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The original proofs of Theorem 2 and Lemma 1 in the papékelihood of the transmitted codeword is no larger than the
contain uncareful presentations that require furtherifdar  predetermined threshold,. s)(xs, y).
tion. More specifically, the typicality thresholds used et
decoding algorithms should be functions of the codewords, P, 5 = PT{P(y|m(w7r)) < efN‘r(r,s)(ws-,y)}7 (3)
since otherwise they may not be able to satisfy the formulas
used in the proofs for their value determinations. The exVis\where the threshold,,. s)(zs,y) will be optimized latet.
proofs are given below, and the results presented in Theorenhird, assumew, #) is the transmitted message and rate

2 and Lemma 1 remain valid. pair with #+ ¢ R. We defineP;; . s as the probability that
the receiver finds another message and rate (pajrr) with
I. PROOF OFTHEOREM 2 reR, (ws,rs) = (Wws,Ts), and (wg, ry) # (Wi, 7k ), Vk &
Proof: We assume that the following decoding algorithr§v that has a likelihood value above the required threshold
is used at the receiver. Tr,5) (TS, Y)-
Given the received channel symbajsthe receiver outputs N
a message and rate vector p@is, ), with » € R, if for all Py r.s) = Pr {P(y|f€(w,r)) >e” T“'S)(ws’y)}v
user sutbset§ C {1,---, K}, the following two conditions (w,r),r € R, (ws,rs) = (Ws,7s),
are met. .
(wk,rk) 75 (wk,Tk),Vk Q S. (4)

1 1
Ci1R: — —log Pr{y|® (.} < —— log Pr{y|Ti% 7}, ) .
N 8 Y@} N 8 iz} With these probability definitions, we can upper bound the

forall (w,7) with 7 € R, (ws,7s) = (ws,Ts),  system error probability,, by
and (ﬁ;k,fk) 75 (wk,rk),Vk ¢ S,

C2R: — %log PriylTwr} < 1rs)(Ts,y). (1) P < max{
Note that the typicality threshold, s)(.) is a function of
(zs,y). The threshold also depends on the rate vectand max Y > Pupis+ P |
the user subsef. reR Sc{l, K} |FeR,Fs=rs
Given a user subses c {1,---,K}, we define the
following three probability terms that will be extensivaiged max Y > H[;«,T.S]}- ®)
in the probability bound derivation. rER Sc{l, K} T€R rs=fs '

First, assumgw, r) is the transmitted message and rate ) -
pair with » € R. We defineP,,;, ; s as the probability that Nextz we will upper bound each of the probability terms on
the receiver finds another message and rate (@aj) with ~the right hand side of (5).
7 eR, (ws,7s) = (ws,rs), and (wy, 71,) # (wi, i), Vk ¢  Step 1 Upper-bounding?, - 7 s)-
S, that has a likelihood value no worse than the transmittedAssume(w, r) is the transmitted message and rate pair with
codeword. r € R. Givenr,7 € R, Py, .5 can be written as

Prfr.is) = Pri{Pyl@(w.n) < Pylewn)} .
(,l'NUa,’Nﬂ)a"~¢ S Ra (ﬁ]Sa,’;S) = ('UJS,'PS),

(r, 7k) # (wk, k), Yk € S. ) .
Where¢m[r,i‘,$](y) =11if P(y|w(w,7')) < P(y|w(ﬂ)i‘)) for

Second, assumfw, r) is the transmitted message and ratg, . (@,7), With (s,7s) = (ws,rs), and (@, 7r) #

pair with » € R. We defineP,,. s) as the probability that the (i %), VK & S. bmir.5.5)(y) = 0 otherwise

P is) = Eo

ZP(y|m(w,r))¢m[r,i',S] (y)] ) (6)
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For anyp > 0 ands > 0, we can bound,,. #s(y) by  whereE,,(S,7, Px|», Px|#) iS given by

S P T?P r) = -
Gmfr,r.5)(Y) < En(S,7, Px|r, Px|s) = Jmax, erk

> Wl 5
o, (s, 7s) = (ws,rs), L Y|T@,7)?
(13157 fi) ;«fzwk.,(mivf)&z S (@) + max - logz Z H PX‘T’C Xk
s ) Y Xs keS
P(ylw('w,r))p
p>0,s>0. (7) < [ ST P (Xe) P(Y X))
X5 k¢S
ConsequentlyP,,» #,s) is upper bounded by i’
< [ ST Pxa (X PYIX)7 | . (1D)
X5 k¢S
Pojr,5) = Eo ZP(ylm(w,T)) Step 2: Upper-bounding?; ;. s-
Y ey Assume(w, ) is the transmitted message and rate pair with
Yo, (s, 7s) = (ws,rs),  PYT@#)? r € R. Rewrite Py, 5) as
~ (ﬁ;k,Fk);é(wk,rk),VkQS
Pyl G
Y@ ) Pir.s) = Eo | Y PWl@(wm)birs(@s,y) |, (12)
Yy
- ZEQ P(y|m(wa7'))lis Where‘bt[r,S](mSay) =11f P(y|.’13(w77,)) < e N (@sy),
Y otherwise ¢, sj(zs,y) = 0. Note that the value of
r T(r.5) (s, y) Will be specified later.
. For anys; > 0, we can bound,, s(xs,y) by
X Z P(y|l’(ﬁ;,;»))p N
v, (s, 75) = (ws, 7s), - e~ Ns17(r5)(T5,Y) 0 (13)
(g, Tr) # (Wi, Tk), Yk € S ¢t[r,$](w87y) = P(y|m(w 7'))51 v 51> 0.

Fo, [P(y|w(w77-))l—s] This yields

P P[T‘S]<E9

Z (-7:/|$(11;.,T))1_S1 e_NslT<r,S>(ws,y)]

x Fos ) > Plylew.m)? ’ = E Eeo, {Ee Pyl () "] eme"'S)(ms’y)} :
Ts) = (wsﬂ's),

(®) (14)
We will come back to this inequality later when we optimize

where in the last step, we can take the expectations opefa-s)(Ts;Y)-

tions over users not i since codewords corresponding to Step 3: Upper-boundingPiz . s)-

(wg,rs) and (g, 75) are generated independently. Assum_e(ﬁ:,i«) is the tra_nsmitted_ message and rate pair with
Now assume) < p < 1. Inequality (8) can be further € R. Givenr € R, we first rewrite Pz . 5 as

bounded by

17'7‘5] Eq Zpy|w'w ¢1[7‘7‘S](w87y) ) (15)

Pm[r.i',S] < ZEGS Eeg [P(y|w(w,7‘))1_s}

Where¢i[;,r73](m5,y) = 1 if there exists(w,r) with r €

’ / R, (ws,rs) = (s.¥s), and (wgr) # (e, 7). vk ¢
s S to satisty P(y|T(w,,) > e "@s¥). Otherwise
X Fog Z Pyl @,m) bifi.r,s)(xs,y) = 0.
W, (s,Ps)=(ws,rs) For anys; > 0 andp > 0, we can bound;z . s)(zs,y)
N F s
< "R 5 B (B (PO ] B
s P
% [Eog [Pylzw)?]] "] (©) Ditrm.5) (5, Y) <
529 P
w, (ws,rs) = (ws, rs), ‘waw,rT
Since (9) holds for alb < p < 1, s > 0, and it is easy to - (w’k(,rf)’ ;@,ﬁ%s;vgég Wlwwn)
verify that the bound becomes trivial fer> 1, we have o NET(rs) (@s.y) ’

Pm[T,i‘,S] < exp {_NEm(Sa 77‘1 PX|7'7 PX\?‘)} ) (10) s9 >0, ﬁ > 0. (16)



This gives,
P[T r,S] < Z Eq | P y|$ )
Y
5
52
X (y|$ (w r)) Z
w, (ws,rs) = (ﬁ’ ~s ,
> 8N52T(7‘,S)(m$7y):|
< ZEGS Eoy [P(y|z(o.7))]
Y L
- p
s2
x Eg, > P(y|@(u.r) 7
|w,(ws,rs)=(Ws,7s)
X eNS2T<nS><vay)} : (17)

Note that we can separate the expectation operators inghe la

step due to independence between the codewor(e gfr 5)
and ('ﬁ)g, ’7‘3).
Assume0 < p < 1. Inequality (17) leads to

rrS] <ZE05

x {Ee‘S { (Y2 (w,r) "2” eNS2T<rvs><-"«'S=y>]

< max Z Eg

7"&72 7'5_7‘5

X {EGS {P(y|m(w,,,))72}} estT(T,s)(:cS,y)
NP s rk] .

NﬁZkes Tk

05 y|m(w 7‘))]

EGS y|m(w r/))]

(18)

Note that the bound obtained in the last step is no longer a

function of 7 5.
Step 4. Choosingr(, s)(xs,y).

In this step, we determine the typicality threshold <

T(r,s)(Ts,y) that optimizes the bounds in (14) and (18).
Define7* ¢ R as

~ %

7" = argmax ZEQS Eog [P(y|@(w )]

rgR, "‘377'5 Y
s p
X {Eas [P(y|m(w,r))72]} elVs2T(r.5)(@5,9)

eNﬁZkQS Tk:| .

(19)

Givenr € R, y, and the auxiliary variables, > 0, s2 > 0,
0 < p <1, we chooser, s)(zs,y) such that the following
equality holds.

Eos [P(y|m(w,r))1_sl] e~ Ns17(r.5) (®s,Y)

2117
= Lo, [Plyle(ar 7)) { Eos |Pylzin) 7|}
(20)

s eNs2T(r,s) (®s.y) VP Zkgs Tk

This is always possible if we do not enforce the
constraint thatr(,. s)(xs,y) > 0.

1— p—

natural
Equation (20) implies
1
{Eos [Pyl 7)) } 172
1
(Fos [P(yleun) -]} 7

< { Bo [Pl n) ]} T N Za
(21)

e~ N7r.s)(@s,y) —

Substitute (21) into (14), we get

Pyr s < ZEQS [{EQS7 [p(y|m(w7r))1fsl]}ﬁ
Yy

x {Eo, [Pyl )]} 777

x {E9S [P(y|w(w,r))%}} o eNlelrsz ks k] .
(22)

Assumes; < p. Lets; =1 — 22, Inequality (22) becomes
52

—,pﬁ
Pt[T,S] < ZEBS {Egg [P(y|w(w,r))%:|}p a
Y

x {Eo [P(yla )] } 770772

p(p—s2) r
X e P-(-prsz Lukgs ’“] . (23)
Now do a variable change with = % and s =

W and note that+p < 1. Inequality (23) becomes

Pirst < Y Eos |{Eo, [POlen) ]}
Yy

X {EGS [P(yliL‘(,&,* ;.*))]}1_8 eNPZkzs Tk:|

r’&’IIZn?’X:rS {ZZ H PX|Tk (Xk)
ne Y Xs k€S
s+p
Z H Pxr, (X3)P(Y|X)77
X5 kdS
1-s N
< | ST Pxiry (Xe)P(Y|X)
X5 kdS

we VP Lings (24)

Following the same derivation, we can see thg} ,. s) is

also upper-bounded by the right hand side of (24). Because
(24) holds for allo0 < p <1 and0 < s < 1— p, we have

Pyr 515 Pij r,8)

< max exp{—-NEi(S,r, Px., Px,)}(25)

IR, rg=rs



where

With the probability definitions, we can upper bound the

system error probability’,; by

Ei(S,r, Px|p, Px|,») = max —erk

O<pst 25
+O<m<alx_ - 1ogzz H Pxr, (X)
=P Y Xg keS
s+p
X k¢S
1—s

ST Py (Xi)P(Y1X) (26)
X k¢S

P, < Inax{

R Z Z Powiv.s)+ Pirsy|
KY | PV Y =U(rs)

Sc{1,-
max ),

F¢R Pi[i’rUﬁ]}.
Sc{1,-,K} ’!‘U,T[S]:U("f‘s)

(30)

We will then follow similar steps as in the proof of Theorem

2 to upper bound each of the probability terms on the right
Finally, substituting (10) and (25) into (5) gives the dedir hand side of (30).

result.

To upper bound?,,,,. 7v s, we assumé < p < 1,0 <

s <1, and get from (9) that

Il. PROOF OFLEMMA 1

Proof: We assume a similar decoding algorithm as given
in (1), with the second condition being revised to

C2R: — <o Pr{yla(w )} < Tira viray (s.9). (27)
In other words, we assume that the typicality threshold
T(rs,U(rs))(Ts,y) should depend on the standard rates for
users inS and the grid rates for users not h

Given a user subses C {1,---,K}, we define the
following three probability terms.

First, assumgW , r) is the transmitted message and rate
pair with » € R. We defineP,,;,. ;v s) as the probability that
the receiver finds another codeword and rate (&, #) with
FeR,U®F) =+, (Ws,#s) = (Ws,rs), and(Wy, 71) #
(W, k), Vk ¢ S, that has a likelihood value no worse than
the transmitted codeword. That is

Pogess) = Pr{Plzawn) < Pylag )}
(W,#),7 e RUF) =Y, (Ws,7s) = (Ws,rs),
(Wi, 7x) # (Wi, i), Yk € S. (28)

Second, assum@V , r) is the transmitted message and rate
pair with » € R. We define P, 5 as in (3) except the
typicality threshold is replaced by, v (r4)) (¥)-

Third, assumgW , #) is the transmitted message and rat8
pair with » ¢ R. We define P;j; ,v s as the probability
that the receiver finds another codeword and rate (3a, r)
with » € R, U(r) = vV, (Ws,rs) = (Ws,is), and
(Wi, ) # (Wk,Fk),Vk gz S, that has a likelihood value
above the required thresho’rg;&,ﬂg)(mg,y). That is

—N7 Y vy (®s,y)
P = Pr{ Plalayay) > ¢ 0o

(W,r),reRU((r)=7rY,(Ws,rs) =
(W, ri) # (Wi, ), VE & S.

(Ws,7s),
(29)

where E,, (S, #Y,
fined in the lemma.
To upper bound?;, s), we get from (14) fors; > 0 that

<ZE95 05

y|m w 7‘)) 75]

x Z Eo [P(ylw(w,m)%r

(WS7"'S) (Ws,rs),
U(T) =7V

<" 2es ™ N7 Bo, [Eo, [Plylaw )]

p

X max Eoq [P(y|w(W_;))%}
W, (Ws,is) = (Ws,rs), ’
U(T) =7V
<exp{ —NE, | §,#",Pxr. P xji vic R, ,
U@ =+Y,
';'s =7Ts

(31)

Px\r, Px|i vier, U=V 7s=rs) 1S de-

Pyr 51 < ZEBS [Eos [P(ylzw ) "]
Yy

% 87N51T(TS,U(r5))(msyy)} ) (32)

To upper bound; v s, we get from (18) forsz > 0 and
< p <1 that

Py v 5] < ZEGS {Ees {P(y|:c(w7;))}
y

™

x 2

(W,’I‘),'I‘s:’;'s,U(’l'g):’l'g

Eo [P(y|fﬂ(w,r))%2}

XeNSZT(;"S’rg) (zs,y)

<> Eos [Eﬂs [P(ylw(w,;))]



F
x Eo. [P ., —}
{(Wm),rsir;ifi(](rs)_rg os | Pylzw ) }

NsoT x
M(rs 7‘5 ( s:Y) Nkags

Xe
S Ry 2 o [P [Pylow o)
) P
X max Eg [ Yyl 72}
{(WT) rs=rs,U(rg)=r S S ( | (W’T))
xestT(TsT (acs,y) Nkang ko (33)

Next, by following a derivation similar to Step 4 in the
proof of Theorem 2, we can optimize (32) and (33) jointly

over 7. »v)(Zs,y) to obtain the desired result.
|



