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Revision to the Proofs of: “Error Performance of
Channel Coding in Random Access

Communication”
Zheng Wang,Member, IEEE, Jie Luo,Senior Member, IEEE

The original proofs of Theorem 2 and Lemma 1 in the paper
contain uncareful presentations that require further clarifica-
tion. More specifically, the typicality thresholds used in the
decoding algorithms should be functions of the codewords,
since otherwise they may not be able to satisfy the formulas
used in the proofs for their value determinations. The revised
proofs are given below, and the results presented in Theorem
2 and Lemma 1 remain valid.

I. PROOF OFTHEOREM 2

Proof: We assume that the following decoding algorithm
is used at the receiver.

Given the received channel symbolsy, the receiver outputs
a message and rate vector pair(w, r), with r ∈ R, if for all
user subsetsS ⊂ {1, · · · ,K}, the following two conditions
are met.

C1R: −
1

N
logPr{y|x(w,r)} < −

1

N
logPr{y|x(w̃,r̃)},

for all (w̃, r̃) with r̃ ∈ R, (w̃S , r̃S) = (wS , rS),

and (w̃k, r̃k) 6= (wk, rk), ∀k 6∈ S,

C2R: −
1

N
logPr{y|x(w,r)} < τ(r,S)(xS ,y). (1)

Note that the typicality thresholdτ(r,S)(.) is a function of
(xS ,y). The threshold also depends on the rate vectorr and
the user subsetS.

Given a user subsetS ⊂ {1, · · · ,K}, we define the
following three probability terms that will be extensivelyused
in the probability bound derivation.

First, assume(w, r) is the transmitted message and rate
pair with r ∈ R. We definePm[r,r̃,S] as the probability that
the receiver finds another message and rate pair(w̃, r̃) with
r̃ ∈ R, (w̃S , r̃S) = (wS , rS), and(w̃k, r̃k) 6= (wk, rk), ∀k 6∈
S, that has a likelihood value no worse than the transmitted
codeword.

Pm[r,r̃,S] = Pr
{

P (y|x(w,r)) ≤ P (y|x(w̃,r̃))
}

,

(w̃, r̃), r̃ ∈ R, (w̃S , r̃S) = (wS , rS),

(w̃k, r̃k) 6= (wk, rk), ∀k 6∈ S. (2)

Second, assume(w, r) is the transmitted message and rate
pair with r ∈ R. We definePt[r,S] as the probability that the
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likelihood of the transmitted codeword is no larger than the
predetermined thresholdτ(r,S)(xS ,y).

Pt[r,S] = Pr
{

P (y|x(w,r)) ≤ e−Nτ(r,S)(xS ,y)
}

, (3)

where the thresholdτ(r,S)(xS ,y) will be optimized later1.
Third, assume(w̃, r̃) is the transmitted message and rate

pair with r̃ 6∈ R. We definePi[r̃,r,S] as the probability that
the receiver finds another message and rate pair(w, r) with
r ∈ R, (wS , rS) = (w̃S , r̃S), and(wk, rk) 6= (w̃k, r̃k), ∀k 6∈
S, that has a likelihood value above the required threshold
τ(r,S)(xS ,y).

Pi[r̃,r,S] = Pr
{

P (y|x(w,r)) > e−Nτ(r,S)(xS ,y)
}

,

(w, r), r ∈ R, (wS , rS) = (w̃S , r̃S),

(wk, rk) 6= (w̃k, r̃k), ∀k 6∈ S. (4)

With these probability definitions, we can upper bound the
system error probabilityPes by

Pes ≤ max

{

max
r∈R

∑

S⊂{1,···,K}





∑

r̃∈R,r̃S=rS

Pm[r,r̃,S] + Pt[r,S]



 ,

max
r̃ 6∈R

∑

S⊂{1,···,K}

∑

r∈R,rS=r̃S

Pi[r̃,r,S]

}

. (5)

Next, we will upper bound each of the probability terms on
the right hand side of (5).

Step 1: Upper-boundingPm[r,r̃,S].
Assume(w, r) is the transmitted message and rate pair with

r ∈ R. Givenr, r̃ ∈ R, Pm[r,r̃,S] can be written as

Pm[r,r̃,S] = Eθ

[

∑

y

P (y|x(w,r))φm[r,r̃,S](y)

]

, (6)

whereφm[r,r̃,S](y) = 1 if P (y|x(w,r)) ≤ P (y|x(w̃,r̃)) for
some (w̃, r̃), with (w̃S , r̃S) = (wS , rS), and (w̃k, r̃k) 6=
(wk, rk), ∀k 6∈ S. φm[r,r̃,S](y) = 0 otherwise.

1As in the single-user case, the subscriptr of τ(r,S)(xS ,y) represents
the corresponding estimated rate of the receiver output. Note that we do not
assume the receiver should know the transmitted rate.
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For anyρ > 0 ands > 0, we can boundφm[r,r̃,S](y) by

φm[r,r̃,S](y) ≤






∑

w̃, (w̃S , r̃S) = (wS , rS),
(w̃k, r̃k) 6= (wk, rk), ∀k 6∈ S

P (y|x(w̃,r̃))
s
ρ

P (y|x(w,r))
s
ρ







ρ

,

ρ > 0, s > 0. (7)

Consequently,Pm[r,r̃,S] is upper bounded by

Pm[r,r̃,S] ≤ Eθ

[

∑

y

P (y|x(w,r))

×







∑

w̃, (w̃S , r̃S) = (wS , rS),
(w̃k, r̃k) 6= (wk, rk), ∀k 6∈ S

P (y|x(w̃,r̃))
s
ρ

P (y|x(w,r))
s
ρ







ρ







=
∑

y

Eθ

[

P (y|x(w,r))
1−s

×











∑

w̃, (w̃S , r̃S) = (wS , rS),
(w̃k, r̃k) 6= (wk, rk), ∀k 6∈ S

P (y|x(w̃,r̃))
s
ρ











ρ









=
∑

y

EθS

[

EθS̄

[

P (y|x(w,r))
1−s

]

× EθS̄





















∑

w̃, (w̃S , r̃S) = (wS , rS),
(w̃k, r̃k) 6= (wk, rk), ∀k 6∈ S

P (y|x(w̃,r̃))
s
ρ











ρ



















,

(8)

where in the last step, we can take the expectations opera-
tions over users not inS since codewords corresponding to
(wS̄ , rS̄) and (w̃S̄ , r̃S̄) are generated independently.

Now assume0 < ρ ≤ 1. Inequality (8) can be further
bounded by

Pm[r,r̃,S] ≤
∑

y

EθS

[

EθS̄

[

P (y|x(w,r))
1−s

]

× EθS̄









∑

w̃,(w̃S ,r̃S)=(wS ,rS)

P (y|x(w̃,r̃))
s
ρ





ρ







≤ e
Nρ

∑

k 6∈S
r̃k

∑

y

EθS

[

EθS̄

[

P (y|x(w,r))
1−s

]

×
[

EθS̄

[

P (y|x(w̃,r̃))
s
ρ

]]ρ]

. (9)

Since (9) holds for all0 < ρ ≤ 1, s > 0, and it is easy to
verify that the bound becomes trivial fors > 1, we have

Pm[r,r̃,S] ≤ exp
{

−NEm(S, r̃,PX|r,PX|r̃)
}

, (10)

whereEm(S, r̃,PX|r,PX|r̃) is given by

Em(S, r̃,PX|r,PX|r̃) = max
0<ρ≤1

−ρ
∑

k 6∈S

r̃k

+ max
0<s≤1

− log
∑

Y

∑

XS

∏

k∈S

PX|rk(Xk)

×





∑

XS̄

∏

k 6∈S

PX|rk(Xk)P (Y |X)1−s





×





∑

XS̄

∏

k 6∈S

PX|r̃k(Xk)P (Y |X)
s
ρ





ρ

. (11)

Step 2: Upper-boundingPt[r,S].
Assume(w, r) is the transmitted message and rate pair with

r ∈ R. RewritePt[r,S] as

Pt[r,S] = Eθ

[

∑

y

P (y|x(w,r))φt[r,S](xS ,y)

]

, (12)

whereφt[r,S](xS ,y) = 1 if P (y|x(w,r)) ≤ e−Nτ(r,S)(xS ,y),
otherwise φt[r,S](xS ,y) = 0. Note that the value of
τ(r,S)(xS ,y) will be specified later.

For anys1 > 0, we can boundφt[r,S](xS ,y) by

φt[r,S](xS ,y) ≤
e−Ns1τ(r,S)(xS ,y)

P (y|x(w,r))s1
, s1 > 0. (13)

This yields

Pt[r,S] ≤ Eθ

[

∑

y

P (y|x(w,r))
1−s1e−Ns1τ(r,S)(xS ,y)

]

=
∑

y

EθS

[

EθS̄

[

P (y|x(w,r))
1−s1

]

e−Ns1τ(r,S)(xS ,y)
]

.

(14)

We will come back to this inequality later when we optimize
τ(r,S)(xS ,y).

Step 3: Upper-boundingPi[r̃,r,S].
Assume(w̃, r̃) is the transmitted message and rate pair with

r̃ 6∈ R. Givenr ∈ R, we first rewritePi[r̃,r,S] as

Pi[r̃,r,S] = Eθ

[

∑

y

P (y|x(w̃,r̃))φi[r̃,r,S](xS ,y)

]

, (15)

whereφi[r̃,r,S](xS ,y) = 1 if there exists(w, r) with r ∈
R, (wS , rS) = (w̃S , r̃S), and (wk, rk) 6= (w̃k, r̃k), ∀k 6∈
S to satisfy P (y|x(w,r)) > e−Nτ(r,S)(xS ,y). Otherwise
φi[r̃,r,S](xS ,y) = 0.

For anys2 > 0 and ρ̃ > 0, we can boundφi[r̃,r,S](xS ,y)
by

φi[r̃,r,S](xS ,y) ≤








∑

w, (wS , rS) = (w̃S , r̃S),
(wk, rk) 6= (w̃k, r̃k), ∀k 6∈ S

P (y|x(w,r))
s2
ρ̃

e−N
s2
ρ̃
τ(r,S)(xS ,y)









ρ̃

,

s2 > 0, ρ̃ > 0. (16)
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This gives,

Pi[r̃,r,S] ≤
∑

y

Eθ

[

P (y|x(w̃,r̃))

×











∑

w, (wS , rS) = (w̃S , r̃S),
(wk, rk) 6= (w̃k, r̃k), ∀k 6∈ S

P (y|x(w,r))
s2
ρ̃











ρ̃

× eNs2τ(r,S)(xS ,y)
]

≤
∑

y

EθS

[

EθS̄

[

P (y|x(w̃,r̃))
]

×EθS̄











∑

w,(wS ,rS)=(w̃S ,r̃S)

P (y|x(w,r))
s2
ρ̃





ρ̃






× eNs2τ(r,S)(xS ,y)
]

. (17)

Note that we can separate the expectation operators in the last
step due to independence between the codewords of(wS̄ , rS̄)
and (w̃S̄ , r̃S̄).

Assume0 < ρ̃ ≤ 1. Inequality (17) leads to

Pi[r̃,r,S] ≤
∑

y

EθS

[

EθS̄

[

P (y|x(w̃,r̃))
]

e
Nρ̃

∑

k 6∈S
rk

×
{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}ρ̃

eNs2τ(r,S)(xS ,y)

]

≤ max
r′ 6∈R,r′

S
=rS

∑

y

EθS

[

EθS̄

[

P (y|x(w′,r′))
]

×
{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}ρ̃

eNs2τ(r,S)(xS ,y)

× e
Nρ̃

∑

k 6∈S
rk

]

. (18)

Note that the bound obtained in the last step is no longer a
function of r̃S̄ .

Step 4: Choosingτ(r,S)(xS ,y).
In this step, we determine the typicality threshold

τ(r,S)(xS ,y) that optimizes the bounds in (14) and (18).
Define r̃∗ 6∈ R as

r̃∗ = argmax
r′ 6∈R,r′

S
=rS

∑

y

EθS

[

EθS̄

[

P (y|x(w′,r′))
]

×
{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}ρ̃

eNs2τ(r,S)(xS ,y)

× e
Nρ̃

∑

k 6∈S
rk

]

. (19)

Givenr ∈ R, y, and the auxiliary variabless1 > 0, s2 > 0,
0 < ρ̃ ≤ 1, we chooseτ(r,S)(xS ,y) such that the following
equality holds.

EθS̄

[

P (y|x(w,r))
1−s1

]

e−Ns1τ(r,S)(xS ,y)

= EθS̄

[

P (y|x(w̃∗,r̃∗))
]

{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}ρ̃

×eNs2τ(r,S)(xS ,y)e
Nρ̃

∑

k 6∈S
rk
. (20)

This is always possible if we do not enforce the natural
constraint thatτ(r,S)(xS ,y) ≥ 0.

Equation (20) implies

e−Nτ(r,S)(xS ,y) =

{

EθS̄

[

P (y|x(w̃∗,r̃∗))
]}

1
s1+s2

{

EθS̄

[

P (y|x(w,r))1−s1
]}

1
s1+s2

×
{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}

ρ̃

s1+s2
e
N

ρ̃

s1+s2

∑

k 6∈S
rk
.

(21)

Substitute (21) into (14), we get

Pt[r,S] ≤
∑

y

EθS

[

{

EθS̄

[

P (y|x(w,r))
1−s1

]}

s2
s1+s2

×
{

EθS̄

[

P (y|x(w̃∗,r̃∗))
]}

s1
s1+s2

×
{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}

s1ρ̃

s1+s2
e
N

s1ρ̃

s1+s2

∑

k 6∈S
rk

]

.

(22)

Assumes2 < ρ̃. Let s1 = 1− s2
ρ̃

. Inequality (22) becomes

Pt[r,S] ≤
∑

y

EθS

[

{

EθS̄

[

P (y|x(w,r))
s2
ρ̃

]}
ρ̃2

ρ̃−(1−ρ̃)s2

×
{

EθS̄

[

P (y|x(w̃,r̃∗))
]}

ρ̃−s2
ρ̃−(1−ρ̃)s2

× e
N

ρ̃(ρ̃−s2)

ρ̃−(1−ρ̃)s2

∑

k 6∈S
rk

]

. (23)

Now do a variable change withρ = ρ̃(ρ̃−s2)
ρ̃−(1−ρ̃)s2

and s =

1− ρ̃−s2
ρ̃−(1−ρ̃)s2

, and note thats+ρ ≤ 1. Inequality (23) becomes

Pt[r,S] ≤
∑

y

EθS

[

{

EθS̄

[

P (y|x(w,r))
s

s+ρ

]}s+ρ

×
{

EθS̄

[

P (y|x(w̃∗,r̃∗))
]}1−s

e
Nρ

∑

k 6∈S
rk

]

≤ max
r′ 6∈R,r′

S
=rS

{

∑

Y

∑

XS

∏

k∈S

PX|rk(Xk)

×





∑

XS̄

∏

k 6∈S

PX|rk(Xk)P (Y |X)
s

s+ρ





s+ρ

×





∑

XS̄

∏

k 6∈S

PX|r′
k
(Xk)P (Y |X)





1−s










N

×e
Nρ

∑

k 6∈S
rk
. (24)

Following the same derivation, we can see thatPi[r̃,r,S] is
also upper-bounded by the right hand side of (24). Because
(24) holds for all0 < ρ ≤ 1 and0 < s ≤ 1− ρ, we have

Pt[r,S], Pi[r̃,r,S]

≤ max
r′ 6∈R,r′

S
=rS

exp{−NEi(S, r,PX|r,PX|r′)},(25)
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where

Ei(S, r,PX|r,PX|r′) = max
0<ρ≤1

−ρ
∑

k 6∈S

rk

+ max
0<s≤1−ρ

− log
∑

Y

∑

XS

∏

k∈S

PX|rk(Xk)

×





∑

XS̄

∏

k 6∈S

PX|rk(Xk)P (Y |X)
s

s+ρ





s+ρ

×





∑

XS̄

∏

k 6∈S

PX|r′
k
(Xk)P (Y |X)





1−s

. (26)

Finally, substituting (10) and (25) into (5) gives the desired
result.

II. PROOF OFLEMMA 1

Proof: We assume a similar decoding algorithm as given
in (1), with the second condition being revised to

C2R: −
1

N
logPr{y|x(W ,r)} < τ(rS ,U(rS̄))(xS ,y). (27)

In other words, we assume that the typicality threshold
τ(rS ,U(rS̄))(xS ,y) should depend on the standard rates for
users inS and the grid rates for users not inS.

Given a user subsetS ⊂ {1, · · · ,K}, we define the
following three probability terms.

First, assume(W , r) is the transmitted message and rate
pair with r ∈ R. We definePm[r,r̃U ,S] as the probability that
the receiver finds another codeword and rate pair(W̃ , r̃) with
r̃ ∈ R, U(r̃) = r̃

U , (W̃ S , r̃S) = (W S , rS), and(W̃k, r̃k) 6=
(Wk, rk), ∀k 6∈ S, that has a likelihood value no worse than
the transmitted codeword. That is

Pm[r,r̃U ,S] = Pr
{

P (y|x(W,r)) ≤ P (y|x(W̃ ,r̃))
}

,

(W̃ , r̃), r̃ ∈ R,U(r̃) = r̃U , (W̃ S , r̃S) = (W S , rS),

(W̃k, r̃k) 6= (Wk, rk), ∀k 6∈ S. (28)

Second, assume(W , r) is the transmitted message and rate
pair with r ∈ R. We definePt[r,S] as in (3) except the
typicality threshold is replaced byτ(rS ,U(rS̄))(y).

Third, assume(W̃ , r̃) is the transmitted message and rate
pair with r̃ 6∈ R. We definePi[r̃,rU ,S] as the probability
that the receiver finds another codeword and rate pair(W , r)
with r ∈ R, U(r) = rU , (W S , rS) = (W̃ S , r̃S), and
(Wk, rk) 6= (W̃k, r̃k), ∀k 6∈ S, that has a likelihood value
above the required thresholdτ(r̃S ,rU

S̄
)(xS ,y). That is

Pi[r̃,rU ,S] = Pr

{

P (y|x(W ,r)) > e
−Nτ

(r̃S ,rU
S̄

)
(xS ,y)

}

,

(W , r), r ∈ R,U(r) = rU , (W S , rS) = (W̃ S , r̃S),

(Wk, rk) 6= (W̃k, r̃k), ∀k 6∈ S. (29)

With the probability definitions, we can upper bound the
system error probabilityPes by

Pes ≤ max

{

max
r∈R

∑

S⊂{1,···,K}





∑

r̃U ,r̃U
S
=U(rS)

Pm[r,r̃U ,S] + Pt[r,S]



 ,

max
r̃ 6∈R

∑

S⊂{1,···,K}

∑

rU ,rU
S
=U(r̃S)

Pi[r̃,rU ,S]

}

. (30)

We will then follow similar steps as in the proof of Theorem
2 to upper bound each of the probability terms on the right
hand side of (30).

To upper boundPm[r,r̃U ,S], we assume0 < ρ ≤ 1, 0 <

s ≤ 1, and get from (9) that

Pm[r,r̃U ,S] ≤
∑

y

EθS

[

EθS̄

[

P (y|x(W ,r))
1−s

]

×











∑

W̃ , (W̃S , r̃S) = (WS , rS),

U(r̃) = r̃U

EθS̄

[

P (y|x(W̃ ,r̃))
s
ρ

]ρ





















≤ e
Nρ

∑

k 6∈S
r̃Uk

∑

y

EθS

[

EθS̄

[

P (y|x(W ,r))
1−s

]

×






max

W̃ , (W̃S , r̃S) = (WS , rS),

U(r̃) = r̃U

EθS̄

[

P (y|x(W̃ ,r̃))
s
ρ

]







ρ





≤ exp















−NẼm









S, r̃U ,PX|r,P X|r̃, ∀r̃ ∈ R,

U(r̃) = r̃U ,

r̃S = rS























,

(31)

where Ẽm(S, r̃U ,PX|r,PX|r̃,∀r̃∈R,U(r̃)=r̃U ,r̃S=rS
) is de-

fined in the lemma.
To upper boundPt[r,S], we get from (14) fors1 > 0 that

Pt[r,S] ≤
∑

y

EθS

[

EθS̄

[

P (y|x(W ,r))
1−s1

]

× e
−Ns1τ(rS ,U(r

S̄
))(xS ,y)

]

. (32)

To upper boundPi[r̃,rU ,S], we get from (18) fors2 > 0 and
0 < ρ̃ ≤ 1 that

Pi[r̃,rU ,S] ≤
∑

y

EθS

[

EθS̄

[

P (y|x(W̃ ,r̃))
]

×







∑

(W ,r),rS=r̃S ,U(rS̄)=rU
S̄

EθS̄

[

P (y|x(W ,r))
s2
ρ̃

]







ρ̃






×e
Ns2τ(r̃S ,rU

S̄
)
(xS ,y)

≤
∑

y

EθS

[

EθS̄

[

P (y|x(W̃ ,r̃))
]
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×

{

max
(W ,r),rS=r̃S ,U(rS̄)=rU

S̄

EθS̄

[

P (y|x(W ,r))
s2
ρ̃

]

}ρ̃




×e
Ns2τ(r̃S ,rU

S̄
)
(xS ,y)

e
Nρ̃

∑

k 6∈S
rUk

≤ max
r′ 6∈R,r′

S
=r̃S

∑

y

EθS

[

EθS̄

[

P (y|x(W ′,r′))
]

×

{

max
(W ,r),rS=r̃S ,U(rS̄)=rU

S̄

EθS̄

[

P (y|x(W ,r))
s2
ρ̃

]

}ρ̃




×e
Ns2τ(r̃S ,rU

S̄
)
(xS ,y)

e
Nρ̃

∑

k 6∈S
rUk . (33)

Next, by following a derivation similar to Step 4 in the
proof of Theorem 2, we can optimize (32) and (33) jointly
over τ(r̃S ,rU

S̄
)(xS ,y) to obtain the desired result.


