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Random-Access Communication
Zheng Wang, Student Member, IEEE, and Jie Luo, Member, IEEE

Abstract—A new channel coding approach was proposed by Luo
and Ephremides for random multiple-access communication over
the discrete-timememoryless channel. The coding approach allows
users to choose their communication rates independently without
sharing the rate information among each other or with the re-
ceiver. The receiver will either decode the messages or report a
collision depending on whether reliable message recovery is pos-
sible. It was shown that, asymptotically as the codeword length
goes to infinity, the set of communication rates supporting reliable
message recovery can be characterized by an achievable region
which equals Shannon’s information rate region without a convex
hull operation. In this paper, we derive achievable bounds on error
probabilities, including the decoding error probability and the col-
lision miss detection probability, of random multiple-access sys-
tems with a finite codeword length. Achievable error exponents are
obtained by taking the codeword length to infinity.

Index Terms—Channel coding, error exponent, finite codeword
length, random access.

I. INTRODUCTION

I N multiple-access communication, two or more users
(transmitters) send messages to a common receiver. The

transmitted messages confront distortion both from channel
noise and from multiuser interference. Two related communi-
cation models, the multiuser information-theoretic model and
the random-access model, have been intensively studied in the
literature [2].
Information-theoretic multiple-access model, on one hand,

assumes each user is backlogged with an infinite reservoir of
traffic. Users should first jointly determine their codebooks and
information rates, and then send the encoded messages to the
receiver continuously over a long communication duration. The
only responsibility of the receiver is to decode the messages
with its best effort. Under these assumptions, channel capacity
and coding theorems are proved by taking the codeword length
to infinity [3], [4]. Rate and error performance tradeoffs of
single user and multiple-access systems were analyzed in [2]
and [5]. Information-theoretic model uses symbol-based statis-
tics to characterize the communication channel. Such a physical
layer channel model enables rigorous understandings about the
impact of channel noise and multiuser interference. However,

Manuscript received October 04, 2010; accepted January 17, 2012. Date of
publication April 27, 2012; date of current version May 15, 2012. This work
was supported by the National Science Foundation under Grants CCF-0728826,
CCF-1016985, and CNS-1116134. The material in this paper was presented in
part at the 2010 IEEE International Symposium on Information Theory.
The authors are with the Department of Electrical and Computer Engi-

neering, Colorado State University, Fort Collins, CO 80523 USA (e-mail:
zhwang@engr.colostate.edu; rockey@engr.colostate.edu).
Communicated by L. Zheng, Associate Editor for Communications.
Digital Object Identifier 10.1109/TIT.2012.2190580

classical coding results have been derived under the assumption
of coordinated communication, in the sense of joint codebook
and information rate determination among the multiple users
and the receiver. Such an assumption precludes the common
scenarios of short messages and bursty traffic arrivals, since in
these cases the overhead of full communication coordination is
often expensive or infeasible.
Random multiple-access model, on the other hand, assumes

bursty message arrivals. According to message availability,
users independently encode their messages into packets and
randomly send these packets to the receiver. It is often assumed
that the transmitted packets should be correctly received if
the power of the multiuser interference is below a threshold.
Otherwise, the receiver should report a packet collision and
the involved packets are erased [6], [7]. Standard networking
regards packet as the basic communication unit and counts
system throughput in packets per time slot as opposed to
bits/nats per symbol. Communication channel is characterized
using packet-based models, such as the collision channel model
[8] and the multipacket-reception channel model [9], [10].
Although packet-based models are convenient for upper layer
networking [12], their abstract forms essentially prevent an
insightful understanding about the impact of physical layer
communication to upper layer networking.
There have been numerous efforts on extending information-

theoretic analysis to random-access systems [13], [14], [10].
Most of these works follow the classical channel coding the-
oretic formulation by considering coding over multiple packets
and regarding random access as a particular channel model. In
[1], a new channel coding approach was proposed for time-
slotted random multiple-access communication over a discrete-
time memoryless channel using a symbol-based physical layer
channel model. Assume in each time slot, each user indepen-
dently encodes an arbitrary number of data units into a packet
and transmits the packet to the receiver. Define the normalized
number of data units per symbol as the communication rate of a
user in a time slot, which is shared neither among the users nor
with the receiver. It was shown in [1] that fundamental perfor-
mance limitation of the random multiple-access system can be
characterized using an achievable rate region in the following
sense. As the codeword length goes to infinity, if the random
communication rate vector of the users happens to be inside
the rate region, the receiver can decode all messages with zero
asymptotic error probability; if the random communication rate
vector happens to be outside the rate region, the receiver can
detect a packet collision with an asymptotic probability of one.
The achievable rate region was shown to be equal to Shannon’s
information rate region, without a convex hull operation.
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In this paper, we derive stronger versions of the coding the-
orems given in [1] by characterizing the achievable rate and
error performance of random multiple-access communication
over a discrete-time memoryless channel with a finite codeword
length. Our work is motivated by the existing nonasymptotic
channel coding results, surveyed in [15], for classical single-
user communication. Following the framework of [1], we as-
sume the random multiple-access system predetermines an “op-
eration region” of the rate vectors in the following sense. For
all communication rate vectors within the region, the system
intends to decode the messages; while for all communication
rate vectors outside the region, the system intends to report a
packet collision. Given the operation region, there are two types
of error events. If the communication rate vector is within the
region, the event that the receiver fails to decode the messages
correctly is defined as a decoding error event. If the communica-
tion rate vector is outside the region, the event that the receiver
fails to report a collision is defined as a collision miss detection
event. An achievable bound on the system error probability, de-
fined as the maximum of the decoding error probability and the
collision miss detection probability, is obtained under the as-
sumption of a finite codeword length. We show that, if the op-
eration region is strictly contained in an achievable rate region,
then the system error probability can decrease exponentially in
the codeword length. The corresponding exponent is defined as
the system error exponent, whose achievable bound is obtained
from the error probability bound by taking the codeword length
to infinity.
The rest of this paper is organized as follows. With a practical

definition of communicate rate, we investigate the error perfor-
mance of single-user and multiuser random-access systems in
Sections II and III, respectively. The results are then extended in
Section IV to systems with generalized random coding schemes
using the standard communication rate definition, originally in-
troduced in [1]. Further discussions and conclusions are pro-
vided in Section V.

II. RATE AND ERROR PERFORMANCE OF SINGLE-USER
RANDOM-ACCESS COMMUNICATION

For easy understanding, we will first consider single-user
random-access communication over a discrete-time mem-
oryless channel. The channel is modeled by a conditional
distribution function , where , are the
channel input and output symbols, , are the finite input
and output alphabets, respectively. Assume time is partitioned
into slots each equaling symbol durations, which is also the
length of a packet. As in [1], we focus on coding within a time
slot or a packet.
Suppose the transmitter has no channel information except

knowing the channel alphabets.1 At the beginning of each time
slot, according to message availability and the medium-access
control layer protocol, the transmitter chooses a communica-
tion rate without sharing this rate informa-
tion with the receiver. Here, is a predetermined
set of rates, in nats per symbol, with cardinality , known by

1The significance of this assumption will become clear when we investigate
multiuser systems.

both the transmitter and the receiver. The transmitter then en-
codes data nats, denoted by a message , into a codeword
using a “random coding scheme” described as follows [1].2 Let

be a library of codebooks indexed by a set
. Each codebook contains classes of codewords. The

( ) codeword class contains codewords,
each of symbol length. Let be the codeword
symbol of message and communication rate pair in code-
book , for . The transmitter first randomly
generates according to a distribution , such that random vari-
ables are independently distributed
according to an input distribution 3. The random-access
codebook is then used to map the message into a codeword.
This is equivalent to mapping a message and rate pair into
a codeword, denoted by , of channel input symbols.
We assume the receiver knows the channel and the ran-

domly generated codebook .4 Based on this information, the
receiver chooses a rate subset . According
to the channel output symbol vector , the receiver outputs an
estimated message and rate pair if and only if
and a predetermined decoding error probability requirement is
satisfied. Otherwise, the receiver outputs a collision. Note that
the term “collision” here is used to maintain consistency with
the networking terminology. Throughout this paper, collision
means outage, irrespective whether it is caused by multiuser in-
terference or by excessive channel noise.
Since the receiver intends to decode all messages with
and to report collision for messages with , we say

is the “operation region” of the system.
Conditioned on is transmitted, for , we define the
decoding error probability as

(1)
For , we define the collision miss detection probability as

(2)
Assume for all , where is the mu-
tual information between and computed using input dis-
tribution . According to [1], we have the following asymp-
totic results:

(3)

In other words, asymptotically, the receiver can reliably decode
the message if the random communication rate is inside the
operation region; the receiver can reliably report a “collision” if
is outside the operation region.
Equation (3) only gives the asymptotic limits on the error

probabilities. In the rest of this section, we derive an achievable

2Note that the coding scheme is an extended version of the random coding
introduced in [11].
3We allow the input distribution to be a function of communication rate. In

other words, codewords corresponding to different communication rates may
be generated according to different input distributions.
4This can be realized by sharing the codebook generation algorithm with the

receiver.
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error probability bound under the assumption of finite codeword
length .
Define the system error probability as

(4)

specifies the maximum probability of an error event over all
possible message and rate options of the users. The following
theorem gives an achievable upper bound on .

Theorem 1: Consider single-user random-access communi-
cation over discrete-time memoryless channel . Assume
random coding with input distributions , defined for all

. Let be an operation re-
gion. Given a codeword length , there exists a decoder whose
system error probability is upper bounded by

(5)

where and are given by

(6)

The proof of Theorem 1 is given in Appendix A.5 In the proof,
we assumed the following decoding algorithm at the receiver to
achieve the error probability bound given in (5). Upon receiving
the channel output symbols , the receiver outputs an estimated
message and rate pair with if both the following
two conditions are satisfied:

(7)

5Even though Theorem 1 is implied by Theorem 2 given in Section III, we
still provide its full proof because it is much easier to follow than the proof of
Theorem 2. Indeed, we suggest readers should understand the basic ideas in the
proof of Theorem 1 before reading the more sophisticated proof of Theorem 2.

where is a predetermined function of the channel output
, associated with codewords of rate . We term a typi-
cality threshold function. If there is no codeword satisfying (7),
the receiver reports a collision. In other words, the receiver de-
codes only if the log-likelihood of the maximum-likelihood es-
timation exceeds certain threshold. Note that the random-access
codebook used to encode the message contains a large number
of codewords, but the receiver only searches codewords corre-
sponding to rates inside the operation region.
Define the corresponding exponent as the system error expo-

nent . Theorem 1 implies the fol-
lowing achievable bound on .

Corollary 1: The system error exponent of single-user
random-access communication given in Theorem 1 is lower
bounded by

(8)

where and are defined in
(6).

Corollary 1 is implied by Theorem 1. An alternative proof
can also be found in [16].
Note that if we define the decoding error exponent and the

collision miss detection exponent as

(9)

then the system error exponent equals the minimum of the two
exponents, i.e., . The lower bound of
given in (8) is obtained by optimizing the typicality threshold
function as done in the proof of Theorem 1. It is easy to
see that, for each , the decoding error exponent increases in

, while the collision miss detection exponent decreases
in . Therefore, can be used to adjust the tradeoff be-
tween and .
Also note that the first term on the right-hand side of (8) cor-

responds to the maximum-likelihood decoding criterion C1 in
(7). This term becomes Gallager’s random-coding exponent [5]
if the input distributions associated to all rates are identical. The
second term is due to the typical sequence decoding criterion C2
in (7). The two criteria, in conjunction, enabled collision detec-
tion at the receiver with a good decoding error performance.
We end this section by pointing out that the probability bound

given in (5) can be further tightened, especially when the input
distributions corresponding to are similar to each other.
In the special case if the input distributions are identical for all
rates, then the term in (5),
which corresponds to the maximum-likelihood decoding crite-
rion C1 in (7), can be further improved to Gallager’s bound
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given in [5].6 However, in a general case, such improvement
makes the error bound less structured comparing to (5), and it
gives the same error exponent results. Therefore, we choose to
skip the detailed discussion in the paper.

III. RATE AND ERROR PERFORMANCE OF RANDOM
MULTIPLE-ACCESS COMMUNICATION

In this section, we consider -user time-slotted random mul-
tiple-access communication over a discrete-time memoryless
channel. The channel is modeled by a conditional distribution

, where , , is the channel
input symbol of user with being the finite input alphabet,
and is the channel output symbol with being the fi-
nite output alphabet. Assume the slot length equals symbol
durations, which is also the length of a packet. We again focus
on coding within one time slot.
Suppose at the beginning of a time slot, each user, say user ,

chooses an arbitrary communication rate , in nats per symbol,
and encodes data nats, denoted by a message , into
a packet of symbols. Assume , where

is a predetermined set of rates, with cardinality
, known at the receiver. We assume the actual communica-

tion rates of the users are shared neither among each other, nor
with the receiver. Whether the channel is known at the users
(transmitters) is not important at this point. Because the global
rate information is not available, an individual user cannot know
a priori whether or not its rate is supported by the channel in
terms of reliable message recovery. Encoding is done using a
random coding scheme described as follows. Let

be a codebook library of user , the codebooks
of which are indexed by set . Each codebook contains
classes of codewords. The codeword class contains
codewords, each with symbols. Denote as the

symbol of the codeword corresponding to message and
communication rate in codebook . User first gener-
ates according to a distribution , such that random vari-
ables are independently dis-
tributed according to an input distribution . User then
uses codebook to map into a codeword, denoted
by , and sends it to the receiver.
Assume the receiver knows the channel and

the randomly generated codebooks of all users. Based on the
channel and the codebook information, the receiver predeter-
mines an “operation region” , which is a set of communication
rate vectors under which the receiver intends to decode the
messages. In each time slot, upon receiving the channel output
symbol vector , the receiver outputs the estimated message
and rate vector pair (that contains the estimates for
all users) only if and a predetermined decoding error
probability requirement is satisfied. Otherwise, the receiver
outputs a collision.
To simplify the notations, we will use bold font vector vari-

ables to denote the corresponding variables of multiple users.

6Specifically, we mean the bound given by [5, eq. (18)] with
.

For example, denotes the message estimates of all users,
denotes the communication rates of all users, denotes the
input distributions conditioned on communication rates , etc.
For a vector variable , we will use to denote the element
corresponding to user . Let be an arbitrary
subset of user indices. We will use to denote the communica-
tion rates of users in , and will use to denote the messages
of users not in , etc.
Similar to the single-user system, conditioned on is

transmitted, we define the decoding error probability for
with as

(10)
We define the collision miss detection probabilities for
with as

(11)
Assume for all and for all user subset

, we have , where
is the conditional mutual information com-

puted using input distribution . According to the achiev-
able region result given in [1], asymptotically, the receiver can
reliably decode the messages for all rate vectors inside and
can reliably report a collision for all rate vectors outside . In
other words

(12)

Define the system error probability as

(13)
The following theorem gives an upper bound on .

Theorem 2: For -user random multiple-access communi-
cation over a discrete time memoryless channel , assume
finite codeword length , and random coding with input distri-
bution for all with , .
Let be the operation region. There exists a decoding algo-
rithm, whose system error probability is upper bounded by

(14)
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where and are
given by

(15)

The proof of Theorem 2 is given in Appendix B. In the proof,
we assumed the following decoding algorithm at the receiver
to achieve the error probability bound given in (14). Upon re-
ceiving the channel output symbols , the receiver outputs an
estimated message vector and rate vector pair with
if both the following two conditions are satisfied:

(16)

where is a predetermined typicality threshold function
of the channel output , associated with codewords of rate .
If there is no codeword satisfying (16), the receiver reports a
collision.
Define the corresponding exponent as the system error expo-

nent . Theorem 2 implies the fol-
lowing achievable bound on .

Corollary 2: The system error exponent of single-user
random-access communication given in Theorem 2 is lower
bounded by

(17)

where and are
defined in (15).

Corollary 2 is implied by Theorem 2.
As in the single-user system, if we define the decoding error

exponent and the collision miss detection exponent as

(18)

then the system error exponent equals the minimum of the two
exponents, i.e., . Again, instead of opti-
mizing the typicality function to lower bound ,
can be used to adjust the tradeoff between and .
Note that, in Theorem 2, the receiver either decodes the mes-

sages of all users or reports a collision for all users. In prac-
tice, the receiver could choose to output message estimates for
a subset of users and to report collision for the others. The corre-
sponding achievable communication rate region has been given
in [1]. An error performance bound can be derived using an ap-
proach similar to the one shown in the proof of Theorem 2. The
detailed analysis, however, is skipped.

IV. ERROR PERFORMANCE UNDER GENERALIZED RANDOM
CODING WITH STANDARD COMMUNICATION RATE

In the previous sections, we used the practical definition of
communication rate, i.e., communication rate equals the nor-
malized data nats per symbol encoded in a packet. Codewords of
each user are partitioned into classes each corresponding to a
rate option. This is equivalent to indexing the codewords using
a message and rate pair . We assumed codeword symbols
within each class, i.e., corresponding to the same , should be
randomly generated according to the same input distribution.
In this section, we extend the results to the generalized random
coding scheme [1] where symbols of different codewords, as op-
posed to different codeword classes, can be generated according
to different input distributions. The motivation of considering
the generalized coding scheme was explained in [1].
We will index the codewords in a codebook using a macro

message , which is essentially another expression of the
pair used in previous sections. In other words, con-

tains both information about the message and the rate in
practical senses. The generalized random coding scheme is
defined originally in [1] as follows.

Definition 1: (generalized random coding [1]): Let
be a library of codebooks. Each codebook in the library

contains codewords of length , where is an ar-
bitrary large finite constant. Let the codebooks be indexed by a
set . Let the actual codebook chosen by the transmitter be
where the index is a random variable following distribution .
Let be a macro message used to index
the codewords in each codebook. Denote as the
symbol of the codeword corresponding to macro message in
codebook . We define as a generalized random coding
scheme following distribution , if the random variables

, , are independently distributed ac-
cording to input distribution .
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Note that a generalized random coding scheme allows code-
word symbols corresponding to different messages to be gener-
ated according to different input distributions. Because code-
words are indexed using macro message , communication
rate becomes a function of . Consequently, the practical
communication rate used in previous sections only represents
a specific choice of the rate function. In order to distinguish
codewords from each other in rate and error performance char-
acterization, in this section, we will switch to the following stan-
dard communication rate definition, originally introduced in [1].

Definition 2: (standard communication rate [1]): Assume
codebook has codewords of length , where
is an arbitrary large finite constant. Let the corresponding mes-
sages or codewords be indexed by . For
each message , we define its standard communication rate, in
nats per symbol, as .

Since the standard rate function is invert-
ible, system performance characterized in any other rate func-
tion can be derived from that of the standard rate function [1].7

The following definition specifies a sequence of general-
ized random coding schemes following an asymptotic input
distribution.

Definition 3: (asymptotic input distribution [1]): Let
be a sequence of random coding schemes,

where is a generalized random coding scheme
with codeword length and input distribution . As-

sume each codebook in library has codewords.
Let be an input distribution defined as a function of the
standard rate , for all . We say
follows an asymptotic input distribution , if for all
sequences with well-defined rate limit , we
have

(19)

Note that since we do not assume is continuous in , we
may not have .

Let us still use bold font vector variables to denote the cor-
responding variables of multiple users. Theorem 3 gives the
achievable error exponent of a random multiple-access system
using generalized random coding.

Theorem 3: Consider -user random multiple-access com-
munication over a discrete-time memoryless channel
using a sequence of generalized random coding schemes

. Assume follows asymptotic
distribution . For any user , assume is only dis-
continuous in at a finite number of points. Let the operation
region be strictly contained in an achievable rate region,
specified in [1]. Equation (17) gives an achievable lower bound
on the system error exponent , with rates in the equation
being the standard communication rates.

7Note that the standard rate is defined using the natural log in this paper, while
it was defined using the base-2 log in [1].

The proof of Theorem 3 is given in Appendix C. In the proof,
an achievable error probability bound in the case of a finite code-
word length is also given in Lemma 1.

V. CONCLUSION

We investigated the error performance of a new coding
scheme for random-access communication over discrete-time
memoryless channels. Two types of error events are considered:
the decoding error event when the transmitted communication
rate vector is inside the operation region, and the collision
miss detection event when the transmitted communication
rate vector is outside the operation region. Upper bound on the
system error probability, defined as the maximum probability of
both error events, is derived for both single-user random-access
and random multiple-access communication systems with a
finite codeword length. We showed that, if the operation re-
gion is strictly contained in an achievable rate region, then the
system error probability can decrease exponentially in the code-
word length. An achievable lower bound on the system error
exponent is obtained. The result is also extended to random
multiple-access communication systems using generalized
random coding with standard communication rate definition.

APPENDIX A
PROOF OF THEOREM 1

Proof: To derive the system error probability upper bound,
we assume the receiver uses the decoding algorithm whose de-
coding criteria are specified in (7).
We next define three probability terms that will be extensively

used in the probability bound derivation.
First, assume is the transmitted message and rate pair

with . We define as the probability that the re-
ceiver finds another codeword with rate that has a likeli-
hood value no worse than the transmitted codeword

(20)

Second, assume is the transmitted message and rate
pair with . We define as the probability that the like-
lihood of the transmitted codeword is below a predetermined
threshold

(21)

where is a threshold, as a function of and , that will be
optimized later.8

Third, assume is the transmitted message and rate pair
with . We define as the probability that the receiver

8Note that the subscript of represents the corresponding estimated
rate of the receiver output. Although with an abuse of the notation, we occa-
sionally use the same symbol to denote both the transmitted rate and the cor-
responding rate estimation at the receiver, it is important to note that we do not
assume the receiver should know the transmitted rate.
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finds another codeword with rate that has a likelihood
value above the required threshold.

(22)

With these probability definitions, we can upper bound the
system error probability by

(23)
Next, we will upper bound each of the probability terms on the
right-hand side of (23).

Step 1: Upper bounding .
Assume is the transmitted message and rate pair with

. Given , can be written as

(24)

where if for some
, and otherwise.

Revised from Gallager’s approach [5], for any and
, we can bound by

(25)

Consequently, is upper bounded by

(26)

where in the last step, we can separate the expectation operations
due to independence between and .

Now assume . Inequality (26) can be further
bounded by

(27)

Since (27) holds for all , , and it is easy to
verify that the bound becomes trivial for , we have

(28)

where is given by

(29)

Step 2: Upper bounding .
Assume is the transmitted message and rate pair with

. Rewrite as

(30)

where if , otherwise
. Note that the value of will be specified later.

For any , we can bound as

(31)

This yields

(32)

We will come back to this inequality later when we optimize
.
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Step 3: Upper bounding .
Assume is the transmitted message and rate pair with

. Given , we first rewrite as

(33)

where if there exists with to satisfy
, otherwise .

For any and , we can bound by

(34)

This gives

(35)

Note that we can separate the expectation operators in the last
step due to independence between and .
Assume . Inequality (35) leads to

(36)

Note that the bound obtained in the last step is no longer a func-
tion of .

Step 4: Choosing .
In this step, we determine the typicality threshold that

optimizes the bounds in (32) and (36).
Let us define as

(37)

Given , , and the auxiliary variables , ,
, we choose such that the following equality

holds:

(38)

This is always possible since the left-hand side of (38) decreases
in while the right-hand side of (38) increases in .
Equation (38) implies

(39)

Substituting (39) into (32) yields

(40)

Let and . Inequality (40) becomes

(41)

Now do a variable change with and

, and note that . Inequality (41) becomes

(42)

where in the last step we have replaced using its definition
given in (37).
Following the same derivation, we can see that is also

upper bounded by the right-hand side of (42). Because (42)
holds for all and , we have

(43)

where

(44)

Finally, substituting (28) and (43) into (23) gives the desired
result.
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APPENDIX B
PROOF OF THEOREM 2

Proof: Due to the involvement of multiple users, notations
used in this proof are rather complicated. Tomake the proof easy
to follow, we carefully organize the derivations according to the
same structure as the proof of Theorem 1. Because Theorem 1
is indeed a simplified single-user version of Theorem 2, it will
help significantly if the reader follows the proof of Theorem 2
by comparing it, step by step, to the proof of Theorem 1.
We assume the receiver uses the decoding algorithm whose

decoding criteria are specified in (16). However, to facilitate
the derivation, we first need to make a minor revision to the
decoding rules.
Given the received channel symbols , the receiver outputs a

message and rate vector pair , with , if for all user
subsets , the following two conditions are met:

(45)

Note that in Condition C1R, we added the requirements of
and , . The

union of Conditions C1R over all user subsets
gives Condition C1 in (16). In Condition C2R, we assume the
typicality threshold depends on both and . By
taking the union over , Condition C2R in (45)
implies that the typicality threshold in Condition C2 of (16)
should be set at . In the rest
of the proof, we will analyze the probabilities and optimize the
thresholds separately for different .
Given a user subset , we define the following

three probability terms that will be extensively used in the prob-
ability bound derivation.
First, assume is the transmitted message and rate pair

with . We define as the probability that the
receiver finds another message and rate pair with ,

, and , that
has a likelihood value no worse than the transmitted codeword:

(46)

Second, assume is the transmitted message and rate
pair with . We define as the probability that the
likelihood of the transmitted codeword is no larger than the pre-
determined threshold :

(47)

where the threshold will be optimized later.9

9As in the single-user case, the subscript of represents the cor-
responding estimated rate of the receiver output. Note that we do not assume
the receiver should know the transmitted rate.

Third, assume is the transmitted message and rate pair
with . We define as the probability that the re-
ceiver finds another message and rate pair with ,

, and , that
has a likelihood value above the required threshold .

(48)

With these probability definitions, we can upper bound the
system error probability by

(49)

Next, we will upper bound each of the probability terms on the
right-hand side of (49).

Step 1: Upper bounding .
Assume is the transmitted message and rate pair with

. Given , can be written as

(50)

where if for
some , with , and

. otherwise.
For any and , we can bound by

(51)

Consequently, is upper bounded by
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(52)

where in the last step, we can take the expectations operations
over users not in since codewords corresponding to
and are generated independently.
Now assume . Inequality (52) can be further

bounded by

(53)

Since (53) holds for all , , and it is easy to verify
that the bound becomes trivial for , we have

(54)

where is given by

(55)

Step 2: Upper bounding .
Assume is the transmitted message and rate pair with

. Rewrite as

(56)

where if , otherwise
. Note that the value of will be specified

later.

For any , we can bound as

(57)

This yields

(58)

We will come back to this inequality later when we optimize
.

Step 3: Upper bounding .
Assume is the transmitted message and rate pair with

. Given , we first rewrite as

(59)

where if there exists with ,
, and to

satisfy . Otherwise,
.
For any and , we can bound by

(60)

This gives

(61)
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Note that we can separate the expectation operators in the last
step due to independence between the codewords of
and .
Assume . Inequality (61) leads to

(62)

Note that the bound obtained in the last step is no longer a func-
tion of .

Step 4: Choosing .
In this step, we determine the typicality threshold

that optimizes the bounds in (58) and (62).
Define as

(63)

Given , , and the auxiliary variables , ,
, we choose such that the following equality

holds:

(64)

This is always possible since the left-hand side of (64) de-
creases in while the right-hand side of (64) increases
in .
Equation (64) implies

(65)

Substitute (65) into (58), we get

(66)

Assume . Let . Inequality (66) becomes

(67)

Now do a variable change with and

, and note that . Inequality (67) becomes

(68)

Following the same derivation, we can see that is
also upper bounded by the right-hand side of (68). Because (68)
holds for all and , we have

(69)

where

(70)

Finally, substituting (54) and (69) into (49) gives the desired
result.

APPENDIX C
PROOF OF THEOREM 3

Proof: We first present in the following lemma an achiev-
able error probability bound for a given codeword length .
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Lemma 1: Consider -user random multiple-access
communication over a discrete-time memoryless channel

. Assume generalized random coding
with a finite codeword length and codewords
in each codebook. Let the codewords of user be parti-
tioned into classes, with the codeword class corre-
sponding to the standard rate interval . Assume

. We term
the grid rates of user . For any rate

, we define function , which
rounds to its grid rate value. Let be the vector version
of the function. Denote as a rate vector whose entries
only take grid rate values of the corresponding users. Given
an operation region strictly contained in an achievable rate
region, system error probability is upper bounded by

(71)

where exponents
and are
defined by

(72)

The proof of Lemma 1 is given in Appendix D.
We will now prove Theorem 3 based on Lemma 1. Let the se-

quence of generalized random coding schemes
follow asymptotic input distribution . Given a finite code-
word length , the input distribution of is denoted
by . We assume convergence on the sequence of input
distributions to its asymptotic limit is uni-
form.10

Assume for each user, say user , we partition its codewords
into classes, as described in Lemma 1. The codeword
class corresponding to standard rate interval . As-
sume . For any
rate , we define function , which
rounds to its grid rate. Let be the vector version of the

function. Denote as a rate vector whose entries only
take grid rate values of the corresponding users. Given a finite
codeword length , and the operation region , system error
probability is upper bounded by (71) given in Lemma 1. Let us
regard the codebook partitioning as a rate partitioning, specified
by for user , .
If we fix the rate partitioning and take the codeword length to
infinity, we can lower bound the system error exponent as

(73)

where and
are defined in

(72).
Define as the maximum width of the rate intervals:

(74)

Because (73) holds for any arbitrary rate partitioning, if we first
take codeword length to infinity, and then revise the rate par-
titioning by taking to zero (which means for all are

10Note that is a deterministic sequence.
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taking to infinity), and make sure all input distributions within
each rate class converge uniformly to a single asymptotic dis-
tribution, then (73) implies (17). Note that the action of “taking
to zero after taking codeword length to infinity” is valid

since rate partitioning is only used as a tool for error exponent
bound derivation. Revision on the rate partitioning does not re-
quire any change to the encoding and decoding schemes. The
requirement that all input distributions within each rate class
should converge uniformly as is taken to zero is also valid
since the asymptotic input distribution function of each user is
only discontinuous at a finite number of rate points.

APPENDIX D
PROOF OF LEMMA 1

Proof: Since the codewords in each codebook are par-
titioned into classes, we will prove Lemma 1 by following
steps similar to the proof of Theorem 2, with revisions on
the bounding details due to the fact that input distributions
corresponding to codewords within each class can be different.
We will not repeat the proof of Theorem 2, but only explain
the necessary revisions. Throughout the proof, whenever we
talk about a message and rate pair , we assume is the
standard communication rate of .
We assume a similar decoding algorithm as given in (45),

with the second condition being revised to

(75)

In other words, we assume the typicality threshold
is a function of the standard rates for users in

and a function of the grid rates for users not in .
Given a user subset , we define the following

three probability terms.
First, assume is the transmitted message and rate

pair with . We define as the probability that
the receiver finds another codeword and rate pair with

, , , and
, that has a likelihood value no worse than the

transmitted codeword. That is,

(76)

Second, assume is the transmitted message and rate
pair with . We define as in (47) except the typi-
cality threshold is replaced by .
Third, assume is the transmitted message and rate

pair with . We define as the probability that
the receiver finds another codeword and rate pair with

, , , and
, that has a likelihood value above the required

threshold . That is,

(77)

With the probability definitions, we can upper bound the
system error probability by

(78)

We will then follow similar steps as in the proof of Theorem 2
to upper bound each of the probability terms on the right-hand
side of (78).
To upper bound , we assume ,
, and get from (53) that

(79)

where is de-
fined in (72).
To upper bound , we get from (58) for that

(80)

To upper bound , we get from (62) for and
that
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(81)

Next, by following a derivation similar to Step 4 in the
proof of Theorem 2, we can optimize (80) and (81) jointly over

to obtain the desired result.
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