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Abstract—This paper studies finite-terminal random multiple
access over the standard multipacket reception (MPR) channel.
We characterize the relations among the throughput region of
random multiple access, the capacity region of multiple access
without code synchronization, and the stability region of ALOHA
protocol. In the first part of the paper, we show that if the MPR
channel is standard, the throughput region of random multiple
access is coordinate convex. We then study the information ca-
pacity region of multiple access without code synchronization and
feedback. Inner and outer bounds to the capacity region are de-
rived. We show that both the inner and the outer bounds converge
asymptotically to the throughput region. In the second part of
the paper, we study the stability region of finite-terminal ALOHA
multiple access. For a class of packet arrival distributions, we
demonstrate that the stationary distribution of the queues pos-
sesses positive and strong positive correlation properties, which
consequently yield an outer bound to the stability region. We also
show the major challenge in obtaining the closure of the stability
region is due to the lack of sensitivity analysis results with respect
to the transmission probabilities. Particularly, if a conjectured
“sensitivity monotonicity” property held for the stationary dis-
tribution of the queues, then equivalence between the closure of
the stability region and the throughput region follows as a direct
consequence, irrespective of the packet arrival distributions.

Index Terms—ALOHA, capacity, multipacket reception (MPR),
positive correlation, stability.

I. INTRODUCTION

THE simplicity of ALOHA random multiple access and
its variations has made them the center of understanding

contention in communication networks for over thirty years.
Random multiple access has the main advantage of allowing a
common channel to be dynamically shared by a group of termi-
nals while maintaining a low level average transmission delay.
However, random multiple access leads to unavoidable “colli-
sions,” in the sense that when packets from multiple terminals
overlap, serious interference often results in a low or even zero
packet reception probability. The occurrence of packet colli-
sions increases with traffic. This consequently results in a major
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limit on the throughput of ALOHA systems. With an assump-
tion of the collision channel model, interests in throughput anal-
ysis and stability issues of ALOHA systems can be dated back
to its original proposal in the early 1970s [1], [2]. Although the
stability problem for ALOHA systems with bufferless terminals
has been extensively studied and is now well understood [1],
[3]–[5], stability of slotted ALOHA systems with finite number
of buffered terminals turned out to be complicated due to the
interacting of multiple queues. Previous analysis in the litera-
ture resulted in the determination of the stability region for the
two-terminal and three-terminal cases. For systems with more
than three terminals, only inner and outer bounds to the stability
region are available.

Stability analysis for the buffered ALOHA system over the
collision channel was initiated by Tsybakov and Mikhailov in
1979 [6], where they obtained a sufficient condition for sta-
bility. The exact sufficient and necessary conditions for ergod-
icity of the two-terminal system and ergodicity of the symmetric
system with all terminals having the same input rate and the
same transmission probability were also derived. In 1988, Rao
and Ephremides [7] explicitly introduced the technique of dom-
inant systems. Under the assumption of fixed packet transmis-
sion probabilities, improved sufficient conditions and necessary
conditions for stability were obtained. In 1994, Szpankowski
[8] found the necessary and sufficient conditions for stability
of ALOHA systems with more than two terminals. The stability
region of the three-terminal system was obtained. However, for
systems with more than three terminals, the necessary and suf-
ficient condition cannot be computed explicitly since it involves
the joint stationary statistics of the queues. In 1999, Luo and
Ephremides [9] identified that the queues in ALOHA systems
possess a special property, called the stability ranks. With the
help of the special property, tight inner bounds and outer bounds
of the stability region were derived. In all the above works, the
purpose was to find the stability region of the packet arrival rate
vectors with respect to the given packet transmission probabil-
ities. For the two-terminal case, if one takes the closure of the
stability regions over all possible transmission probabilities, an
interesting observation is that the closure of the stability region
is identical to the throughput region.1 In 1991, under the assump-
tion of a specific correlated packet arrival distribution, Anan-
tharam derived the closure of the stability region of a general
ALOHA system with more than two terminals [21]. Although
the result obtained in [21] is still a special case which assumes a
particular correlated packet arrival distribution, the expressions
of the closure of the stability region and the throughput region
again appear identical.

1This is defined as the capacity region in [3].
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All the above works were carried out under the assumption
of the collision channel model, which is a simple but insightful
model for the wired network environment. However, such a
model often fails to characterize the wireless environment,
where ambient noise and channel fading become more serious
on one hand [10], and on the other hand, packets might be
able to survive a collision due to the increased freedom in the
space domain [11]. The first attempt to model the wireless
channel in random multiple access was made by Ghez, Verdú,
and Schwartz in 1988 [14], where they proposed a general
symmetric multipacket reception (MPR) channel model [14],
[15] and analyzed the stability issue of ALOHA systems under
infinite-user and single-buffer assumption. The stability of
finite-terminal ALOHA system over the capture channel, being
a special case of the MPR channel, was analyzed by Sant and
Sharma in 2000 [13]. Recently, Naware, Mergen, and Tong
[16] studied the stability and delay of finite-terminal ALOHA
systems over the asymmetric MPR channel. The closure of the
stability region of the two-terminal system was derived explic-
itly using the idea of dominant systems. For the two-terminal
system, it was shown that when the MPR channel is strong,
the ALOHA system is stable with transmission probabilities of
both terminals equal to one. In other words, even if a central
scheduler is available, no scheduling is needed and the ALOHA
random access is already stable and delay optimal [16]. Similar
features were also found for the symmetric systems with more
than two terminals if all terminals have the same arrival rate and
the same transmission probability. For ALOHA systems with
more than two terminals over the general MPR channel, [16]
derived an inner bound of the stability region, which is indeed
the throughput region of random multiple access. In addition
to the results on stability and delay, [16] is the first work that
considers the asymmetric MPR channel. Compared with the
symmetric MPR channel model, the asymmetric MPR channel
model is much more general in characterizing the asymmetric
nature of wireless networks.

In parallel to the discussions on the stability of ALOHA
systems, research works that look at random multiple-access
systems from an information-theoretic point of view have also
taken place [17]. The primary purpose of such research is to
understand the fundamental impact of the burstiness in the
source and the lack of code coordination on the capacity of
multiple-access channels. Back in 1976, Gallager studied the
source burstiness and the protocol information in [18]. It was
pointed out that certain information rate can be achieved by
encoding the idle and nonidle status of the transmitter only.
Additional examples and capacity results corresponding to
encoding the timing of the packets were presented in [19]. It
was shown in [19] that, due to the use of timing information,
the information capacity of a random-access system is higher
than its service rate, which is indeed the throughput of the
system. Besides the study of timing channels, in 1985, Massey
and Mathys [20] derived the zero-error capacity region of
random multiple access over the collision channel under the
assumptions of no code synchronization among terminals and
no feedback from the receiver. An interesting observation is
that, the zero-error capacity region derived in [20], in number
of packets per slot, has the same expression as the throughput

region of random multiple access over the collision channel,
which also equals the closure of the stability region in those
special cases where the stability region is known [7], [8], [21].
In the meantime, Hui studied the information capacity region of
the collision channel in random multiple access [22]. The result
on the information capacity region showed a close relationship
to the zero-error capacity region derived in [20]. Consequently,
the reason why these regions have the same or approximately
the same closed-form expressions becomes of a particular
interest [17]. On the other hand, there have been several works
in extending the above results to the wireless environment.
Recently, Tinguely et al. found the zero-error capacity region
of the recovery channel, which is indeed a special MPR channel
without feedback [23]. The results were related to the informa-
tion capacity region in [24]. In [25], Médard et al. studied the
information capacity region of a multiple-access system with
slotted and packetized transmissions over the additive white
Gaussian noise (AWGN) channel. However, there has been no
prior work that considers the information capacity region of
random multiple access over the general MPR channel under
the assumption of no feedback and no code synchronization,
as [22], [20] did for the collision channel and [23], [24] did for
the recovery channel.

In this paper, we address the relations among the throughput,
capacity, and stability regions in radom multiple access, all
over a “standard” and possibly asymmetric MPR channel
(see a detailed definition in Section II). First, we derive the
throughput region of random multiple access and show that if
the MPR channel is standard, the throughput region is coordi-
nate convex. Second, we derive both inner and outer bounds
of the information capacity region of random multiple access
without code synchronization and feedback. We show that
both bounds approach the throughput region asymptotically as
the packet size approaches infinity. Consequently, we define
the asymptotic capacity region, and show that the asymptotic
capacity region equals the throughput region, in number of
packets per slot. Such a result explains, under a general channel
model, the relation between the results of [22], [20] and the
throughput region (see definition in Section III).

Next, we study the stability region of finite-terminal slotted
ALOHA multiple access over the standard MPR channel.
We follow the framework presented by Anantharam in [21]
and show that, if the ALOHA system is stable, for a class of
packet arrival distributions, the stationary distribution of the
queue status possesses positive and strong positive correlation
properties. Our results extend the work of [21] in the following
two aspects. First, we assume the general standard MPR
channel. Second, our results no longer depend on correlated
packet arrivals, which has been considered “unrealistic” in
[17],[16], [26]. Nevertheless, unlike the collision channel case,
for slotted-ALOHA system over the standard MPR channel, the
strong positive correlation property only gives an outer bound
to the stability region. The major challenge in obtaining the
closure of the stability region is due to the lack of sensitivity
analysis results with respect to the transmission probabilities.
To justify this comment, we present an additional property
of the stationary distribution of the queues, together with a
conjectured “sensitivity monotonicity” property. Under the
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Fig. 1. Random multiple access in the control channel of a cellular network.

assumption of the conjectured sensitivity monotonicity,
we show that the closure of the stability region equals the
throughput region, irrespective of the packet arrival distri-
butions. The analysis on the stability region also showed an
interesting connection to the distributed scheduling protocol
[26], which achieves high throughput with decentralized im-
plementation. Further discussions on the stability issues are
also presented. Although theoretical support to the conjectured
property is not available, we hope the discussion can serve
as a brief survey that introduces both the interesting and the
challenging sides of the open stability problem, and can also
serve as a guidance to future research efforts.

The rest of the paper is organized as follows. The slotted MPR
channel model with finite number of terminals is described in
Section II. The throughput region of random multiple access is
given in Section III, where we show the throughput region is
coordinate convex if the MPR channel is standard. The capacity
region of random multiple access is analyzed in Section IV. By
deriving inner and outer bounds of the capacity region and con-
sidering their asymptotic behavior, we prove that the asymptotic
capacity region equals the throughput region. In Section V, we
study the stability region of finite-terminal ALOHA multiple ac-
cess. We first derive an outer bound to the stability region for a
class of packet arrival distributions, by following the framework
of [21]. Next, in Section V-E, we present a sensitivity mono-
tonicity conjecture to the stationary distribution of the queues.
Under the validity of this conjecture, we show the closure of
stability region equals the throughput region, irrespective of the
packet arrival distributions.

II. SYSTEM MODEL

We focus on abstract channel models for the medium access
control (MAC) layer of wireless networks. In the following sub-
section, we first clarify several special properties of the system
we consider.

A. Preliminaries

There are two major properties of the MAC layer in a data
network. First, information is transmitted in the form of packets.
The channel model we consider in this paper is abstracted at the
packet level in order to avoid excessive physical layer detail.
Second, one of the key functions of the MAC layer is to trans-
form the raw transmission facility into a logical error-free link
to the upper layers. To achieve that, packets usually contain re-
dundancy checks which, if passed, ensures very low probability
of error. If a packet does not pass the redundancy check, how-
ever, it is usually dropped without being forwarded to the upper
layer.

Random multiple access is one of the indispensable medium-
access schemes in practical data networks. It is commonly used
in the control channel of the cellular system and ad hoc net-
works [12]. The key assumption in random multiple access is
that terminals transmit packets in opportunistic fashion without
having full coordination among each other. Such assumption is
justified in practical scenarios either due to the lack of global in-
formation, or due to the intolerable delay associated with coor-
dination establishment. Because of opportunistic transmission,
packet reception can experience serious interference from over-
lapping transmissions.

The wireless environment also poses two special features
to the channel model we consider. First, due to the increased
ambient noise power, packet reception is probabilistic even if
packets do not overlap at the receiver. Second, if a packet over-
laps with other packets at its receiver, different packets usually
generate different amounts of interference. In other words,
the channel can be asymmetric with respect to the terminals.
Although the feature of probabilistic packet reception has been
extensively studied in the literature, less attention has been paid
to the asymmetry nature of the wireless channel. Nevertheless,
it is one of the most common properties of a wireless channel,
which can arise due to the use of mulituser detection, due to the
use of directional antenna, or due to the natural effect of packet
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Fig. 2. Finite-terminal random multiple access over an MPR channel.

capture. A typical scenario that contains the mixture of these
situations is illustrated in Fig. 1.

B. The Standard Multipacket Reception Channel

The schematic system model we study in this paper is illus-
trated in Fig. 2. There are terminals. Each terminal occasion-
ally transmits packet to its assigned receiver.2 We assume all
packets are of the same length. Time is slotted where each slot
equals one packet duration, and packet transmissions start only
at slot edges. In each slot, when one or more packets are trans-
mitted, each of them has certain probability of being received
successfully, or not being received by its receiver, depending on
the channel model.

For a particular slot, let be the transmission indicator of
terminal ; indicates that terminal transmits a packet
in the slot, while indicates no packet transmission from
terminal in the slot. Let be the reception indicator at the
receiver of terminal ; indicates a successful reception of
the packet from terminal , and otherwise. Let and
be two groups of terminals such that . An MPR channel
is specified by the complete set of parameters , for all
and ; and is defined by

(1)

can be interpreted as the probability that only and all the
packets from terminals in are received by their corresponding
receivers given that only and all terminals in transmit. We can
specify a random-access channel with the complete set of the

parameters. Such a channel model was originally intro-
duced in [16] as the general MPR channel model, without posing
any additional constraint on the packet reception probabilities.

In this paper, however, we focus on a class of MPR channels,
which we define as the “standard” MPR channel. Suppose ,

, are three groups of terminals. We say the MPR channel is
standard when the following inequality holds for all :

(2)

In other words, we assume that for the reception of any partic-
ular group of packets, simultaneous packet transmissions are not
helpful.

2Note that multiple terminals can be assigned to the same receiver.

As defined in [15], [16], we say that the MPR channel is
symmetric if depends only on the numbers of terminals
in and . As an example, the collision channel, defined by

, if , and , if , is both standard
and symmetric.

It can be easily seen that most of the wireless channels in
random multiple access are standard. However, they are not
often symmetric due to the diversity introduced in the space do-
main.

III. THROUGHPUT REGION OF RANDOM MULTIPLE ACCESS

Suppose each terminal has an infinite number of packets to
transmit to its receiver. In each time slot, terminal transmits
a packet with probability ; and with probability , ter-
minal keeps silent. Let be the reception indi-
cator at the receiver of terminal . Suppose packet transmissions
are independent both among different terminals and among dif-
ferent time slots. Define as the transmission probability vector,
whose th component is . Given the channel parameters, the
throughput of terminal , in number of packets per slot, is de-
fined as , which is given by

(3)

Let be the throughput vector, whose th component is . The
“throughput region” is defined as the union of over all
possible transmission vectors, i.e.,

(4)

The following lemma gives an important property of the
throughput region of random multiple access over the standard
MPR channel.

Lemma 1: If the MPR channel is standard, the throughput
region is coordinate convex, i.e., for any vector , if there
exists a transmission vector such that , ,
then .

The proof of Lemma 1 is given in Appendix A.

IV. CAPACITY REGION OF RANDOM MULTIPLE ACCESS

In this section, we study the capacity region of the standard
MPR multiple-access channel from an information-theoretic
point of view. In this context, we use the term “random multiple
access” to refer to the assumption of no code synchronization
among the terminals and no feedback from the receivers to
the transmitters, as assumed in [20]. We say a rate vector is
achievable, or inside the capacity region, if an information rate

from terminal to its receiver can be achieved, in the infor-
mation-theoretic sense, simultaneously for all . Unfortunately,
to obtain the exact expression of the information capacity is not
a trivial task. Alternatively, we first derive an outer bound and
an inner bound to the capacity region in Sections IV-A and B,
respectively. We later show in Section IV-C that these bounds
are asymptotically equal.
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Fig. 3. The enhanced random multiple access.

A. An Outer Bound to the Capacity Region

We first construct an “enhanced” system whose capacity re-
gion contains the capacity region of the original system. The en-
hanced random multiple-access system is illustrated in Fig. 3.

We assume that the receivers of all terminals can exchange
information instantly; or equivalently speaking, we assume all
the packets are transmitted to a single receiver. We assume the
code symbol alphabet for transmitter (or terminal) is

, where symbol represents an idle and sym-
bols each represent a packet of -bit length. We fur-
ther assume that when a source symbol is generated by a ter-
minal, an “enhanced” symbol is formed automatically by at-
taching the transmitter ID to the data symbol. If the source
symbol is , terminal idles in the slot, while if

, the enhanced symbol containing both the data symbol
and the transmitter ID is transmitted to the receiver through the
MPR channel. The output of the receiver is represented by an

-length column vector , whose th component takes value
in . If a nonzero symbol from terminal is re-
ceived, we have , otherwise, .

Given the input symbols , , define the set of
transmitters such that and . Suppose the
output symbol is . Define the set such that and

. The conditional probability of the output symbol
is given by

otherwise.
(5)

We assume the MPR channel, defined by the parameter set ,
is standard.

As shown in [22], due to the lack of code synchronization
and treating signals from other terminals as memoryless noise,
reliable communication for each terminal at rate , in bits
per slot, is achievable if and only if for some input distribution

, , and

(6)

we have, for all

(7)

Let be the nonzero symbols of terminal .
Given the source distribution , let the distribution of
be . Let be the indicator of

, the source symbol can be written as the product of
two independent random variables

(8)

Let be the indicator that . The following
lemma gives the information capacity region of the enhanced
system.

Lemma 2: For the enhanced random multiple-access system,
given the source distributions , let be the probability
vector whose th component is . The mutual
information between and is given by

(9)

where is the mutual information between and ;
is the entropy of ; and is defined as in (3).

Given and , define . The
information capacity region of the enhanced system is given by

(10)

The proof of Lemma 2 is given in Appendix B.

B. An Inner Bound to the Capacity Region

To obtain an inner bound to the capacity region, we con-
struct a “constrained” system, whose capacity region is con-
tained in the capacity region of the original system. The con-
strained system is illustrated in Fig. 4.

We assume no information exchange between the re-
ceivers corresponding to different transmitters. Let
be the smallest integer that is greater than or equal to .
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Fig. 4. The constrained random multiple access.

Assume . Instead of considering
, we assume the source symbol of terminal

, , is constrained within the set .
Let be the nonzero symbols of
terminal , and . We can see that the
symbol sets of and , for , are mutually exclusive.

At the receiver side, if a nonzero symbol within the set
is received by the receiver of terminal

, we have ; otherwise, . Let be a column
vector whose th symbol is . The conditional distribution of
given the input symbols is given by (5). Again, we assume the
MPR channel, defined by the parameter set , is standard.

Let , , and be defined as in Section IV-A; the following
lemma gives the capacity region of the constrained random mul-
tiple-access system.

Lemma 3: For the constrained random multiple-access
system, given , , and the source distributions , the
mutual information between and is given by

(11)

where is the mutual information between and ;
is the entropy of ; and is defined as in (3).

Define

The information capacity region of the constrained system is
given by

(12)

The proof of Lemma 3 is presented in Appendix C.

C. Asymptotic Capacity Region of Random Multiple Access

For random multiple access over the standard MPR channel,
we say a set of “asymptotic rates” , from terminal to its
receiver , is achievable if and only if we can find a sequence
of rate sets such that, given the packet size , the rate

(in bits per slot) is achievable from terminal to its

receiver, simultaneously for all ; and ,
.3 Define the “asymptotic capacity” region as the closure of

the union of all achievable asymptotic rate vectors. The asymp-
totic capacity of a random multiple-access system can be de-
rived from the fact that both the outer bound given in Lemma 2
and the inner bound given in Lemma 3 converge asymptotically
to the throughput region.

Theorem 1: For random multiple access over the standard
MPR channel, the asymptotic capacity region is given by

(13)

which equals the throughput region according to Lemma 1.
Proof: The result follows from the fact that the outer

bound and the inner bound are asymptotically
equal, i.e.,

(14)

where and are defined in Lemmas 2 and 3,
respectively.

Since the information rate is measured in bits per
slot and is the size of a packet, we say that the asymptotic
rate is measured in “number of packets
per slot,” which is consistent with the measurement of the
throughput.

D. Discussions on the Capacity Region

Due to the requirement of transforming the raw transmission
facility into a logical error-free link to the upper layers, a packet
is either not received by the receiver, or it is received with neg-
ligible probability of error. As a consequence of such error-con-
trolled packet reception, a terminal occasionally obtains a per-
fect channel, for the duration of a packet length, from itself to its
receiver. The probability that a terminal gets a perfect channel
equals its throughput in random multiple access.

3In practical systems, increasing the packet size may consequently result in
a change in the MPR channel parameters. Therefore, the asymptotic capacity
region obtained in Theorem 1 should be interpreted as an approximation to the
actual capacity region in the situation of largem.
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The information rate in a random multiple-access system con-
tains the mixture of three basic components. The first compo-
nent is the information rate that can be achieved by encoding
the idle and nonidle status only [18], [19]. We call this portion
of the information rate the “burstiness rate” as the information is
delivered by exploiting the timing of packet transmissions. This
contradicts the common misunderstanding that information can
only be carried by packets’ data bits. The second component
is the information rate that was used to deliver the transmitter
ID information. Such an information rate requirement is usually
not negligible in random multiple access due to the burstiness of
the source and due to the lack of code synchronization among
the transmitters. We term this portion of the information rate
the “identification rate” as opposed to another common miscon-
ception that packets may be fully used to carry input data. The
third part is the rest of the information carried by encoding the
nonzero symbols in the packets. We call this portion of the in-
formation rate the “packet data rate.” Although these three com-
ponents are usually mixed together, which makes the exact anal-
ysis of information capacity a challenging task, it is not difficult
to see that neither the “burstiness rate” nor the “identification
rate” scales when the packet size increases. Consequently, in
the situation of large packet size, the asymptotic behavior of the
information capacity region is determined only by the “packet
data rate.”

In Sections IV-A and B, by assuming extra transmitter iden-
tification information, or implementing a simple transmitter
identification strategy, the “burstiness rate” and the “packet
data rate” can be easily decoupled in the expression of the
mutual information, as shown in (9) and (11). Consequently,
the “packet data rate” can be written in the multiplicative
form of , which is the information carried by the
nonzero packet symbols multiplied by the probability that the
terminal obtains a perfect channel. The equivalence between
the asymptotic capacity region and the throughput region is a
direct consequence of the multiplicative form of the “packet
data rate”; and the multiplicative form is indeed due to the
packetized transmission model and the error-controlled packet
reception, both are key features of the MAC layer in computer
networks. In addition, since the asymptotic capacity region
is not affected by the “burstiness rate,” whether the receivers
have the capability to detect “collision” does not change the
result of Theorem 1. Furthermore, the connections among the
packetized transmission, error-controlled reception and the
asymptotic capacity of the system can be extended beyond
the context of random multiple access. As an example, similar
insight can be seen from the asymptotic convergences of the
capacity bounds in a recent work on the capacity estimation of
the nonsynchronous covert channel [27].

V. STABILITY REGION OF ALOHA MULTIPLE ACCESS

In this section, we study the stability region of a slotted fi-
nite-terminal ALOHA system over the standard MPR channel.
The ALOHA multiple access and system stability are defined
in Section V-A. In Section V-B, we extend the framework pre-
sented in [21] to the standard MPR channel. We show that for a
class of packet arrival distributions, with independent geometric

arrival being a typical example, the stationary queue status pos-
sesses the positive correlation property. A strong positive cor-
relation property is derived in Section V-C, and consequently,
an outer bound to the stability region is obtained. Unlike the
collision channel case, for a general standard MPR channel, the
strong positive correlation property does not lead to the closure
of the stability region. The challenge is due to the lack of sen-
sitivity analysis result with respect to the transmission proba-
bilities. To justify this comment, in Section V-D, we present
a conjecture that the stationary distribution satisfies a “sensi-
tivity monotonicity” property. Under the assumption of the con-
jecture, we show the closure of the stability region equals the
throughput region, irrespective of the packet arrival distribu-
tions.

A. ALOHA Multiple Access

We assume packet arrivals at the terminals are stationary,
with the average packet arrival rate at terminal being packets
per slot. We assume each terminal has a buffer of infinite ca-
pacity to store the incoming packets. The buffer of each ter-
minal forms a queue of packets, where the arrival packets of
each terminal are appended at the end of the corresponding
queue, waiting for transmission. At the beginning of each slot,
if terminal ’s buffer is not empty, with a probability of , ter-
minal transmits the first packet in the buffer; and with prob-
ability , terminal keeps silent. The decision whether a
terminal transmits its packet (given its queue being nonempty)
is made independently from other terminals. When packets are
transmitted, each of them can be either received successfully, or
not received, with a probability depending on the MPR channel
model, as described in Section II. We assume the information of
a successful transmission is fed back to the source terminal in-
stantly. If a transmission is successful, the corresponding packet
is removed from the queue; otherwise, it stays in the queue. De-
fine as the number of packets in the queue of terminal at
the beginning of time slot . As defined in [8], [9], given fixed
packet arrival rates and transmission probabilities, queue of
the system is stable if

and (15)

If

(16)

the queue is called substable [28], or bounded in probability
[29].

Given a fixed packet arrival rate vector ,
we say is stable if one can find a transmission probability
vector such that all the queues in the corre-
sponding system are stable. We say is unstable if such a trans-
mission probability vector cannot be found. The union of all
stable vectors is defined as the stability region of the ALOHA
system.

B. Positive Correlation in Stationary Queue Status of ALOHA
Systems

Let be an arbitrary set. A partial order “ ” is defined on
if
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• for all ;
• and implies for all ;
• and implies for all .

With the partial order well defined, is called a partially or-
dered set [31]. For example, if the component of is an

-length integer-valued column vector. Denote the th element
of by . We can define a partial order, such that if

, . This is called the “regular partial order” in this
paper.

Let be a discrete-time Markov chain, whose state
space is a partially ordered set with finite or countably
infinite number of components. Assume the Markov chain is
irreducible and stationary, with stationary distribution denoted
by . Let be the probability that the state changes
to in one transition, given the previous state being . We
say the transitions of the Markov chain is “up or down,” if

unless either or holds true [30].
Suppose is a real-valued function defined on the state space
. We say is increasing if for all , im-

plies . Similarly, we say is decreasing if for all
, implies .

If is a probability function defined on , where is the
probability of , we say has “positive correlation” if for all
bounded increasing functions , , the following inequality
holds true [30]:

(17)

The following lemma is a simple extension to Harris’ inequality
presented in [30], [31].

Lemma 4: Let be a monotonic discrete-time Markov
chain, whose state space is a countable partially ordered set. If
the Markov chain is stationary with only up or down transitions,
the stationary distribution of the Markov chain has positive
correlation.

The proof of Lemma 4 is presented in Appendix D.
Although the requirement of up or down transitions appears

to be strong, we show next that, with the help of Lemma 4, for a
class of packet arrival distributions, the stationary distribution
of the queues of an ALOHA system over the standard MPR
channel, measured before the transmission moment of each slot,
has positive correlation.

Define the packet arrivals as follows. Assume “virtual
packets” arrive at the system in each slot according to a
geometric distribution with parameter . In other words, the
probability of the number of virtual packets in each slot
satisfies

(18)
Upon the arrival of each virtual packet, we generate a vector
of real packets ( ), according to a joint distribu-
tion of . We then append packets to terminal .
If virtual packets arrive in one slot, we generate vectors

independently, each according to ; and
then append packets to terminal . Suppose the
resulting average packet arrival rate at terminal is . If the

MPR channel is standard and is stable, we
have the following result.

Lemma 5: Assume the regular partial order. Assume the
status of the queues is measured right before the transmission
moment of each slot. The stationary distribution of queues

of the above system has positive correlation.

The proof of Lemma 5 is presented in Appendix E.
It is easy to see that if in the joint distribution ,

, and are independent, then the corre-
sponding packet arrival distributions of terminal and are
also independent. Comparing Lemma 5 with [21, Lemma 2],
in addition to considering the standard MPR channel, we show
the positive correlation property for a broader class of packet
arrival distributions, with independent geometric arrivals being
a typical example.

C. Strong Positive Correlation Property and Outer Bound to
the Stability Region

For ALOHA system over the collision channel, in addition
to the positive correlation property, the strong positive correla-
tion is an important property of the stationary distribution of the
queues that consequently yields the theoretical closure of the
stability region [21]. In this section, we show a similar property
also holds for ALOHA system over the standard MPR channel.

Lemma 6: Suppose the ALOHA system is stable, the MPR
channel is standard, and the packet arrivals can be modeled as
in Lemma 5. In each slot, we associate a binary-valued flag to
each of the terminals; let be the flag associated to
terminal . The value of the flag vector is generated according
to a joint distribution and the flag generation in any particular
slot is independent of all other events. Let be the empty set.
Let be a set of terminals and be the number of ’s in
vector . Assume for all , , , the joint distribution
satisfies the following properties:

(19)

Denote as the vector whose the th component equals .
Then, for any group of terminals , the stationary distribution
of the queues conditioned on , denoted by ,
has positive correlation.

The proof of Lemma 6 is presented in Appendix F.
Since setting leads us back to Lemma 5, for the stan-

dard MPR channel, the set of joint distributions of satisfying
(19) is nonempty. In the special situation when we have a col-
lision channel, we can define such that .
Consequently, Lemma 6 becomes the strong positive correla-
tion property presented in [21].

Based on the positive correlation property presented in
Lemma 5 and the strong positive correlation property presented
in Lemma 6, in the following lemma, we derive an outer bound
to the stability region of the ALOHA system over the standard
MPR channel.

Lemma 7: Suppose the ALOHA system is stable, the packet
arrivals can be modeled as in Lemma 5, and the MPR channel
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is standard. Let . Define as the set of prob-
ability vectors, where if and only if the following in-
equalities are satisfied:

(20)

(21)

Define as the region that

(22)

Then, the packet arrival rate vector is located inside the fol-
lowing region:

(23)

The proof of Lemma 7 is presented in Appendix G.
Consider the following two extreme situations. On one hand,

if we have a collision channel, since and ,
the outer bound becomes the closure of the stability region as
given in [21]. On the other hand, if for all and
packets never cause collision to each other, we have
and the only member in is , in this case we have

, which is again the closure of the stability
region. However, for a general standard MPR channel, whether
the outer bound given by Lemma 7 is a tight one depends on the
channel parameters.

D. Discussions on the Stability Region

From the results presented in [7], [8], [21], [16], and the re-
sults presented in Section IV-A, for all the special cases where
the closure of the stability region is known, the closure of the sta-
bility region of the ALOHA system is identical to the throughput
region given by (4). Therefore, it is of particular interest to
know whether such an equivalence holds for a wider class of
systems. Although the equality between the closure of the sta-
bility region and the throughput region has been widely conjec-
tured at least for the collision channel case [26], unfortunately,
the theoretical analysis turns out to be very challenging.

The existing literature considered two major ideas. The first
one is the use of dominant systems [7]–[9], [16], which is based
on the theory of stochastic dominance. The idea is to design a
new system and couple it with the original system, so that the
stationary distribution of the original system is stochastically
dominated by that of the new system. Although such an idea
helped in obtaining tight bounds to the stability region and de-
riving useful properties, it also showed a great difficulty in ob-
taining the closure of the stability region in a system with three

or more terminals [8]. The second idea is to use the positive
correlation property, which was first introduced to the study of
ALOHA stability problem by Anantharam in [21]. The idea is
mainly based on the application and extensions of Harris’ in-
equality presented in [30]. However, to apply Harris’ inequality,
one needs to construct a Markov chain with only up or down
transitions; and this leads to the requirement of special packet
arrival distributions, as shown in [21] and also in this paper. Al-
though the positive correlation property might be shown using
other results in the literature of percolation and interacting par-
ticle systems [31], [34], [35], even if it can be shown without
requiring special packet arrival distributions, to obtain the clo-
sure of the stability region of ALOHA system over a general
MPR channel is still challenging.

The major difficulty in the ALOHA stability problem is due
to the lack of mathematical tools in the sensitivity analysis [32],
[33], with respect to the transmission probabilities, on the sta-
tionary distribution of the interacting queues. In other words,
given a stable ALOHA system with a transmission probability
vector, if we slightly modify some of the transmission proba-
bilities, our knowledge about the consequent impact on the sta-
tionary distribution is very limited. If we review those successful
examples where the closure of the stability region is obtained,
either through the dominant system method or with the posi-
tive correlation idea, the importance of sensitivity analysis can
be seen from the fact that all the proofs in the literature contain
key steps leading to results for an ALOHA system with mod-
ified transmission probability vector. For example, in deriving
the closure of stability region of a two-terminal system [7], [16],
by assuming one terminal transmits dummy packets, the ac-
tual transmission probability of the other terminal is obtained.
Equivalently, this constructs a new system with modified trans-
mission probabilities, and consequently yields the closure of the
stability region. In considering the ALOHA system over the
collision channel from the perspective of positive correlation,
Anantharam derived the key lemma [21, Lemma 1] using the
strong positive correlation property. The inequality in the lemma
is indeed an inequality for the ALOHA system with modified
transmission probabilities, as shown in the proof of [21, Lemma
1]. Due to the small number of terminals [7], [16] or the special
structure of the collision channel [21], the above methods ob-
tained the closure of stability region with only one-step modifi-
cation to the transmission probability vector. However, whether
such a single-step probability modification can always result in
the closure of the stability region is unknown for other channel
models.

E. A Sensitivity Monotonicity Conjecture

In this subsection, we present an additional property together
with a “sensitivity monotonicity” conjecture on the stationary
distribution of ALOHA systems. If the sensitivity monotonicity
conjecture is true, we show the equivalence between the sta-
bility region and the throughput region follows as a direct con-
sequence.

For each slot, we define as the flag of “channel availability
associated to terminal .” Given a transmission status vector ,
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with and , for an arbitrary , the conditional
probability of is given by

(24)

Equation (24) can be interpreted as, given , if terminal trans-
mits a packet in the slot, the probability that the packet from
terminal can be received successfully is given by

We should first note that, given the transmission status of ter-
minals other than , the channel availability is independent
from the current transmission status of terminal . For the stan-
dard MPR channel, is a function of , but not a func-
tion of . In addition, is a decreasing function in .

The following lemma gives another property of the stationary
distribution of the queues.

Lemma 8: Suppose the ALOHA system is stable and the
MPR channel is standard. Let be the transmission probability
and let be the average packet arrival rate of terminal . Let
be the stationary distribution of the queues and be
the stationary probability that “channel is available to terminal
.” Then the following inequality is satisfied for all :

(25)

On the other hand, given an ALOHA system, let
denote the stationary probability that .4 If the following
inequality is satisfied for all

(26)

then the ALOHA system is stable.

The proof of Lemma 8 is presented in Appendix H.
Although the results in Lemma 8 appeared as a special case

of the positive correlation property, it is indeed derived using
the dominant system idea and hence do not depend on packet
arrival distributions.

Next, we present a conjecture on the stationary distribution of
the ALOHA system. Although we did not observe any counter
example in computer simulations, the theoretical proof of the
conjectured result is not available.

Conjecture (Sensitivity Monotonicity): Suppose and
are two finite-terminal ALOHA systems with the same number
of terminals, the same packet arrival distributions, and operating
over the same standard MPR channel. Let and be
the transmission probability vectors of and , respectively.
Define as the stationary probability of in
system , and define as the stationary probability
of in system . Then if

.

Combined with Lemma 8, in the next theorem, we show the
sensitivity monotonicity conjecture implies the equivalence be-
tween the closure of the stability region and the throughput re-
gion.

Theorem 2: Suppose the ALOHA system is stable and the
MPR channel is standard. Suppose the conjectured sensitivity

4Note that even if the queues are not stable, the distribution of a can still be
stationary, and hence, P (a = 1) can still be computed.

monotonicity holds true. Then the closure of the stability region
of the ALOHA system is given by

(27)

The proof of Theorem 2 is presented in Appendix I.
We want to emphasize that the conclusion in Theorem 2 is

based on the validity of the conjecture. In addition, it is inter-
esting to note that the iterative transmission probability update
used in the proof of Theorem 2 is indeed similar to a recent pro-
posal of a distributed scheduling MAC protocol [26]. Therefore,
whether the conjectured sensitivity monotonicity can be proven
theoretically is not only important to the ALOHA stability issue,
but also important to practical decentralized MAC protocol de-
sign.

VI. CONCLUSION

In this paper, we studied the throughput, capacity and sta-
bility regions of random multiple access over the standard
MPR channel. In the first part of the paper, we showed that,
if the MPR channel is standard, the throughput region is
coordinate convex. We then studied the information capacity
region of random multiple access over standard MPR channel,
and showed that the asymptotic capacity region equals the
throughput region. In the second part of the paper, we studied
the stability issue of ALOHA multiple access over standard
MPR channel. An outer bound to the stability region is derived
for a class of packet arrival distributions. We also presented
a conjectured sensitivity monotonicity property, which, if can
be proven, implies the equivalence between the closure of the
stability region and the throughput region.

APPENDIX A
PROOF OF LEMMA 1

Since the channel is standard, according to (3), is mono-
tonically increasing in and monotonically decreasing in ,
for all . Now, given , by assumption, we can find a trans-
mission probability vector , such that for
all . Assume , . Define by

(28)

Define the probability vector as and

, . According to (3), we have,

(29)

Let and define by

(30)

We can see, for all and , the following inequalities are satis-
fied:

(31)

Suppose there exists a , such that

(32)
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Then, since , the following inequality must be true for
all :

(33)

This implies as , and hence,
as , which contradicts the assumed inequality (32).

Therefore, we have for all , and hence .
The situation when for some can be easily covered

with minor modifications to the proof.

APPENDIX B
PROOF OF LEMMA 2

Suppose the source symbol distribution of terminal is
. Since and , the entropy of

the source symbol of terminal is given by

(34)

The conditional entropy is given by

(35)

Since if , we have and
, which implies

Equation (35) can be written as

(36)

Since when

the mutual information of is obtained from (34) and
(41) as

(37)

In (37), the term denotes the information rate achieved
by encoding the idle and nonidle states only, and the term

is the information rate achieved by encoding
the nonzero data symbols. It is easy to see that given and

, the mutual information is maximized when the nonzero
symbols are equal probable, i.e., , which implies

. Therefore, by measuring the informa-
tion rate in bits per slot, the information capacity region is
given by

(38)

APPENDIX C
PROOF OF LEMMA 3

Similar to the proof of Lemma 2, we have

(39)

Since is given, the conditional entropy can be
written as

(40)

Since if , , can
be written as

(41)

Consequently, the mutual information of is given by

(42)

Since the receiver of terminal is only interested in symbols
from terminal , given , can be regarded as the mutual
information between the source and the output of a single-user
channel. For such equivalent single-user channel, de-
notes the information rate achieved by encoding the idle and
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nonidle states only (under the constraint of ),
and the term is the information rate achieved by en-
coding the nonzero data symbols. Since the mutual information

is maximized by , for all
, measuring the information rate in bits per slot, the informa-

tion capacity region of the constrained random multiple-access
system is obtained as

(43)

APPENDIX D
PROOF OF LEMMA 4

We construct a continuous-time Markov chain, where the
transition time is assumed to be Poisson with rate , i.e., the time
interval between two successive transitions yields the exponen-
tial distribution with rate . For each transition, the probability
that the state changes from to is given by , which
is the transition probability of the discrete chain. Since the
discrete-time Markov chain is stable by assumption, the con-
tinuous-time Markov chain is also stable. Define the stationary
distribution of the discrete-time Markov chain as and the
stationary distribution of the continuous-time Markov chain
as . Define as the probability of the queue status
being at time . Define as the probability that a
transition happens between time duration and let
be arbitrarily small. Similar to the discussion in [5, Sec. 3.3.2],
we have

(44)

where the last equality is due to the independence between the
transition time and the queue status. Equation (44) implies that

for any .
Now, since the continuous-time Markov chain is monotonic

and has only up or down transitions, according to Harris’ in-
equality [30], has positive correlation. Consequently, has
positive correlation.

APPENDIX E
PROOF OF LEMMA 5

Denote the queue status at the beginning of a slot, before
the transmission moment, by ; and denote the queue status
after the transmission moment by . Define as the de-
parture transition probability, which is the probability of queue
status changing from to after the transmission in a par-
ticular slot. Now, we construct another discrete-time Markov
chain, whose transition matrix is given by

(45)

The construction can be explained as follows. We associate a
“arrival/departure” flag to each transition of the new Markov
chain. Each transition can either be an arrival transition or a
departure transition, according to the associated flag. The “ar-
rival/departure” flags are determined independently before the
corresponding transitions. With probability , and
the corresponding transition is an “arrival” transition, where the
queue status changes from to according to the arrival tran-
sition probability . With probability , and
the corresponding transition is a “departure” transition, where
the queue status changes from to according to the depar-
ture transition probability .

Since the MPR channel is standard, the new Markov chain
is monotonic. The transition of the chain is either up or down
since the arrival transition matrix has only up transitions and
the departure transition matrix has only down transitions. Con-
sequently, according to Theorem 4, the stationary distribution of
the constructed Markov chain has positive correlation. Let the
stationary distribution of the queues of the constructed Markov
chain be .

Now, we derive the stationary distribution of the queues of the
constructed Markov chain, measured only before the departure
transitions. We have

(46)

where the second equality is due to the independence between
the flag and the queue status (similar to the proof of Theorem
4 and see also the discussion in [5, Sec. 3.3.2]).

Note that the number of arrival transitions between two suc-
cessive departure transitions yields the geometric distribution as
given in (18). is the stationary distribution of the
original Markov chain measured before the transmission mo-
ment in each slot. Lemma 5 then follows from (46).

APPENDIX F
PROOF OF LEMMA 6

Define the parameter , the joint distribution as in
Lemma 5, and the departure transition as in the proof
of Lemma 5.

Now, we construct a new discrete-time Markov chain as fol-
lows. We associate an “arrival/departure” flag to each transi-
tion of the new Markov chain. The flag is determined before
the corresponding transitions; with probability and

with probability . Assume the flag is generated in-
dependently among different slots and is also independent to all
other events. In each slot, a virtual transmission flag vector
is generated assuming all terminals have packets to transmit. If

and the real queue of terminal is not empty, then the
real transmission flag , otherwise . We then asso-
ciate a flag to terminal , for all . We let if the queue of
terminal is not empty or ; and let otherwise.

Given the queue status , each transition can either be an
“arrival” transition, a “departure” transition, or an “idle” tran-
sition, depending on the associated flags and . If
and , the transition is an “arrival” transition and the
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queue status changes from to according to the arrival tran-
sition probability . If and , the cor-
responding transition is a “departure” transition and the queue
status changes from to according to the departure transi-
tion probability . If , however, the transition
is an “idle” where the queue status stays at with probability
one.

We first show the constructed Markov chain is monotonic.
Consider two copies of the constructed Markov chain,
and . We couple the two Markov chains as follows. As-
sume the virtual transmission flag vectors of both Markov
chains are identical, and are generated according to the descrip-
tion in the beginning of this proof. We generate the transmis-
sion flag vector and let if and only if
and . The transmission flag vector is generated
similarly. Let the flag vectors , and calculate the vec-
tors and , respectively. We assume other parameters and
channel statistics of the two Markov chains are identical.

Under the constraint of (19), the flag vector can be inter-
preted as the “blocking flag” in the sense that if, in a particular
slot, a packet from terminal is received, must be true.

Here is the group of all terminals except terminal . In other
words, to receive a packet from terminal , other terminal either
does not transmit at all, or transmits without the “blocking flag.”

Suppose at time slot , we have . Ac-
cording to the coupling, if the Markov chain takes an
“arrival” or a “departure” transition, the same type of transition
must also be taken by the Markov chain . In these cases,
since the MPR channel is standard, it is easy to see that

is satisfied after the transition. If Markov
chain takes an “arrival” transition while Markov chain

takes an “idle” transition,
certainly holds after the transition. Now, consider the situation
when Markov chain takes a “departure” transition while
Markov chain takes an “idle” transition. According to
the coupling, there must be a terminal , such that

(47)

Since , (47) implies that

(48)

Since both and are generated from and the corre-
sponding queue status, (48) consequently implies

(49)

Since , which means terminal transmits a packet with
the blocking flag raised, no packets from other terminals can be
received successfully. Together with (49), we can see

still holds after the transition.
From the preceding analysis, we conclude that the con-

structed continuous-time Markov chain is monotonic. It is
easy to see that if the original system is stable, the constructed
Markov chain is also stable; since if the queue of any terminal

is nonempty with probability , then with probability
, and this leads back to the Markov chain constructed in the

proof of Lemma 5. Since the constructed Markov chain has
only up or down transitions, the stationary distribution of the
queues has positive correlation, according to Lemma 4.

Now, let us consider the stationary distribution of the queues
of the constructed Markov chain, denoted by . For any state

, the stationary probability satisfies

(50)

Consequently, we have

(51)

Comparing (51) with (45), we conclude that

(52)

where is the stationary distribution of the Markov chain con-
structed in the proof of Lemma 5, and is also the stationary dis-
tribution of the original system.

From the construction of flag vectors and , it is easy to
verify the following equality:

(53)

where the right-hand side of (53) is independent of the queue
status . Combining (52) and (53), we obtain

(54)

This gives

(55)

Given the distributions and

is a constant not depending on . Since both and
are probability mass functions with respective to , (55)

implies

(56)

Since has positive correlation, according to Lemma 4,
also has positive correlation.

APPENDIX G
PROOF OF LEMMA 7

The key idea of the proof is to construct a new MPR channel,
such that the stability region of the original system is contained
in the stability region of the new system. Meanwhile, we con-
struct the new MPR channel so that the parameters have a nice
structure, which allows us to apply the framework presented in
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[21] and obtain the closed-form expression of the stability re-
gion.

The new system is constructed as follows. We first define a
“channel availability” flag . In each slot, is gen-
erated with and ,
independent to all other events. Assume is an arbi-
trary probability vector in . Let the “blocking flag” vector

be generated with and being independent for all , ,
and . In any slot, if terminals in transmit
packets and terminals in do not transmit, for an arbitrary ter-
minal , the packet from is received if and only if the
channel is available ( ) and it sees no other packets with
blocking flag ( , , ). With the definition of
and the constraints (21), given the transmitter set , the packet
reception of the original system is stochastically dominated by
that of the new system. Hence, the stability region of the orig-
inal system is contained in the stability of the new system.

For the new system, suppose is a stable packet arrival rate
vector. According to Lemma 6, the conditional stationary distri-
bution of the queue status has positive correlation.
Therefore, for any , we have

(57)

where we use to denote the event of . Follow the dis-
cussions presented by Anantharam in [21, Sec. IV], (57) implies

(58)

Since

(59)

and

(60)

Defining , we obtain from (58) the following
inequality:

(61)

Define

(62)

We obtain from (61)

(63)

Note that

(64)

We get

(65)

and hence can be interpreted as a probability. From (63), and
since is “coordinate convex” [21], we conclude that the
packet arrival rate vector is located inside the region .
Since the stability region of the original system is contained
in the stability region of the new system, and is arbitrary,
the packet arrival rate vector of the original system must be
located inside .

APPENDIX H
PROOF OF LEMMA 8

Construct a dominant system where terminal transmits
dummy packet with probability when its buffer is empty.
If the MPR channel is standard, such a dummy packet trans-
mission decreases the reception probability of packets from
other terminals. Hence, according to the analysis in [7], [9], the
distribution of the queues of the original system is stochasti-
cally dominated by the dominant system. Since given the queue
status , the channel availability probability is an
decreasing function in , denote as the stationary
probability of in the dominant system, we have

(66)

Note that the queue of terminal must be stable in the dominant
system, since otherwise, once the queue of terminal builds up,
the probability of back to becomes zero, and therefore con-
tradicts the stability assumption of the original system. Conse-
quently, we get

(67)

On the other hand, if is the stationary probability
of , and

(68)

then the queue of terminal must be stable. Since if is
not stable, the packet transmission probability of terminal
becomes and the instability of contradicts (68).

APPENDIX I
PROOF OF THEOREM 2

Denote the original ALOHA system by , and let be
the corresponding transmission probability vector. Let be the
packet arrival rate vector. Since the system is stable, we have,
for all

(69)
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Now, construct a new system . , let the transmission prob-
ability vector of terminal in be

(70)

According to the conjectured sensitivity monotonicity property,
we have

(71)

We continue constructing a new system from by let-
ting the transmission probability vector in be

(72)

It is easy to see that

(73)

Since is monotonically decreasing in , asymptotically,
we have

(74)

This implies, in system

(75)

Consequently, packet transmissions from different terminals are
independent, and hence, is given by

(76)

Therefore, is inside the region . Since is also an inner
bound to the closure of stability region [16], must be
the closure of the stability region.
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