
Decision feedback with rollout for multiuser
detection in synchronous CDMA

F. Tu, D. Pham, J. Luo, K.R. Pattipati and P. Willett

Abstract: Decision feedback (DF) is one of the most popular methods in multiuser detection due
to its simplicity and outstanding performance. Despite the efficiency of the DF detector, there is
usually a large performance gap between the DF detector and the optimal maximum likelihood
detector. Rollout, an emerging technique from planning and optimisation, is employed to improve
the performance of the decorrelator-based DF detector for synchronous code division multiple
access channels. Simulation results show that the proposed algorithm significantly improves the
joint error rate of the DF detector, and even outperforms the sequential group decision feedback
detector for similar time complexities. Further, owing to the inherent parallel structure of the
proposed algorithm, the method is particularly useful in applications where speed and accuracy are
both important.

1 Introduction

Owing to the NP-hard nature of the general multiuser
detection (MUD) problem in code-division multiple access
(CDMA) channels [1], much research has been devoted to
the development of suboptimal algorithms that provide
reliable decisions with relatively low computational costs.
Linear detectors, such as the decorrelator [2] and the linear
minimum mean square error (LMMSE) detector [1],
improve the performance of the conventional matched-
filter detector significantly, while limiting their computa-
tional complexities to O(K2) where K is the number of users.
Decision-driven detectors, which include the multistage
detector [3], the decision feedback (DF) detector [4], and the
group decision feedback (GDF) detector [5], generally
provide significant improvement over linear detectors
without raising the computational complexity beyond
O(K2). Even so, there is still a large performance gap
between these detectors and the optimal maximum like-
lihood (ML) detector. Therefore practical methods that
provide a nice tradeoff between computational cost and
optimality are desirable; rollout strategies [6] offer such a
tradeoff.

Rollout algorithms [6] are a class of suboptimal solution
methods inspired by the policy iteration of dynamic
programming. The attractive aspects of rollout algorithms
are simplicity, broad applicability, and suitability for online
implementation. While rollout algorithms do not aspire to
optimal performance, they typically result in a consistent

and substantial improvement over the suboptimal algo-
rithm that underlies them.

We employ rollout to improve the performance of the
decorrelator-based DF detector for synchronous code
division multiple access channels. Simulation results show
that the proposed algorithm, which we refer to as the rollout
decision feedback (RDF) detector, significantly improves the
joint error rate (JER) of the DF detector, and even
outperforms the sequential GDF detector for similar time
complexities. Joint error rate was defined in [4] as the
probability that at least one user is detected erroneously.
Further, due to the inherent parallel structure of the
proposed algorithm, the method is particularly useful in
applications where speed and accuracy are both important.

2 Problem formulation and DF detector

A discrete-time model for the matched-filter outputs at
the receiver of a CDMA channel is given by the K-length
vector [1]

y ¼ RWbþ n ð1Þ
where bA{�1, +1}K denotes the K-length vector of bits
transmitted by the K active users, R is the symmetric
normalised correlation matrix with unit diagonal elements,
W is a diagonal matrix whose ith diagonal element, wi is the
square root of the received energy per bit of the ith user, and
n is a real-valued zero-mean Gaussian random vector with
covariance matrix s2R. When all the user signals are equally
probable, the optimal solution of (1) is the output of the
ML detector [2]

fML : b̂b ¼ arg min
b2f�1;þ1gK

ðbT WRWb� 2yT WbÞ ð2Þ

The ML detector has the property that it minimises, among
all detectors, the probability that not all users’ decisions are
correct.

The DF detector makes its decisions sequentially, one
user at a time, using successive interference cancellation.
Consequently, the quality of the DF solution is strongly
dependent on the detection order. The optimal user
ordering for the decorrelator-based DF detector is given
in theorem 1 of [4], and we assume throughout this paper
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that the users have been ordered according to this rule
unless stated otherwise.

Assuming that R¼LTL the system can also be
represented by a white noise model

~yy ¼ LWbþ ~nn ð3Þ

where ~yy ¼ L�T y and ~nn ¼ L�T n is a white Gaussian noise
vector with zero mean and covariance matrix s2I. The
decorrelator-based DF solution is then given as

fDFD : b̂bi ¼ sign ~yyi �
Xi�1
j¼1
ðLW Þijb̂bj

 !
ð4Þ

where the sequential nature of the bit decisions is clear.

3 RDF

The MUD problem can be viewed as a tree search wherein
the nodes represent users (with each level of the tree being
occupied by a single user) and the branches emanating from
a node are the possible signals that the user of that node can
assume (i.e. either ‘+1’ or ‘�1’ in the binary case we study
here). In a worst-case scenario, the optimal detector
traverses the entire tree (i.e. enumerates all 2K possible
solutions) and selects the best solution using the perfor-
mance metric given by (2). This is precisely what we are
seeking to avoid.

To reduce the computational cost, rather than traverse
the entire tree, in each iteration we only expand the tree m
levels deeper; and for each leaf node obtained (2m of them)
we apply a suboptimal multiuser detector to determine
which path to take among all the paths emanating from
that node. The total number of paths (or solutions) in the
tree is equal to 2m where m is chosen such that 2K

c2m (also
see Fig. 1). In this case, the MUD technique that we employ
to complete the solutions is the DF detector because of its
low computational complexity and comparatively good
performance. (This is the base policy in the rollout.)

One can best view the RDF detector as a conditional DF
detector where the decisions of some of the users are
assumed known a priori. For the RDF detector to be
significantly better than the original DF detector, none of
the 2m solutions is claimed as a final solution. Instead we
make decisions only on the users who are occupying the m
levels of the tree who are assigned signal values from the
path with the smallest ML cost. Naturally, the degree to
which the DF solution agrees with the truth is key in
making a reliable decision about the m users.

Consider the DF solution for the ith user. In the ideal

case where #b1, #b2, y, #bi�1 are correct there is no user
interference and the decision for the ith user is

~yyi ¼ ðLW Þiibi þ ~nni ð5Þ

Then the probability of making an error on user i for the
ideal case, which we denote as Pe(bi), is

PeðbiÞ ¼ Prð~nni4ðLW ÞiiÞ ¼ Q
ðLW Þii

s

� �
ð6Þ

where

QðxÞ ¼
Z 1

x

1ffiffiffiffiffiffi
2p
p e�

z2
2 dz

Intuitively, it makes sense to occupy the top levels of the
tree (as opposed to the lower levels that are relegated to
solution by DF) with the users who are least likely to be
detected correctly by the DF detector. In doing so, the
quality of the 2m DF solutions (see Fig. 1) may be improved
since incorrect decisions on the part of the aforementioned
users can lead to incorrect decisions for other users
depending on the detection order. Using (6) as the criterion
for determining which users should occupy the levels of the
tree first, we define D¼ (d1, d2,y,dK) as the sequence of
error prone users where Peðbd1Þ � Peðbd2Þ � . . . � PeðbdK Þ.
Without the perfect feedback assumption the probability of
error of user signal bi in the DF solution is bounded
asymptotically by Q(minjri [(LW)jj]/s)ZPe(bi)ZQ((LW)ii/
s). Therefore the proposed sequence D, which is derived
from criterion (6), is an approximation to the decreasing
order on the error probabilities of the user signals. Let Dj

represent a set of users, 7Dj7 denote the cardinality of Dj and
define bDj as the user signals for Dj. The RDF algorithm is

described as follows:
Step 1: Sort users according to the user ordering criterion
proposed for the DF detector in [4] (especially theorem 1
of [4]).
Step 2: Determine the sequence D and partition it as
D¼ {D1, D2,y,DF}, where 7Dj7¼m for j¼ 1, 2,y, F�1
and 7DF7rm with F ¼ djDjj=me.
Step 3: Initialise the stage counter j¼ 1.

Step 4: For each realisation of bDj ðbDj 2 f1;�1g
jDjjÞ,

obtain the decisions for the still undecided users using the
DF detector, compute and store the associated ML cost for

the overall solution, viz. b̂b
T

WRWb̂b� 2yT Wb̂b, assuming b̂b
is the overall DF solution.
Step 5: Select the realisation of bDj that is associated
with the best path and claim this as the solution for the
users in Dj.
Step 6: If joF, let j¼ j+1 and go to step 4. Otherwise,
STOP.

In practice we usually terminate the program early if the
best cost does not improve after a certain number of
iterations. As all the related computations for a given path
are independent of the other paths, the RDF detector is
particularly computationally efficient if parallel processing is
employed.

4 Simulation results and discussion

For all the examples we generate the user signal amplitudes
randomly according to wiBN(4.5,4) and limit them to the
range of [3, 6]. Theorem 1 of [4] was applied for the user
ordering in the DF, RDF, and probabilistic data associa-
tion (PDA) detectors [7, 9]. The optimal solutions (ML
decisions) are obtained via a fast branch-and-bound
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Fig. 1 Illustration of tree with m¼ 2 levels

384 IEE Proc.-Commun., Vol. 151, No. 4, August 2004



algorithm that employs depth-first search on an optimal
user ordering [10].

In the first two examples the depth m of the RDF
detector was set to 2. Figure 2 shows the performance
comparison based on 105 Monte-Carlo runs for a six-user
system with 11-length randomly generated spreading
sequences. Figure 3 shows the performance comparison
based on 300000 Monte-Carlo runs for a 20-user system
with 25-length randomly generated spreading sequences.
For the aforementioned examples the algorithm is termi-
nated early if the best cost does not improve after four
consecutive stages.

In the third example we consider a 20-user system with
21-length randomly generated spreading sequences. For the
RDF detector we varied m from 1 to 3 and we terminate the
algorithm early if the best cost does not improve after four
consecutive stages. Figure 4 shows the performance
comparison based on 300000 Monte-Carlo runs. Com-
pared with the previous two examples the level of
improvement is reduced as the number of users comes
close to the code length.

In the final example we fixed the system SNR to 12dB
and vary the number of users from 5 to 55. The spreading
sequences are randomly generated and the ratio between the
spreading factor and the number of users is fixed at 1.2
where K varies from 5 to 55 in increments of 5. For the
RDF detector, we use m¼ 4 and we terminate the
algorithm early if the best cost does not improve after five
consecutive stages. In Fig. 5, the computational cost of
the RDF detector is computed under the assumption that
the computations for all the paths of the tree are
done in parallel. The PDA detector, whose performance is
typically close to optimal, has a computational complexity
of O(K3) [8]. Hence, with the availability of parallel
processing, the complexity of the RDF detector
is substantially less than O(K3). The simulation is based
on 1000 Monte-Carlo runs.

5 Conclusions

Significant reductions in the JER of the DF detector have
been achieved by applying rollout, which requires only
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Fig. 2 Performance comparison, six users, 11-length randomly
generated codes, 105 Monte-Carlo runs with importance sampling
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quences, spreading factor¼ 1.2K, SNR¼ 12 dB, 1000 Monte-Carlo
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minor modifications to the DF detector. The inherent
parallel architecture of the RDF detector allows for the
possibility of achieving even lower JERs without raising the
time complexity. In cases where the system is nearly
overloaded, the RDF detector in general does not attain
near-optimal performance. However, for other cases, the
RDF detector has a JER that comes reasonably close to
that of the ML detector. Future research will focus on
improving the DF detector via an adaptive rollout
strategy where the number of tree levels m will vary from
stage to stage. Rollout as underpinned by DF has been
explored here for the MUD problem. Underlying
suboptimal algorithms other than DF can be used for
the MUD problem, and we believe that the rollout
philosophy may have wide applicability in communications
problems.
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