensure the convergence of this modified algorithm. Neverthe-
less, we will verify later via computer simulations that, when
the step sizes are small enough, the above algorithm is conver-
gent as well.

D. Minimum Power Base Station Assignment With
Matched-Filter Receiver

Now assume that there are K; base stations associated with
user ¢ (one base station may be associated to multiple users si-
multaneously) and that at each base station the receiver uses a

matched filter. Denote these base stations as ¢1, %2, . . ., ik,. The
deterministic interference to user ¢ at base station 7y, is
@)= 2= | 3 pihi(s7s)* +o (51)
“Z J#k
Define the minimum interference I(p) as
I;(p) = min 1), (52)

Uk

It is shown in [7] that I(p) is a standard deterministic interfer-
ence function, and hence the corresponding deterministic PC al-
gorithm converges to the optimal power vector. The base station
assignment of (52) is termed the minimum power base station
assignment [26].

In the stochastic implementation of the joint PC with min-
imum power base station assignment, at each base station, we
still use (as in (34))

I ) = -2, -

(%)

ViDi (53)

as the stochastic estimate of I,L-(”') (p). However, since

B o) = 17
as long as the variance of the noise is not zero, we have

E[min f,i(i“) |p] < min I,L-(i“). (54)
1k (23

Hence, if we use min,, IN,L»(”) as a stochastic estimate of I;, 5(n)

in the bias condition (9) in Definition 3 will not decrease to 0

as n — oo. To avoid this problem, we assume that, bethen

the successive power updates, we obtain L(n) samples of I, i(“'),

denoted as 1*)(1), ..., 1) (L(n)). Define

L(n) 7(ix)
7oy izt i)

W L(n) (53)

We can see that E[Ilp] — I as L(n) — oo. It is also easy to
verify that I satisfies the growing condition, and that I satis-
fies the Lipschitz condition. Hence, the stochastic PC algorithm
(4) with I in (55) is quasi-standard as long as L(n) is chosen

properly.
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Similar to the joint stochastic PC with filter optimization, if
we require that the bias of the interference estimates go to zero,
L(n) — oo must be true. Clearly, getting a large number of
samples between two power updates will significantly reduce
the rate of the power updates. Hence, similar to the problem of
joint stochastic PC with filter optimization, we propose a mod-
ified version of the algorithm as follows.

Combined stochastic PC and base station assignment:
1. Initialize the iteration counter n = 0. Initialize p(0). Vi
and iy, initialize )ZE”')(O) = 0. Initialize L(0) = LO{{(O)J

where Ko > 0 is a carefully chosen constant and LK 1 J
is the integer part of Klo »
2. Viand Vi, let L(n) = Lf(if)J Compute I*) (n) via
1) (n) = h7— [(8T2i(n)? = pi(n)higi] . (56)
(%3
Compute x X ( ) by
_(in) L(n) =1 ¢y =(ix)
Z0(m) = T L0 ¢ 2 10w). (57)
L(n) L(n)
3. Vi, find the minimum power base station assignment by
a; = arg mm X( )( ). (58)
Compute I via
Ii(n) = I (n). (59)
4. Vi, update p;(n + 1) by
pi(n+1) = pi(n) — a(w)(pi(n) — (). (60)

Vi, 5, update 921(“)(71 +1) = ;21(“)(71)
5. Stop when the power and base station assignments con-
verge. Otherwise, let n = n + 1, and go to step 2. O

The convergence of the modified algorithm will be verified
later via computer simulations.

E. Limited Diversity With Matched-Filter Receiver

Following the previous subsection, we assume again that
there are K, base stations associated with user 7. Instead of
choosing the base station with the minimum interference,
we combine the signals at all K; base stations to detect the
signal of user 7. Such a scenario was analyzed in [27] from the
channel capacity point of view. Under the assumption that the
interfering signals at different base stations appear to user ¢ as
uncorrelated noises, maximal ratio combining of the received
signals for user ¢ yields the SIR constraint of user ¢ as [27]

hiyi
Di 2 Vi- (61)
Z D sty P hij (8] 87)? + o?
This gives the determlmstlc interference I(p) as
Vi 1

i

2 D, pihigi(s]8;) 40 2
where Ii(i"")(p) is given by (51). It was shown in [7] that I(p) is
a standard deterministic interference function, and therefore a
deterministic PC based on this interference function converges
to the optimal power vector.

i ()
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Before studying the stochastic version of the PC algorithm,
we first show that I(p) satisfies the Lipschitz condition as well.
In fact

hqkqhikl(sfsl)z »
D pihigi(sTs;)2+02)"
hiy i

2
<Z“ D 1’jh4kj(8?sj)2+02)
2
Z hiki
(hikl) k Ejiquhikj(s?ﬂsj)2+02

. 2
K23 hiki
(Z”’ E#i Pj hikj(sszj)2+02>
h
< y;max | 2 (63)
i hiki
that is, all components of % are bounded, and the Lipschitz

continuity follows immediately.

As in previous examples, we use
~(: ’Y
Ii(” ) = h: yzk

)

iy (

ol;
=%

ap

< ; max
i

ViDi (64)

as the stochastic estimate of I Z( ”"). However, we cannot directly
replace I"*) by I"*) in (62) since in general

o
Y, )

w1 @)

E

p| # Li(p). (65)

In order to meet the bias condition requirement, we assume

that, between the (n — 1)th and the nth power updates, we
7(ir)

fix the powers and receive L(n) samples of /;"*’, denoted by
199(1),..., I (L(n)). Define
IR
= 1) (66)
L(n) ;
and define the stochastic estimate of I(p) by
~ 1
Ii(p) = T . (67)

ka (ip o2
maX(XE k)(P)vziw )

It is easily seen that if L(n) — oo, E [fl(p) |p} — I;(p) holds.
Hence, the bias condition is satisfied if L( ) is chosen properly.
) > 0, we have

Furthermore, since max (XE A)( ),
1
2 L )

max (X(”‘ ) (p 7—717.0‘.

2
(7,)\ ’YZO-

< = max -— .
g e (30 37

Hence, from the fact that there exists a constant K1, such that

B [(F)21p] < K1+ [plP) (69)

0%\ N2 L (0%
max (XE“) hL ) < ()21(-”)) + <hL )
ikt ikt

It can be verified that I(p) satisfies the growing condition.
Therefore, the proposed algorithm is quasi-standard.

A’

(68)

and

(70)
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In this example, even though there is no other parameter op-
timization combined with the PC problem, we are only able to
design a quasi-standard stochastic algorithm due to the difficulty
in satisfying the mean condition in the standard stochastic PC
algorithm. Finally, similar to the previous examples, to avoid the
problem that L(n) — oo, we further modify the algorithm as
follows.

Combined stochastic PC with limited diversity:

1. Initialize the iteration counter n = 0. Initialize p(0). Vi
and Vi, initialize )2(“')(0) = (. Initialize [:(02 — LKH)J-
(

: , i a(0
2. Viand Vi, let L(n) = L%J Compute Ii( *(n) via

() = hﬁ [(sT2i(n)? = pi(n)hii] . (T1)
)
Compute )25”)(77,) by
~(ip L?’L—lh,ik 1 F(ip
) = FESER 0= 1) 4 I,
~ (72)
3. Compute I(n) by
~ 1
Ii(n) = 1 (73)
Zi;\. (i) o2
max()”(i k (n),]'liT)
4. Vi, update p;(n + 1) by
pi(n+1) = pi(n) — a(n)(pi(n) = Li(n)).  (74)

Vi, i1, update )25”‘)(n +1) = 5(5”)(71)
5. Stop when the powers converge. Otherwise, letn = n+1,
and go to step 2. O

V. COMPUTER SIMULATIONS

In this section, we present several computer simulations to
verify the convergence of the modified algorithms proposed in
Sections IV-C and IV-E. We denote the stochastic PC algorithm
with matched-filter receiver as PCMF, the stochastic PC algo-
rithm with blind MMSE receiver as PCMMSE, the stochastic
PC algorithm with minimum power base station assignment as
PCMP, and the stochastic PC algorithm with limited diversity
as PCLD.

Example 1: In this example, we study the performance of
PCMMSE proposed in Section IV-C. We choose K = 4 and the
5-length binary signature sequences are generated randomly as

-1 1 1 -1

1 1 -1 -1 -1

[31732733,34] =—1-1 1 -1 -1
V5 1 1 -1 1

1 -1 -1 1

(75)

For simplicity, we set all channel gains to h;; = 1, V¢, 5. The
SIR targets of the users are chosen arbitrarily as

[717737737'74] = [59/4976,69] (76)
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Fig. 1. Convergence of the powers of all users.
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Fig. 2. Convergence of the filter coefficients of user 2.

And 02 = 0.1. We initialize all user powers at 1, and initialize
the filter coefficients to ¢;(0) = 8;. The step size sequence is
chosen as a,(n) = aci(n) = ﬁ so that the system has a
reasonable initial convergence and the step size sequence does
not decrease to zero too quickly. Fig. 1 shows the convergence
of the transmitted power p; of each user, and Fig. 2 shows the
convergence of the filter coefficients ¢ for user 2. The optimal
values of the parameters which are obtained from the deter-
ministic iterations are also provided as horizontal lines in these
figures.

Example 2: In this example, we study the performances of
PCMF, PCMMSE, PCMP, as well as PCLD. We consider a gen-
eral multicell CDMA system on a rectangular grid. There are
25 base stations with coordinates (10007 + 500, 10005 + 500)
for 0 < 4,57 < 4. We have 400 users, whose positions are ran-
domly and independently generated. Both = and y coordinates
of each user are uniformly distributed between 0 ~ 5000 m.
Fig. 3 shows the positions of the users and the base stations with
symbols X and o, respectively.
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Fig. 3. Simulation environments for 400 users; o and X are base stations and

users, respectively.
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Fig. 4. Performance comparison in terms of average power.

The channel gain of user j to the assigned base station of user
iiscomputed as h;; = ( 200 )4, where d;; is the distance between
user 7 and the assigned base station of user i. The 150- -length
binary signature sequences are randomly generated. The target
SIR is set at v; = 4 for all users. For PCMF and PCMMSE,
each user is assigned to its closest base station, and for PCMP
and PCLD, we associate the four closest base stations with each
user. In this example, we fix the step sizes at a(n) = 0.01, and
all other settings are the same as in the previous example. In
PCMF, we set L(n) at L(n) = 300. In PCLD, we set L(n) at
L(n) = 30.

We first show the performances of different algorithms in
terms of the average power in Fig. 4. The optimal solutions ob-
tained via the corresponding deterministic PC algorithms are
shown as horizontal lines, respectively. In addition to the con-
vergence of the four algorithms, we can see that, to achieve the
same SIR target, the average powers of PCMMSE and PCLD
are much lower than those of the other two algorithms.

For both PCMP anc(l PCLD, since E[I"*)|p] = I, one may

think that plugging I; ©) directly into the determlmstlc interfer-
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Fig. 5. Performance of incorrectly designed PC algorithms.

ence function should give a reasonably good stochastic estimate.
This corresponds to using min;, I l(“") as the stochastic estimate
of I, (i) i PCMP, and using D as the stochastic estimate

i j(”'k)

of I; in PCLD. The trajectories of the average powers of these
two algorithms are shown in Fig. 5. As we see in this figure, due
to significant bias in the interference estimation, the incorrectly
designed PCMP algorithm converges to an infeasible solution;
powers converge to small values that violate the SIR require-
ments. On the other hand, due to the violation of the growing
condition, the incorrectly designed PCLD algorithm does not
even show a convergent behavior.

VI. CONCLUSION

This paper proposes a general framework for standard and
quasi-standard stochastic PC algorithms. Based on the recent
literature on the stochastic approximation algorithms, we show
that, under certain mild conditions, both standard and quasi-
standard algorithms converge to the optimal solution. Different
types of convergence are shown under different assumptions
on the iteration step-size sequence. Several existing stochastic
PC algorithms are studied, and several new stochastic PC algo-
rithms are proposed. We show that these algorithms are either
standard or quasi-standard. In the examples of the quasi-stan-
dard stochastic PC algorithm, we further extend the algorithms
so that the stochastic PC and the parameter optimization can be
carried out in parallel. Convergence of the modified algorithms
are verified by computer simulations.

APPENDIX A
PROOF OF LEMMA 1

Proof

Given an arbitrary constant K, > 1, since I(K,p*) < K,p*
with strict inequality, we can always find 0 < € < 1, such that

I(K.p") < K.(1— e)p*. (77)

That is,

Ka.p* — I(K.p*) > eK.p*. (78)
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Furthermore, VK; > K,

K, K,
Kyt — I(Kp*) = S re,pt — 1 (—bKap*>

K, K,
> Ko~ 1K)
Z eKbp*. (79)

This indicates that, for any standard interference function I(p),
we can always find an € > 0 and K, > 1 such that (79) is valid
for all scaling constants K, > K,. Now, define

gi:p_jm
b

k = arg max¢;.
. K2
K2

(80)
Using (79), if &, > K,

lp —I(P)Il > pr — Ir(P) > &kpi — Lk(&xp™) > €&y BD)
which gives
lp*1?

€2 minj{p’;-}2
[lp* ||

2
i pryelp — 1)1
= K.llp— 1p)|P

Ipll* <& lp*|I* = Eire mm{pj}

— €2

(82)
On the other hand, if ¢, < K,, we have

Ipll* < KZllp*|I* = Ka (83)

Combing (82) and (83) gives us (16). O

APPENDIX B
PROOF OF THEOREM 1

Proof

We give proof for the quasi-standard stochastic PC algo-
rithm only since a standard stochastic PC algorithm is also
quasi-standard.

To prove the theorem, we need to work with the Lyapunov
function V' (p) defined in (12). To simplify the notation, we write
I(p(n)). I(p(n)), and g(p(n)) as I(n), I(n), and g(n), respec-
tively. Since I(p) is Lipschitz continuous, the eigenvalues of the
Hessian matrix of V' (p) are bounded. Hence, denoting V' (p(n))
by V(n), from (4), we can find a constant K5, such that the trun-
cated Taylor expansion on V(n + 1) satisfies

an)p(n) = )" (p(o)
e

V(n+1) <V(n) - —I(n))
().

Now, defining E,,[-] as the conditional expectation given p(n),
we have

(84)

Eu[V(n+1)] <V(n) — a(n)lp(n) - I(n)]?
+ () (p(n) ~ T(n)"g(n)
27K () — )]
<V(n) — a(n)llp(n) — I(m)]?
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+a(n)lp(n) — I(n)[lg(n)]

+ o() (o) — I(0) P + (o))

+ 2OTES o 1T ) — 100 — o))
(85)

Using (9) and (11) in Definition 3, and (16) in Lemma 1, we can
find a constant K¢, such that

Eu[V(n+1)] <V(n) = a(n)|lp(n) — I(n)|?
+a(n)?Ko(1 + [[p(n) — I(n)|*)
a(n)B(n)Ke(1 + |Ip(n) — I(n)|]?)

(n)+(a(n) a(n)B(n))K
a(n)|p(n) - I(n)||?
+ Kesa(n)(a(n) + 6(n))|lp(n) — I(n)]*.
(86)
Let us define
V(n)=V(n)+ Ke Z(a@)? +a(i)BGE). (87
Then, from (86), we get
E.[V(n+1)] < V(n) — a(n)|lp(n) — I(n)]*
+Ksa(n)(a(n) + A(n))|p(n) — I(n)|>. (88)

Since a(n), #(n) — 0 when n — oo, we can assume that there
exists a constant IV, such that, Vn > N, 1-Kg(a(n)+6(n)) >0
Therefore,

E,V(n+1)]<V(n), Vn>N. (89)

Since V(n) > 0, (89) indicates that V(n) is a supermartingale
sequence [18]. According to martingale convergence theorem
[18], V(n) converges to a random variable V, with probability
one. This yields

N+ Ks Y (ali)® + ali)5(i))
=N
> E[V(N)] + K¢ Z(a(i)2 +a(i)B(i)) — E[Va]

> > ali)(1 - Ke(a(i) + B(0)) Elllp(i) - 1(i)||’]
i=N
(90)

where the last inequality follows from (88). Since E[V(0)] <
oo and N is finite, we have E[V(N)] < oo. Together with
the assumption that > a(n)? < oo, S5 a(n)B(n) < oo,
the left-hand side of (90) is finite. If Voo > 0 has a positive
probability, then ||p(n) — I(n)||?> > 0 has a positive probability.
This and

i a(n) ? < 00, and Z
n=0

lead to a contradiction. Therefore, Voo, = 0 and p(n) — p* as
n — oo, with probability one. O

oo

2 3 ol
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APPENDIX C
PROOF OF THEOREM 2

Proof
Since p¥ = 2 " isan equilibrium of the scaled ODE (20), by

taking r — oo,r we can see that p%, = 0 is an equilibrium of
(23).

Since VY # 0
Loo(p) = lim 272 _ ) iy 10Dy o)
T—0C T 7]7'—)00 /’77"

We observe that I (p) is linear in p. Suppose p # 0 is another
equilibrium of (23), i.e., p = Io(p). Define &; and k as

Di

g=1t

%)

b;

k = arg max&;. (92)
According to (91), since Vn # 0, np is also an equilibrium of
(23), without losing the generality, we can assume that & > 1.
Hence,

Ii(p) < Ii(&kp™) < &kp) = Dr- (93)
This contradicts p = I (p) since
I
Lo@) = 1m T < 1) 04)

It is not difficult to verify that p = 0 is a globally stable equilib-
rium of (23). Therefore, we conclude that Theorem 2 holds. []

APPENDIX D
PROOF OF THEOREM 5

Proof

We first show that the deterministic interference I(p) satisfies
the Lipschitz condition. Taking the derivative of I(p), we obtain

Ii 1 TA'_I 2
a g _7_ (31, 1_18.7) . (95)
Ipj hii (8T A7 's;)?

From (95), we obtain
(87 AT'A7'si)(s] s;)

(s7 A7 's)?

(s7A;'s;)’

7

T A—14—1
_'SiAi Ai 8;
T A-1g\2 — -
(8] A; " si)

(s7 A7 '8

(96)
Noting that A, ! is symmetric and positive definite, we define
A;' = Q" AQ as the eigenvalue decomposition of A;*; and
define A4, as the maximum diagonal element of A. Since
A; > o*I, we have A\, < . This implies that

sTAT A s, _ sTQPAAQs;
(s7A7 '8 (s/Q7AQs;)?
(VAQs:) " A(VAQs;)
||\/1§Q8i||2

S)\maz S o
g

o7)

Combined (97) with (96), we can see that I(p) is Lipschitz
continuous.
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Next, note that ¢/ 8; = 1 is satisfied at every step of the blind
MMSE iteration (42), we have from (44) that 'wiTSi = 0. Hence,
from (40), we obtain c,’{TAi'wi = k;8;Tw; = 0. Since

T
5 7 G Aic; Y% T
Bl el = oy = 0o A

(98)
Using (44), we obtain
cfAici = c,’fTAic,’f + 2chAiwi + waiwi

1
= + ’wZTAi’IDi

sTA s,
1
=T, T 2 hillsTwil? + o?lwill?)
D R
1
S TATs T Z(mhz‘j +0?)|Jwi|*. (99)
L J#i
Define
9(p(n)) = E[I(n)|p(n)] — I(n). (100)

From (45) and (99), we see that g(p(n)) satisfies the bias con-
dition in Definition 3. R
Finally, using (29), (44), and (45), we can verify that I(n)
also satisfies the growing condition in Definition 3. This com-
pletes the proof that the stochastic interference function is quasi-
standard. Then the convergence of the joint stochastic PC with
blind MMSE interference suppression follows from Theorems 1
and 4. O
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