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On Rate Control of Packet Transmission over Fading Channels
Jie Luo, Member, IEEE, and Anthony Ephremides, Fellow, IEEE

Abstract— In error controlled packet reception, a packet is
received only if its error probability can be kept below a pre-
determined level. Error probability control is achieved by posing
a minimum signal to noise ratio (SNR) threshold with corre-
sponding packet internal coding scheme, which upper-bounds
the packet data rate. We first consider packet transmission over
a single-user wireless fading channel with additive Gaussian
noise. We derive the optimal SNR threshold that maximizes the
communication throughput. We show under a set of generous
conditions that the optimal SNR threshold in the low-SNR regime
is proportional to the transmit power; the ratio depends neither
on the packet internal coding scheme nor on the pre-determined
error probability level. The result is then extended to packet
multicasting where common information is transmitted to a
group of receivers over fading channels.

Index Terms— Error controlled reception, multicast, rate con-
trol, SNR threshold.

I. INTRODUCTION

IN the layered network architecture, the data link layer is
responsible for transforming the raw transmission facility

into virtual error free logical links to the upper layers [1]. A
key component of such transformation is the error controlled
packet reception widely implemented at the medium access
control (MAC) sublayer. In error controlled reception, a packet
is accepted by the receiver only if its coding error probability
can be maintained below a predetermined level [2]. A packet
is erased by the receiver if the error probability requirement
cannot be met.

Given a time-invariant channel and a finite packet length,
the tradeoff between communication rate and decoding error
probability is characterized by the error exponent of the
packet internal coding scheme (as opposed to the upper layer
processing that treats packets as fundamental units) [3][4]. The
tradeoff determines the maximum number of data bits that can
be packed into one packet if the error probability must be kept
below the pre-determined level.

When packets are transmitted over a wireless fading chan-
nel, and the channel is time-invariant within a packet duration
(or a time slot), the actual channel experienced by each packet
transmission is a random realization from an ensemble of
channels. Assume the transmitter only knows the channel
distribution information (CDI) while the receiver knows the
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channel state information (CSI). Error controlled reception can
be achieved by choosing packet internal coding to ensure low
error probability for a subset of channels (in the ensemble)
and requiring the receiver to erase the packet if the channel
realization is outside the subset. The “rate control” problem
is defined as finding the optimal channel subset to maximize
the overall communication throughput, in bit per second.

In this letter, we first consider packet transmission over a
single-user wireless fading channel with additive Gaussian
noise. The transmitter chooses a channel subset by posing
a minimum received signal to noise ratio (SNR) threshold.
A packet is accepted (as opposed to being erased) by the
receiver only if its received SNR is above the threshold. We
define packet throughput, in number of packets per slot, as a
function of the packet erasure probability. The communication
throughput is defined as the packet throughput multiplies the
packet data rate, in bit per second. Under a set of gener-
ous assumptions, we derive the optimal SNR threshold that
maximizes the communication throughput. We show that the
optimal SNR threshold is proportional to the transmit power
in the low-SNR regime; the ratio is neither a function of
the packet internal coding scheme nor a function of the pre-
determined error probability level. We then show similar result
also holds for packet multicasting systems where common
information is transmitted from a transmitter to a group of
receivers over fading channels.

II. SYSTEM MODEL

Consider packet transmission over a block fading channel
with additive Gaussian noise. We assume the size of each
packet is fixed at N symbols. We call a packet transmission
duration a block or a time slot. The channel output symbols
of a packet can be represented by an N -dimensional column
vector y,

y = hx + n, (1)

where x is an N -dimensional column vector whose elements
are the transmitted symbols; n is the additive Gaussian noise
with E[n] = 0 and E[nnT ] = I; h is the normalized
channel gain1. We assume the channel gain is time-invariant
within a packet duration, and may vary over different packet
transmissions. Assume only CDI at the transmitter while
the receiver knows the CSI. The transmitted symbols have
an average power of E[‖x‖2/N ] = P . Consequently, the
received SNR of a packet is given by

SNR = |h|2P. (2)

1Note that we assumed unit noise variance in the channel model. Therefore,
h equals the channel gain normalized by the actual noise variance (or the
actual interference plus noise variance in a multiuser environment).
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To control error probability in packet reception, the trans-
mitter poses a minimum received SNR threshold T . A packet
is accepted by the receiver if and only if its received SNR
satisfies SNR ≥ T . Since the coding error probability must be
maintained below a pre-determined level, the error exponent
of the packet internal coding must be maintained above a
corresponding threshold. Consequently, the relation between
the maximum packet data rate (in bit per second) R, and
the SNR threshold T , is characterized by the error exponent
curve of the packet internal coding scheme. This enables us
to write the packet data rate R(T ) as a function of the SNR
threshold. Note that R(T ) is nondecreasing in T . The actual
expression of R(T ) depends on the coding scheme and the
pre-determined error probability requirement.

Assumption 1: We assume R(T ) is continuously differen-
tiable2 with respect to T . We also assume R(T ) possess the
follow three properties: limT→∞

R(T )
T = 0, R(0) = 0, and

dR(T )
dT

∣∣∣
T=0

> 0.
The three properties posed in Assumption 1 are generous in

the sense that violation of these properties often suggests an
ill system design. For example, dR(T )

dT

∣∣∣
T=0

> 0 is satisfied

by most of the popular coding schemes; R(0) = 0 can
be violated only if the error probability requirement can be
satisfied without transmitting any data symbol to the receiver;
limT→∞

R(T )
T = 0 can be violated if the channel has infinite

bandwidth.
Let the density function of |h|2 be f(|h|2). Given the SNR

threshold T , packet erasure probability ρ can be obtained by

ρ

(
T

P

)
= Pr

{|h|2P < T
}

=
∫ T

P

0

f(|h|2)d|h|2. (3)

Note that (1 − ρ) is the average number of packets received
by the receiver per slot, i.e., the packet throughput. Usually,
due to upper layer data processing, different packets may not
always carry independent information. We assume upper layer
protocols treat packets as fundamental units in the sense that
we can write the “effective” throughput G = Gρ(ρ) in packet
per slot as a function of the packet erasure probability ρ. Note
that Gρ(ρ) ≤ 1 − ρ since the effective packet throughput
can never be larger than the packet throughput. Due to (3),
effective packet throughput can be written as a function of T

P ,
denoted by G

(
T
P

)
= Gρ

(
ρ

(
T
P

))
.

Assumption 2: We assume the packet throughput function
G (α) is continuously differentiable with respect to α. Assume
there exists at least one α0 > 0, such that G (α0) > 0. We
also assume limα→∞ αG (α) = 0.

It is easily verified that Assumption 2 is satisfied if |h| is
Rayleigh distributed and Gρ(ρ) = 1 − ρ.

We define the communication throughput r, in bit per sec-
ond, as the effective packet throughput multiplies the packet
data rate.

r(T ) = Gρ(ρ)R(T ) = G

(
T

P

)
R(T ). (4)

2Packet data rate of a practical system often takes a finite number of
possible values. In this case R(T ) is not continuous and therefore is
not continuously differentiable with respect to T . Nevertheless, we can
approximate a practical R(T ) using a continuous differentiable function.
Such approximation enables us to obtain useful insight about practical system
design.

The rate control problem is defined as finding the optimal
SNR threshold T ∗ to maximize the communication throughput
r.

III. THE UNICASTING CASE

In the following theorem, we show that, if the system
operates in the low-SNR regime, then T ∗ is proportional to
P .

Theorem 1: Suppose Assumptions 1 and 2 hold. The op-
timal SNR threshold T ∗ that maximizes the communication
throughput satisfies

lim
P→0

T ∗

P
= α∗, (5)

where α∗ is given by

α∗ = arg max
α

αG(α). (6)

Proof: We first show for any P > 0, we have T ∗ �= 0
and T ∗ �= ∞.

Since G
(

T
P

) ≤ 1, we have, for any P > 0, r(0) =
G(0)R(0) = 0. Meanwhile, according Assumptions 1 and 2,

lim
T→∞

r(T ) = P lim
T→∞

[
T

P
G

(
T

P

)]
R(T )

T
= 0. (7)

It is easy to show r(T ) does not stay 0 for all T . Therefore,
we have 0 < T ∗ < ∞.

Next, we derive T ∗ under an auxiliary assumption that P →
0 should imply T ∗ → 0. We will later show that this auxiliary
assumption must hold.

Since r(T ) is continuously differentiable with respect to T ,
and 0 < T ∗ < ∞, T ∗ must satisfy d r(T∗)

dT∗ = 0, i.e.,

1
P

d
G

(
T∗
P

)
dT∗

P

R(T ∗) + G

(
T ∗

P

)
d
R(T ∗)
dT ∗ = 0. (8)

Define
α∗ =

T ∗

P
. (9)

Substitute (9) into (8), we obtain

α∗d
G (α∗)
dα∗

R(T ∗)
T ∗ + G (α∗) d

R(T ∗)
dT ∗ = 0. (10)

Define Ṙ(T ) = dR(T )
dT . According to Assumption 1,

lim
T→0

R(T )
T

= Ṙ(0) > 0. (11)

As P → 0, which implies T ∗ → 0 by the auxiliary assump-
tion, α∗ converges to a solution of the following equation,
which is obtained by combining (10) and (11),

α∗d
G (α∗)
dα∗ + G (α∗) = 0. (12)

According to (9) and (12), the system throughput r(T ∗)
satisfies

lim
P→0

1
P

r(T ∗) = lim
P→0

1
P

G(α∗)R(α∗P ) = α∗G(α∗)Ṙ(0).
(13)

Clearly, if (12) has multiple solutions, the optimal α∗ must be
given by (6). Consequently,

lim
P→0

1
P

r(T ∗) = α∗G(α∗)Ṙ(0) > 0. (14)
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Finally, we show the auxiliary assumption must hold, i.e.,
P → 0 does imply T ∗ → 0.

Suppose there exists a constant T0 > 0 such that as P → 0,
we have T ∗ ≥ T0. Since R(T ) is continuously differentiable
and nondecreasing in T , limT→∞

R(T )
T = 0 implies that we

can find a constant U0 < ∞ to satisfy

R(T )
T

≤ U0, ∀T ≥ T0. (15)

Consequently, assume T ∗ ≥ T0, we have according to As-
sumption 2,

lim
P→0

1
P

G

(
T ∗

P

)
R(T ∗) ≤ lim

P→0

T ∗

P
G

(
T ∗

P

)
U0 = 0. (16)

Comparing (16) to (14), as P → 0, the throughput achieved
by T = α∗P with α∗ being determined by (6) is larger than
the one that keeps T ≥ T0. Therefore, T ∗ → 0 as P → 0
must be true.

The result of Theorem 1 is surprising in the following
sense. Under the condition that Assumptions 1 and 2 hold,
according to (6), the value of α∗ only depends on the upper
layer protocols that determine Gρ(ρ), and the channel statistics
that determines ρ

(
T
P

)
; α∗ is not a function of R(T ), and hence

its value depends neither on the packet internal coding scheme
nor on the error probability requirement.

IV. THE MULTICASTING CASE

Consider a packet multicasting system where a common set
of packets are transmitted from the transmitter to a group of K
receivers over block fading channels with additive Gaussian
noise. Let the channel output symbols of a packet received by
the kth receiver be

yk = hkx + nk (17)

where hk is the normalized channel gain from the transmitter
to the kth receiver; nk is the additive Gaussian noise with
E[nk] = 0 and E[nknT

k ] = I . We assume the transmitter
only knows the CDI while each receiver knows the CSI of
the corresponding channel.

Let e be a K-dimensional binary-valued “erasure vector”
whose kth element ek takes value 1 if the packet is erased by
receiver k, i.e.,

ek =
{

1 if |hk|2P < T
0 otherwise

(18)

Note that since the noise distributions of all channels are
identical and the transmitter only knows the CDI, the SNR
thresholds T of all the receivers must be identical. Conse-
quently, given the joint distribution of the channel gains, the
distribution of e, denoted by ρ(e) = ρ

(
T
P

)
can be written as

a function of T
P .

Define the effective multicast throughput G as the rate in
which the transmitter delivers common information to all the
receivers. We assume upper layer protocols treat packets as
fundamental units in the sense that we can write the effective
multicast throughput in number of packets per slot as a func-
tion of the packet erasure distribution ρ(e), i.e., G = Gρ(ρ).
Discussions on example upper layer protocols can be found
in [5]. Given the channel statistics, G = Gρ(ρ) = G

(
T
P

)
can

be further written as a function of T
P . The effective multicast

communication throughput, in bit per second, is defined as the
rate in which the transmitter delivers common information to
all the receivers,

r(T ) = G

(
T

P

)
R(T ). (19)

Define the rate control problem as finding the optimal
T ∗ that maximizes the effective multicast communication
throughput r. It is easily seen that the optimal SNR threshold
T ∗ is given by (8); and Theorem 1 holds with the same proof.

Note that comparing to the ergodic channel capacity, error
controlled reception may cause significant rate loss in the low-
SNR regime [5]. Even though the optimal SNR threshold
T ∗ and hence the optimal packet throughput G

(
T∗
P

)
=

G(α∗) does not depend on the packet internal coding scheme,
the optimal communication throughput r = G(α∗)R(T ∗) is
affected by R(T ∗). Further discussions on moderate and high
SNR cases can be found in [5].
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