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Abstract— This paper studies finite-terminal random
multiple access over a standard multipacket reception
(MPR) channel. In the first part of the paper, we show
that if the MPR channel is standard, the throughput
region of random multiple access is co-ordinate con-
vex. We then study the information capacity region
of multiple access without code synchronization and
feedback. We show that the asymptotic capacity region
is identical to the throughput region. In the second
part of the paper, we study the stability region of
ALOHA multiple access. For a class of packet arrival
distributions, we show that the stationary distribution
of the queues possesses the positive and strong positive
correlation properties; and this consequently gives an
outer bound to the stability region. We also show that
if a conjectured “sensitivity monotonicity” property
can be shown for the stationary distribution of the
queues, then the equivalence between the closure of the
stability region and the throughput region follows as a
direct consequence, irrespective of the packet arrival
distributions.*

I. INTRODUCTION

In this paper, we address the relationship among sta-
bility, throughput and capacity regions in radom multiple
access, all over a “standard” MPR channel (see detailed
definition in section II). First, we derive the throughput
region of random multiple access and show that if the
MPR channel is standard, the throughput region is co-
ordinate convex. Second, we derive both inner and outer
bounds to the information capacity region of random mul-
tiple access without code synchronization and feedback.
We show that both bounds approach the throughput re-
gion asymptotically as the packet size approaches infinity.
Consequently, we define the asymptotic capacity region,
and show that the asymptotic capacity region equals to
the throughput region, in number of packets per slot. Such
a result explains, in a general channel model, the relation-
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ship between the results of [1][2] and the throughput region
(see definition in section III).

Next, we study the stability region of finite-terminal
slotted ALOHA multiple access over a standard MPR
channel. We follow the framework presented by Anan-
tharam in [3] and show that, if the ALOHA system
is stable, for a class of packet arrival distributions, the
stationary distribution of the queue status satisfies the
positive and strong positive correlation properties. Our
results extend the ones obtained in [3], not only in the
sense that we consider the general standard MPR channel,
but also in the sense that our results no longer depend on
correlated packet arrivals, which has been considered in
[4] as the “unrealistic” part of the results obtained in [3].
Nevertheless, unlike the collision channel case, for slotted
ALOHA system over a standard MPR channel, the strong
positive correlation property only gives an outer bound
to the stability region. The major challenge in obtaining
the closure of the stability region is due to the lack of
sensitivity analysis results with respect to the transmis-
sion probabilities. To justify our comment, we give an
additional property of the stationary distribution of the
queues, together with a conjectured “sensitivity mono-
tonicity” property. Under the validity of the conjectured
sensitivity monotonicity, we show that the closure of the
stability region equals the throughput region irrespective
of the packet arrival distributions. Further discussions on
the stability issues are also presented. Although theoretical
support to the conjectured property is not available, we
hope the discussion can serve as a brief survey that shows
both the interesting and the challenging parts of the open
stability problem, and can also serve as a guidance to
future research efforts.

II. SYSTEM MODEL

The schematic system model we study in this paper is
illustrated in Figure 1.

We assume there are N terminals. Each terminal occa-
sionally transmits packet to its assigned receiver?. Assume
that all packets are of the same length. Time is slotted with

2Note that multiple terminals can be assigned to the same receiver.
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Finite-terminal random multiple access over a MPR channel.

each slot equals one packet duration, and packet trans-
missions start only at the slot edges. In each slot, when
one or more packets are transmitted, each of them has
certain probability of being received successfully, or not
being received by its receiver, depending on the channel
model.

For a particular slot, let ¢; € {0,1} be the transmission
indicator of terminal i; ¢; = 1 indicates that terminal 4
transmits a packet in the slot. Let r; € {0,1} be the
reception indicator at the receiver of terminal ¢; r; = 1
indicates that a packet from terminal 7 is received success-
fully. Let S and R be two groups of terminals such that
R C S. A MPR channel is specified by the complete set
of parameters qp g, for all § and R; and qr s is defined
as in [4] by

dr,s = P(rier = 1,1igr = Oltics = 1,tigs =0) (1)

Suppose U, S, S are three groups of terminals. We say
that the MPR channel is “standard”, if forallif CS C S,

we have
) 2

R, UCRCS R, Z/{QRQS

ar.s > adz s (2)

In other words, if the MPR channel is standard, for the
reception of any particular groups of packets, simultaneous
packet transmissions are unhelpful.

III. THROUGHPUT REGION OF RANDOM MULTIPLE
ACCESS

Suppose each terminal always has packets to transmit to
its receiver. In each time slot, terminal ¢ transmits a packet
with probability p;; and with probability 1 — p;, terminal
i keeps silent. Let r; € {0,1} be the reception indicator
at the receiver of terminal i. Suppose packet transmis-
sions are independent both among different terminals and
among different time slots. Define p as the transmission
probability vector, whose ith component is p;. Given
the channel parameters, the throughput of terminal ¢, in
number of packets per slot, is defined as T;(p) = P(r; = 1),

which is given by,

Tiip)= >  ars[[ei[[Q-m) )
ieskRC’s JES  keS

Let T be the throughput vector, whose ith component is
T;. The “throughput region”, Cr, is defined by,

or = {1l =Ti(p).0<p <1V} (@)

Theorem 1: If the MPR channel is standard, the
throughput region Cr is co-ordinate convex, i.e., for any
vector T, if there exists a transmission vector p such that
0<T; <Ti(p), Vi, then T € Cr.

The proof of Theorem 1 is given in [5].

IV. CaraciTy REGION OF RANDOM MULTIPLE ACCESS

In this section, we study the information capacity region
of a standard MPR channel in random multiple access. In
this context, we use the term “random multiple access”
to refer to the assumption of no code synchronization
between the terminals and no feedback from the receivers,
as assumed in [2]. In such a scenario, we say a rate
vector R is inside the capacity region, if the information
rate R; from terminal 7 to its receiver can be achieved
simultaneously for all ¢. Unfortunately, to obtain the exact
expression of the information capacity is not a trivial task.
Alternatively, we first derive an outer bound and an inner
bound to the capacity region in section IV-A and IV-
B, respectively. We later show in section IV-C that these
bounds are asymptotically equal.

A. An Outer Bound to The Capacity Region

We first construct an “enhanced” system whose capacity
region contains the capacity region of the original system.
We assume that all the packets are transmitted to a single
receiver. The code symbol alphabet for transmitter (or
terminal) 7 is X; € {0,1,...,2™}, where the symbol 0
represents an idle and symbols 1 ~ 2™ each represent a
packet of m-bit length. We further assume that when a
source symbol is generated by a terminal, an “enhanced”
symbol is formed automatically by attaching the transmit-
ter ID to the data symbol. If the source symbol is X; = 0,
terminal 4 idles in the slot, while if X; # 0, the enhanced
symbol that contains both the data symbol X; and the
transmitter ID is transmitted to the receiver through the
MPR channel. The output of the receiver is represented
by a N-length column vector Y, whose ith component Y;
takes value in {0, 1, ...,2™}. If a non-zero symbol X; from
terminal ¢ is received, we have Y; = X;, otherwise, Y; = 0.

Given the input symbols X;, 1 < ¢ < N, define the
set of transmitters S such that X;cs # 0 and X;gs = 0.
Suppose the output symbol is Y. Define the set R such
that Yier # 0 and Y;gr = 0. The conditional probability
of the output symbol Y is given by

qr,s R CS,Yier = X;,Yigr =0

P(Y|X1<i<n) = { 0 otherwise
()



Suppose the MPR channel, defined by the parameter set
qr,s, is standard. In the rest of this section, we analyze
the information capacity region of the enhanced system.

As shown in [1], due to the lack of code synchronization
and treating signals from other terminals as memoryless
noise, reliable communication for each terminal i at rate
Ri, in m bits per slot, is achievable if and only if for some
input distribution Px;(X}), Vj, and

N
P(Y, Xi<i<n) = P(Y|X1<i<n) H (6)

we have, for all i, R; < %I(Xl-; Y).

Let X; € {1,...,2™} be the non-zero symbols of
terminal 4. Given the source distribution P(X;), let the
distribution of X; be P(X;) = P(X;|X; # 0). Let t; €
{0,1} be the indicator of X; # 0, the source symbol X;
can be written as the product of two independent random
variables, X; = #;X;. Let r; € {0,1} be the indicator
that Y; # 0. The following theorem gives the information
capacity region of the enhanced system.

Theorem 2: For the enhanced random multiple access
system, given the source distributions, P(X;), let p be
the probability vector whose ith component, p;, is the
probability that P(X; # 0). The mutual information
between X; and Y is given by

I(X;Y) = I(ti;r) + H(X)Ti(p) (7)

where I(t;;7) is the mutual information between ¢; and r;
H(X;) is the entropy of X;; and Tj(p) is defined as in (3).

Given p and m, define IZ(p,m) = I(t;;r) + mT;(p).
The information capacity region of the enhanced system
is given by

1
CF(m) = {R’Ri < —IP(p,m),0<p<L1<i<N
m

8)
The proof of Theorem 2 is given in [5].

B. An Inner Bound to The Capacity Region

To obtain an inner bound to the capacity region, we
construct a “constrained” system, whose capacity region is
contained in the capacity region of the original system. We
assume that no information exchange is allowed between
the receivers corresponding to different transmitters. Let
[log N1 be the smallest integer that is greater than or
equal to log N, and assume that m = m — [log N] > 0.
Instead of considering X; € {0,1,...,2™}, we assume that
the source symbol of terminal 7, X, is constrained within
the set {0, (i — 1)2™ +1,...,i2™}. Let X; € {(i — 1)2™ +
1,...,i2™} be the non-zero symbols of terminal i, and
P(f( ) P(X;|X; # 0). We can see that the symbol sets
of X; and Xj, for ¢ # j, are mutually exclusive.

At the receiver side, if a non-zero symbol X; within the
set {(i —1)2™ +1,...,i2™} is received by the receiver of
terminal ¢, then Y; = Xl = X;; otherwise Y; = 0. Let Y be

a column vector whose ith symbol is Y;. The conditional
distribution of Y given the input symbols is given by (5).

Let t;, r; and p be defined as in section IV-A, the follow-
ing theorem gives the capacity region of the constrained
random multiple access system.

Theorem 3: For the constrained random multiple ac-
cess system, given p, m and the source distributions,
P(X;), the mutual information between X; and Y; is given
by

I(X;;Y;) = I(ti;ri) + H(X,)T;(p) 9)

where I(t;;7;) is the mutual information between #; and
ri; H(X;) is the entropy of X;; and Tj(p) is defined as in
(3).

Note that m = m+[log N7, define IS (p, m) = I(t;;r)+
(m—{[log N1)T;(p). The information capacity region of the
constrained system is given by

1
c¥(m) = {R’Rig —IC(p,m),0 < p; <1,1§i§N}
m

(10)
The proof of Theorem 3 is presented in [5].

C. Asymptotic Capacity Region of Random Multiple Ac-
cess

For random multiple access over a standard MPR, chan-
nel, we say a set of “asymptotic rates” R$° from terminal
1 to its receiver, Vi, is ach1evable if and only if we can find
a sequence of rate sets {R } such that, given the packet
size m, the rate R( ™) (in m bits per slot) is achievable
from terminal ¢ to its receiver, simultaneously for all i;
and lim,, o0 R(m) R%°, Vi.? Define the “asymptotic ca-
pacity” region as the closure of the union of all achievable
asymptotic rate vectors. We have

Theorem 4: For random multiple access over a stan-
dard MPR channel, the asymptotic capacity region is given
by,

Co={RIR <Ti(p).0<p <Lvi} (1)
which equals the throughput region Cr according to The-
orem 1.

The proof of Theorem 4 is presented in [5].

V. StABILITY REGION OF ALOHA MULTIPLE ACCESS

In this section, we study the stability region of slotted
finite-terminal ALOHA system over a standard MPR
channel.

3Note that in practical systems, enlarging the packet size may
consequently result in a change in the MPR channel parameters.
Therefore, the asymptotic capacity region obtained in Theorem 4
should be interpreted as an approximation to the actual capacity
region in the situation of large m.



A. ALOHA Multiple Access

We assume packet arrivals at the N terminals are
stationary, with the average packet arrival rate at terminal
i being \; packets per slot. We assume that each terminal
has a buffer of infinite capacity to store the incoming
packets. The buffer of each terminal forms a queue of
packets. At the beginning of each slot, if terminal ¢’s buffer
is not empty, with a probability of p;, terminal ¢ transmits
the first packet in the buffer; and with probability 1 — p;,
terminal 4 keeps silent. The decision whether a terminal
transmits its packet (given its queue being non-empty) is
made independently from other terminals. When packets
are transmitted, each of them can be either received
successfully, or not received, with a probability depending
on the MPR channel model, as described in section II. We
assume that the information of a successful transmission is
fed back to the source terminal instantly. If a transmission
is successful, the corresponding packet is removed from
the queue; otherwise, it stays in the queue. Define ¢;(n)
as the number of packets in the queue of terminal ¢ at the
beginning of time slot n. Given fixed packet arrival rates
and transmission probabilities, queue ¢ of the system is
stable if

lim P{gi(n) <z}=F(z) and lim F(z)=1 (12)
Given a fixed packet arrival rate vector A = [A1, ..., An]7,

we say A is stable if one can find a transmission probability
vector p = [p1,...,pn]7 such that all the queues in the
corresponding system are stable. The union of all stable
A vectors is defined as the stability region of the ALOHA
system.

B. Positive Correlation in Stationary Queue Status of

ALOHA Systems

Let Q be an arbitrary set of vectors. g;, g, € Q. Denote
the kth element of q; by ¢ir. We define a partial order,
such that g; < g; if and only if ¢ix < gjk, Vk.

Let {g(n)} be a discrete time Markov chain, whose state
space Q is a partially ordered set with finite or countably
infinite number of components. Assume that the Markov
chain is irreducible and stationary, with stationary distri-
bution denoted by U. Let P (ql- |qj) be the probability that
the state changes to g; in one transition, given that the
previous state is q;. We say the transitions of the Markov
chain is up or down, if P (ql-|qj) = 0 unless either q; < g,
or q; < g; holds true [6].

Suppose f is a real-valued function defined on the state
space Q. We say that f is increasing if for all ¢;,q; € Q,
q; < q; implies f(q;) < f(q;).

If U is a probability function defined on @, where
U(q) is the probability of g, we say that U has “positive
correlation” if for all bounded increasing functions fi, fo,
the following inequality holds true [6].

Eulfi(q)f2(q)] > Eulfi(@)Ev[f2(q)] (13)

Theorem 5: Let {q(n)} be a monotonic discrete time
Markov chain, whose state space @ is a countable partially
ordered set. Assume that the Markov chain is stationary,
with only up or down transitions. Then the stationary dis-
tribution U of the Markov chain has positive correlation.

The proof of Theorem 5 is presented in [5].

Define the packet arrivals as follows. Assume “virtual
packets” arrive at the system in each slot according to a
geometric distribution with parameter A. In other words,
the probability of the number of virtual packets v in each
slot satisfies,

1 AF

=1IA P(V—k)—m

(14)
Upon the arrival of each virtual packet, we generate a
vector of real packets Agq, (Ag; > 0), according to a
joint distribution of P,(Aq). We then append Ag; packets
to terminal ¢. If k virtual packets arrive in one slot, we
generate k vectors Aqq, ..., Agq; independently, each ac-
cording to P,(Aq); and then append an:l Ag,,; packets
to terminal ¢. Suppose the resulting average packet arrival
rate at terminal ¢ is \;; and assume that the MPR channel
is standard and X = [\, ..., A\y]7 is stable.

Theorem 6: The stationary distribution of queues on
the system described above, denoted by U(q), which is
measured right before the transmission moment in each
slot, satisfies the positive correlation property.

The proof of Theorem 6 is presented in [5].

It is easy to see that if in the joint distribution P,(Agq),
P,(Ag;) and P,(Ag;) are independent, then the corre-
sponding packet arrival distributions of terminal ¢ and j
are also independent.

P(v=0)

C. Strong Positive Correlation Property and Outer Bound
to the Stability Region

Theorem 7: Suppose the ALOHA system is stable, the
MPR channel is standard and the packet arrivals can be
modeled as in Theorem 6. In each slot, we associate a
binary-valued flag to each of the terminals; let b; € {0,1}
be the flag associated to terminal ¢. The value of the flag
vector b is generated according to a joint distribution B
and the flag generation in any particular slot is indepen-
dent of all other events. Let ® be the empty set. Let S be
a set of terminals and |bs| be the number of 1’s in vector
bs. Assume that for all 7, S, i € S, the joint distribution
B satisfies the following properties

Pr(lbs| >2) < qs.s

Pg(b;=1or |bs| >2) < de,s + 9q(i},s (15)

Denote v as the vector whose ith component equals b;t;.
Then, for all groups of terminals S, the stationary distri-
bution of the queues conditioned on vs = 0, denoted by
U(q|vs = 0), has positive correlation.

The proof of Theorem 7 is presented in [5].

Since setting b = 0 leads us back to Theorem 6, for a
standard MPR channel, the set of joint distributions of



B satisfying (15) is non-empty. In the specific situation
when we have a collision channel, we can define B such
that Pg(b = 1) = 1. Consequently, Theorem 7 gives the
strong positive correlation property presented in [3].

Theorem 8: Suppose the ALOHA system is stable, the
packet arrivals can be modeled as in Theorem 6 and the
MPR channel is standard. Let qop = mins q¢ s. Define Pp
as the set of probability vectors, where p, € Pp if and
only if the following inequalities are satisfied,

H(l_pbi)+zpbi H (1 —pvj)

i€s €S jESj#i
>1- STy (16)
1 —aqo
[Ha-pe)+ > m, JI 0 —pw)
jes JESj#I  kES k]
S {q“‘qo i q{”vs}, vi,5,i € S (17)
1 —aqo 1 —aqo
And define C(p,) as the region that
0<p; <1
C(py) = { vect | (1—qo)pi [ (1 — pojpy) 1<i<N
J#i
(18

Then, the packet arrival rate vector A is located inside
CS = mprPB C(pb)

The proof of Theorem 8 is presented in [5].

On one hand, if we have a collision channel, since qp = 0
and p, = 1 € Pp, the outer bound becomes the closure
of the stability region as given in [3]. On the other hand,
if qs,s = 1 for all & and packets never cause collision to
each other, we have qyg = 0 and the only member in Pg
is p, = 0, in this case we have Cg = {A|\; < 1,Vi}, which
is again the closure of the stability region. However, for a
general standard MPR channel, whether the outer bound
given by Theorem 8 is a tight one depends on the channel
parameters.

D. Conjecture on the Stability Region

In this section, we present an interesting property to-
gether with a “sensitivity monotonicity” conjecture on
the stationary distribution of ALOHA systems. We show
that if the sensitivity monotonicity conjecture is true, the
equivalence between the stability region and the through-
put region follows as a direct consequence.

For each slot, we define a; as the flag of “channel
availability associated to terminal ¢”. The conditional
probability of a; given a transmission status vector ¢, with
tjes =1 and t;¢s = 0, for an arbitrary S, is given by

by

R,IERCS;

P(ajltjes = 1,tjgs =0) = adRr,sU{i} (19)

In other words, (19) can be interpreted as, given ¢, if
terminal i transmits a packet in the slot, the probability
that the packet from terminal © can be received successfully
is given by P(ailtjes = 1,tjgs = 0).

We should first note that, given the transmission status
of terminals other than ¢, the channel availability a;
is independent from the current transmission status of
terminal ¢. It is easy to see that, for a standard MPR
channel, P(a;|q) is a function of g;j;, but not a function
of g;. In addition, P(a;|q) is a decreasing function in g;;.

Theorem 9: Suppose the ALOHA system is stable and
the MPR channel is standard. Let p; be the transmission
probability and let \; be the average packet arrival rate,
at terminal 7. Let U be the stationary distribution of the
queues and Py(a; = 1) be the stationary probability that
“channel is available to terminal ¢”. Then \; < p; Py(a; =
1) must hold for all 7. On the other hand, given an ALOHA
system, let Py(a; = 1) denote the stationary probability
that a; = 1*. If \; < p;Py(a; = 1) is satisfied for all 4,
then the ALOHA system is stable.

The proof of Theorem 9 is presented in [5].

Conjecture (Sensitivity monotonicity): Suppose
Ay and Ay are two finite-terminal ALOHA systems with
the same number of terminals, the same packet arrival
distributions and over the same standard MPR channel.
Let p(41) and p(4?) be the transmission probability vectors
of A; and Aj, respectively. Define Pai(a; = 1) as the
stationary probability that a; = 1 in system A;, and
define Pao(a; = 1) as the stationary probability that
a; = 1 in system As. Then Pai(a; = 1) > Pas(a; = 1)
if p(AD) < pl42)

Combined with Theorem 9, in the next Theorem, we
show that the equivalence between the closure of the sta-
bility region and the throughput region follows as a direct
consequence of the sensitivity monotonicity conjecture.

Theorem 10: Suppose the ALOHA system is stable
and the MPR channel is standard. Suppose the conjec-
tured sensitivity monotonicity holds true. Then the closure
of the stability region of the ALOHA system is given by

Cs ={A\ =Ti(p),0 <p; <1,Vi} =Cr (20)
The proof of Theorem 10 is presented in [5].
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