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Abstract— In [1], a new channel coding approach was proposed
for random multiple access communication over the discrete-
time memoryless channel. The coding approach allows users to
choose their communication rates distributively without sharing
the rate information with each other and the receiver. The
receiver makes decoding and collision report decisions depending
on whether reliable message recovery is possible. It was shown
that, asymptotically as codeword length goes to infinity, the set of
communication rates supporting reliable message recovery can
be characterized by an achievable region which equals Shannon’s
information rate region without a convex hull operation. In
this paper, we derive stronger versions of the coding theorems
in [1] by characterizing how system error probability, defined
as the maximum of decoding error probability and collision
miss detection probability, approaches zero with respect to the
codeword length.

I. INTRODUCTION

Classical information theoretic multiple access communi-
cation assumes each user (transmitter) is backlogged with an
infinite reservoir of traffic. Users should first jointly deter-
mine their codebooks and information rates, and then send
the encoded messages to the receiver continuously over a
long communication duration. The only responsibility of the
receiver is to decode the messages with its best effort.

In time-slotted random multiple access communication,
however, data bits arrive stochastically at the users. According
to data availability and the MAC layer protocol, in each
time slot, each user encodes certain number of data bits
into a packet (codeword) of certain slot length and transmits
the packet to the receiver. The number of encoded data
units per symbol is defined as the communication rate of a
user in a time slot, and can vary between time slots. Due
to bursty traffic arrival and the lack of instant information
exchange between users, communication rates of the users are
determined individually by each user, and are unknown to the
receiver. Upon receiving the channel output symbols in a time
slot, the receiver decodes the data if a predetermined decoding
error probability requirement can be satisfied. Otherwise, the
receiver outputs a “collision”.

The issue of channel coding in random multiple access
communication was investigated in [1], where a new coding
approach was proposed for communication over a discrete time
memoryless channel. Assume random channel coding (defined
in [1]) is applied within each time slot. Asymptotically as
the codeword length (slot length) is taken to infinity and

the required decoding error probability is taken to zero, the
set of communication rates supporting message decoding can
be characterized by an achievable rate region, which equals
the Shannon information rate region without a convex hull
operation [1].

In this paper, we derive stronger versions of the coding
theorems given in [1]. We consider random multiple access
communication over a discrete-time memoryless channel and
focus on coding within one time slot. Define the set of
communication rate vectors under which the receiver should
decode the messages as the “operation region” of the system.
We show that if the operation region is strictly contained in the
maximum achievable rate region given in [1], then the system
error probability, defined as the maximum of the decoding
error probability and the collision miss detection probability,
decays exponentially in the slot length (codeword length).
Close form expression of the corresponding exponent, defined
as the system error exponent, is obtained.

II. PACKET CODING AND ERROR PERFORMANCE IN
SINGLE-USER RANDOM ACCESS COMMUNICATION

For easy understanding, we will first consider single-user
random access communication over a discrete-time memo-
ryless channel. The channel is modeled by a conditional
distribution function PY |X , where X ∈ X , Y ∈ Y are the
channel input and output symbols, X , Y are the finite input
and output alphabets. Assume time is partitioned into slots
each equaling N symbol durations, which is also the length
of a packet. We focus on coding within a time slot or a packet.

Suppose the channel is unknown at the transmitter. The
significance of this assumption will become clear when we
investigate multiuser systems. At the beginning of a time
slot, the transmitter randomly generates a “random access
codebook” [1], specified as follows. The codebook contains
M classes of codewords, where M is a predetermined integer.
The ith (i ∈ {1, . . . , M}) codeword class contains beNric
codewords, each of N symbol length. where ri is a predeter-
mined rate parameter, in nats per symbol. Codeword symbols
are independently distributed with symbols of the ith codeword
class being i.i.d. according to a conditional input distribution
PX|ri

. We assume r1 < r2 < . . . < rM . According to
message availability and the MAC layer protocol, the transmit-
ter chooses a communication rate r ∈ {r1, . . . , rM} without
sharing this rate information with the receiver. Suppose r = ri.



The transmitter then encodes bNri/ ln 2c data bits, denoted by
a message w, into the wth codeword in the ith codeword class,
denoted by xwi

, and sends it to the receiver. Note that this is
equivalent to mapping the message and communication rate
pair (w, ri) to a codeword xwi

with length N .
We assume the receiver knows the channel PY |X and the

randomly generated codebook. Based on these information, the
receiver chooses an integer H ≤ M . According to the channel
output symbol vector y, the receiver outputs an estimated
message and rate pair (ŵ, r̂) only if r̂ ∈ {r1, . . . , rH} and
a predetermined decoding error probability requirement can
be satisfied. Otherwise the receiver outputs “r̂ = collision”.
Note that the term “collision” here is used to maintain consis-
tency with the networking terminology. Throughout the paper,
collision means outage, irrespective whether it is caused by
interference due to multiuser transmissions.

Since the receiver intends to decode all messages with r ≤
rH , we say R = {r|r ≤ rH} is the “operation region” of the
system. For all messages with r ≤ rH , we define the decoding
error probability as

Pe(w, r) = Pr{(ŵ, r̂) 6= (w, r)}, ∀(w, r), r ≤ rH . (1)

For all messages with r > rH , we define the collision miss
detection probability as

P̄c(w, r) = Pr{r̂ 6= collision}, ∀(w, r), r > rH . (2)

The system error probability is defined as the maximum of (1)
and (2).

Assume ri < IPX|ri
(X; Y ) for all i ≤ H , where

IPX|ri
(X; Y ) is the mutual information between X and Y

computed based on input distribution PX|ri
. According to [1],

we have the following asymptotic results.

lim
N→∞

Pe(w, r) = 0, ∀(w, r), r ∈ {r1, . . . , rH},
lim

N→∞
P̄c(w, r) = 0, ∀(w, r), r 6∈ {r1, . . . , rH}. (3)

In other words, asymptotically, the receiver can reliably decode
the message if the random communication rate r is inside the
operation region; the receiver can reliably report a collision if
r is outside the operation region.

In the rest of this section, we will analyze the convergence
of the system error probability with respect to N . Assume
(w, r) is encoded and transmitted. The receiver outputs an
estimate (ŵ = m, r̂ = rh) if both the following conditions are
satisfied,

C1: − 1
N

ln Pr{y|xmh
} < − 1

N
ln Pr{y|xm̃h̃

},
for all (m̃, h̃) 6= (m,h), h, h̃ ≤ H;

C2: − 1
N

ln Pr{y|xmh
} < τh(y), (4)

where τh(y), as a function of y, is a predetermined threshold
corresponding to the codewords of the hth class. If there is no
codeword satisfying (4), the receiver reports r̂ = collision.
In other words, the receiver decodes only if the negative

log-likelihood of the maximum likelihood estimation exceeds
certain threshold.

For r ∈ {r1, . . . , rH}, we define the decoding error expo-
nent Ed as

Ed = min
(w,r),r∈{r1,...,rH}

lim
N→∞

− 1
N

ln Pe(w, r). (5)

For r ∈ {rH+1, . . . , rM}, we define the collision miss detec-
tion exponent Ec as

Ec = min
(w,r),r∈{rH+1,...,rM}

lim
N→∞

− 1
N

ln P̄c(w, r). (6)

The system error exponent Es is defined by Es =
min{Ed, Ec}.

The following theorem gives a lower bound on the system
error exponent.

Theorem 1: For single-user random access communication
over a discrete-time memoryless channel PY |X . Given the
conditional input distributions PX|rh

for all 1 ≤ h ≤ M ,
the system error exponent is bounded by,

Es ≥ min
{

min
h,h̃≤H

max
0≤ρ≤1

[−ρrh̃ + E0(ρ, PX|rh
, PX|rh̃

)
]

,

min
h>H,h̃≤H

max
0≤ρ≤1

[−ρrh̃ + E1(ρ, PX|rh
, PX|rh̃

)
]}

, (7)

where

E0(ρ, PX|rh
, PX|rh̃

) = max
0≤s≤1

− ln
∑

y

(∑
x

PX|rh
(x)

×PY |X(y|x)1−s

)(∑
x

PX|rh̃
(x)PY |X(y|x)

s
ρ

)ρ

,

E1(ρ, PX|rh
, PX|rh̃

) = max
0≤s≤1−ρ

− ln
∑

y

(∑
x

PX|rh
(x)

×PY |X(y|x)

)1−s (∑
x

PX|rh̃
(x)PY |X(y|x)

s
s+ρ

)s+ρ

. (8)

The proof of Theorem 1 is given in the Appendix. Note
that the first term on the right hand side (RHS) of (7) is due
to condition C1 in (4), which corresponds to the maximum
likelihood decoding criterion. This term becomes Gallager’s
random-coding exponent [2] if the system has only one class
of codewords with the same input distribution. The second
term is due to condition C2, which corresponds to a typical
sequence decoding criterion.

III. PACKET CODING AND ERROR PERFORMANCE IN
MULTI-USER RANDOM ACCESS COMMUNICATION

In this section, we consider a K-user time-slotted random
access communication system over a discrete-time memoryless
channel. The channel is modeled by a conditional distribution
PY |X1,...,XK

, where Xk ∈ Xk, k ∈ {1, . . . , K}, is the channel
input symbol of user k with Xk being the the finite input
alphabet, Y ∈ Y is the channel output symbol with Y being the



finite output alphabet. Assume a slot length equals N symbol
durations, which is also the length of a packet. We again focus
on coding within a time slot.

Assume at the beginning of a time slot, user k, k ∈
{1, . . . ,K}, generates a “random access codebook” [1] that
has M classes of codewords. The ith codeword class contains
beNrik c codewords, each of N symbol length, with rik

being a
predetermined rate parameter, in nats per symbol. We assume
all codeword symbols are generated independently. Codeword
symbols of user k in the ith class are i.i.d. according to
a conditional input distribution PX|rik

. We assume r1k
<

. . . < rMk
. In each time slot, according to data availability

and the MAC protocol, user k chooses a communication rate
rik

∈ {r1k
, . . . , rMk

} without sharing this rate information
with the receiver or with other users. User k then encodes
bNrik

/ ln 2c data bits, denoted by a message wk, into the
wkth codeword in the ikth codeword class, denoted by xwkik

,
and sends it to the receiver.

Assume the receiver knows the channel and the randomly
generated codebooks. Note that this assumption can be sat-
isfied by pre-sharing the random codebook generation algo-
rithms with the receiver. Based on the channel and the code-
book information, the receiver predetermines an “operation
region” R, which is a set of communication rate vectors under
which the receiver intends to decode the messages. In each
time slot, upon receiving the channel output symbol vector y,
the receiver outputs the estimated message and rate vector
pair (ŵ, r̂) (that contains the estimates for all users) only
if r̂ ∈ R and a predetermined decoding error probability
requirement can be satisfied. Otherwise the receiver outputs
“r̂ = collision”.

To simplify the notations, we will use bold font vector (or
matrix) variables to denote the corresponding variables of mul-
tiple users. For example, ŵ denotes the message estimates of
all users, r denotes the communication rates of all users, P X|r
denotes the input distributions conditioned on communication
rates r, etc. Let S ⊂ {1, . . . ,K} be an arbitrary subset of
users. We will use rS to denote the communication rates of
users in S, and will use wS̄ to denote the messages of users
not in S, etc.

Similar to the single-user case, conditioned on (w, r) is
transmitted, we define the decoding error probability for
(w, r) with r ∈ R as

Pe(w, r) = Pr{(ŵ, r̂) 6= (w, r)|(w, r)}, ∀(w, r), r ∈ R.
(9)

We define the collision miss detection probability for (w, r)
with r 6∈ R as

P̄c(w, r) = Pr{r̂ 6= collision|(w, r)}, ∀(w, r), r 6∈ R.
(10)

The system error probability is defined as the maximum of (9)
and (10).

Assume for all r ∈ R and for all user subset S ⊂
{1, . . . ,K}, we have

∑
k∈S̄ rk < IP X|r (X S̄ ; Y |XS). Ac-

cording to the achievable region result given in [1], asymp-
totically, the receiver can reliably decode the messages for all

rate vectors in R and can reliably report a collision for all rate
vectors outside R. In other words,

lim
N→∞

Pe(w, r) = 0, ∀(w, r), r ∈ R,

lim
N→∞

P̄c(w, r) = 0, ∀(w, r), r 6∈ R. (11)

To analyze the convergence of the system error probability,
we again specify the detailed decoding operation in the follow-
ing. Assume (w, r) is encoded and transmitted. The receiver
outputs an estimate (ŵ = m, r̂ = rh) if both of the following
conditions are satisfied,

C1: − 1
N

ln Pr{y|xmh
} < − 1

N
lnPr{y|xm̃h̃

},
for all xm̃h̃

6= xmh
, rh, rh̃ ∈ R;

C2: − 1
N

ln Pr{y|xmh
} < τh(y), (12)

where τh(y), as a function of y, is a predetermined threshold
corresponding to the codeword vectors with rate rh. If there
is no codeword vector satisfying (12), the receiver reports r̂ =
collision.

Define the decoding error exponent Ed and the collision
miss detection exponent Ec as

Ed = min
(w,r),r∈R

lim
N→∞

− 1
N

ln Pe(w, r)

Ec = min
(w,r),r 6∈R

lim
N→∞

− 1
N

ln P̄c(w, r). (13)

The system error exponent is defined by Es = min{Ed, Ec}.
The following theorem gives a lower bound on Es. Due to

the page limitation, proof of the theorem is skipped.
Theorem 2: For K-user random access system over a

discrete time memoryless channel PY |X . Given the conditional

input distributions P X|rh
=

[
PX|rh1

, · · · , PX|rhK

]T

for all

h = [h1, · · · , hM ]T . The system error exponent is bounded as
follows.

Es ≥ min
S

min



 min

h,h̃:rh,rh̃∈R
max

0≤ρ≤1
−ρ

∑

i∈S̄
rh̃i

+E0(ρ,P X|rh
,P X|rh̃

),

min
h,h̃:rh /∈R,rh̃∈R

max
0≤ρ≤1

−ρ
∑

i∈S̄
rh̃i

+E1(ρ, P X|rh
, P X|rh̃

)

}
, (14)

where,

E0(ρ,P X|rh
, P X|rh̃

) = max
0≤s≤1

− ln
∑
xS

∏

k∈S
PX|rhk

(xk)

×
∑

y


∑

xS̄

∏

k 6∈S
PX|rhk

(xk)PY |X(y|x)1−s




×

∑

xS̄

∏

k 6∈S
PX|rh̃k

(xk)PY |X(y|x)
s
ρ




ρ

,



E1(ρ, P X|rh
,P X|rh̃

) = max
0≤s≤1−ρ

− ln
∑

y

∑
xS∏

k∈S
PX|rhk

(xk)PY |X(y| xS)1−s

×

∑

xS̄

∏

k 6∈S
PX|rh̃k

(xk)PY |X(y|x)
s

s+ρ




s+ρ

. (15)

APPENDIX

Proof of Theorem 1: The main technique used in this proof
is motivated by [4].

Let q(x, y) be the empirical distribution of the symbol pairs
(x, y), derived from a specific sequence pair (x, y). Similarly,
let q(x) and q(y) be the empirical marginal distributions, and
q(x|y) and q(y|x) be the empirical conditional distributions.
When ever empirical distributions are used, we will carefully
make sure that the sequence pair (x,y) used to derive the em-
pirical distributions is always specified. However, we choose
to skip the sequence pair in the notations of the empirical
distributions.

Assume the actual transmitted message and rate pair is
(w, rh), which is mapped to codeword xwh

. Let y be the
channel output sequence, whose empirical distribution is
q(y). For each codeword xm̃h̃

, we define G(y, xm̃h̃
) =

− 1
N ln Pr{y|xm̃h̃

}, which is the normalized negative log
likelihood of xm̃h̃

.
Given q(y), we define the following two exponents, as

functions of a threshold variable τ0,

Eth(τ0) = lim
N→∞

− 1
N

ln Pr {G(y,xwh
) ≥ τ0} ,

E
[h̃,h]
i (τ0) = lim

N→∞
− 1

N
ln Pr

{
G(y, xm̃h̃

) < τ0

}
.(16)

Eth(τ0) characterizes the probability that the negative log
likelihood of the actual transmitted codeword is above a
threshold. E

[h̃,h]
i (τ0) characterizes the probability that the

negative log likelihood of an arbitrary codeword (other than the
transmitted codeword) in the h̃th class is below the threshold.
We use a superscript [h̃, h] here to indicate that the actual
transmitted codeword is in the hth class and the codeword
considered in the G(y, xm̃h̃

) function is in the h̃th class.
Step I: Let qh(x|y) be the conditional empirical dis-

tribution derived from the sequence pair (xwh
,y). Let

Pr{qh(x|y)} be the total probability of all sequence pairs
having conditional empirical distribution qh(x|y). We have
Pr {G(y,xwh

) ≥ τ0} =
∑

qh(x|y):G(y,xwh
)≥τ0

Pr{qh(x|y)}.
Given input distribution PX|rh

and the channel model
PY |X , we define ph(y) =

∑
x PY |X(y|x)PX|rh

(x) as the
channel output symbol distribution, and define ph(x|y) =
PY |X(y|x)PX|rh

(x)/ph(y) as the posterior distribution of the
symbols of the actual transmitted codeword. Due to large
deviation theory, the exponent of Pr{qh(x|y)} is given as in

[4] by

E(qh(x|y)) = D(qh(x|y)||ph(x|y))

=
∑
x,y

q(y)qh(x|y) ln
qh(x|y)
ph(x|y)

, (17)

where D(·||·) is the Kullback-Leibler distance.
Consequently,

Eth(τ0) = min
qh(x|y):G(y,xwh

)≥τ0

E(qh(x|y))

= max
s1≥0

min
qh(x|y)

E(qh(x|y))− s1 (G(y, xwh
)− τ0) .(18)

According to the definition, G(y, xwh
) can be written as

G(y,xmh
) = −

∑
x,y

q(y)qh(x|y) ln PY |X(y|x). (19)

Substitute (17) and (19) into (18). We get

Eth(τ0) = max
s1≥0

min
qh(x|y)

s1τ0

+
∑

y

q(y)
∑

x

qh(x|y) ln
qh(x|y)PY |X(y|x)s1

ph(x|y)

= max
s1≥0

s1τ0 −
∑

y

q(y) ln
∑

x

ph(x|y)PY |X(y|x)−s1 .

(20)

By following a similarly derivation, we can also write
E

[h̃,h]
i (τ0) as

E
[h̃,h]
i (τ0) = max

s2≤0
s2τ0

−
∑

y

q(y) ln
∑

x

PX|rh̃
(x)PY |X(y|x)−s2 . (21)

Step II: Conditioned on that the transmitted communica-
tion rate rh is within the operation region, i.e. h ≤ H , let
Edh(q(y)) be the decoding error exponent given the empirical
distribution q(y) of sequence y. A decoding error occurs if
either of the conditions in (4) is violated. Let ECi(q(y)) be the
exponent of the probability that condition Ci is violated, i ∈
{1, 2}. We have Edh(q(y)) = min{EC1(q(y)), EC2(q(y))}.

Due to the union bound, the exponent of the probability that
any codeword xm̃h̃

6= xwh
satisfies G(y,xm̃h̃

) < τ0 is given

by max
{

0, minh̃≤H

(
E

[h̃,h]
i (τ0)− rh̃

)}
. This yields

EC1(q(y)) = min
τ0,h̃≤H

max
0≤ρ≤1

Eth(τ0) + ρ
(
E

[h̃,h]
i (τ0)− rh̃

)
, (22)

where ρ is a Lagrange multiplier.
Substitute (20), (21) into (22), and let s = s1+ρs2 to obtain

EC1(q(y)) = min
h̃≤H

max
0≤ρ≤1,s1≥0,s

min
τ0
−ρrh̃ + sτ0

−
∑

y

q(y) ln

[(∑
x

ph(x|y)PY |X(y|x)−s1

)

×
(∑

x

PX|rh̃
(x)PY |X(y|x)

s1−s

ρ

)ρ]
. (23)



Note that the objective function in (23) increases monotoni-
cally in τ0 and decreases monotonically in s. Since the optimal
τ0 is positive and finite, the optimal s should be nonnegative.
Consequently, (23) must be optimized at s = 0. This yields

EC1(q(y)) = min
h̃≤H

max
0≤ρ≤1,s1≥0

−ρrh̃ −
∑

y

q(y)

× ln

[(∑
x

PX|rh(x)

ph(y)
PY |X(y|x)1−s1

)

×
(∑

x

PX|rh̃
(x)PY |X(y|x)

s1
ρ

)ρ]
. (24)

Furthermore, we have EC2(q(y)) = Eth(τh(y)).
Let Edh be the decoding error exponent without providing

the empirical distribution q(y). We have

Edh = min
q(y)

(Edh(q(y)) + D(q(y)||ph(y))) . (25)

Define Eih = minq(y) (ECi(q(y)) + D(q(y)||ph(y))) for i ∈
{1, 2}. We have Edh = min{E1h, E2h}.

To derive the expression of E1h, we have

E1h = min
h̃≤H

max
0≤ρ≤1,s1≥0

min
q(y)

−ρrh̃ −
∑

y

q(y) ln

[
q(y)−1

×
(∑

x

PX|rh
(x)PY |X(y|x)1−s1

)

×
(∑

x

PX|rh̃
(x)PY |X(y|x)

s1
ρ

)ρ]
. (26)

It can be easily verified that E1h ≤ 0 for s1 ≥ 1. Therefore,
0 ≤ s1 ≤ 1 must hold. This consequently leads to

E1h = min
h̃≤H

max
0≤ρ≤1

−ρrh̃ + E0(ρ, PX|rh
, PX|rh̃

), (27)

where E0(ρ, PX|rh
, PX|rh̃

) is defined in (8).
Step III: Conditioned on that the transmitted communi-

cation rate rh is outside the operation region, i.e. h > H ,
let Ech(q(y)) be the collision miss detection exponent given
the empirical distribution q(y). Note that the collision miss
detection probability is upper bounded by the probability that
any codeword in the operation region satisfies condition C2
in (4). Due to the union bound, the corresponding exponent is
lower-bounded by

Ech(q(y)) ≥ max
0≤ρ̃≤1

min
h̃≤H

ρ̃
(
E

[h̃,h]
i (τh̃(y))− rh̃

)
(28)

Let Ech be the collision miss detection exponent without
providing the empirical distribution q(y). We have

Ech = min
q(y)

(Ech(q(y)) + D(q(y)||ph(y))) . (29)

Step IV: The system error exponent is given by

Es = min
{

min
h≤H

E1h, max
τh̃(y)

min
{

min
h̃≤H

E2h̃, min
h>H

Ech

}}
.

(30)

The first terms on the RHS of (30) and (7) are equal. The
second term is lowered bounded by ET , which is defined
below.

ET = max
τh̃(y)

min{min
h̃≤H

E2h̃, min
h>H

Ech}
= min

h>H,h̃≤H
max

0≤ρ̃≤1
min
q(y)

ET (q(y)), (31)

where

ET (q(y)) = max
s1≥0,s2≤0

max
τh̃(y)

min{Q1, Q2},

Q1 = s1τh̃(y) +
∑

y

q(y) ln q(y)

−
∑

y

q(y) ln
∑

x

PX|rh̃
(x)PY |X(y|x)1−s1 ,

Q2 = −ρ̃rh̃ + ρ̃s2τh̃(y) +
∑

y

q(y) ln q(y)

−
∑

y

q(y) ln ph(y)

(∑
x

PX|rh
(x)PY |X(y|x)−s2

)ρ̃

. (32)

Note that Q1 is monotonically increasing in τh̃(y), while
Q2 is monotonically decreasing in τh̃(y). τh̃(y) should be
chosen such that Q1 = Q2. Consequently, we can change the
optimization term maxτh̃(y) min{} in (32) to minτh̃(y) max{}.
This gives,

ET (q(y)) = max
s1≥0,s2≤0

min
τh̃(y)

max{Q1, Q2}
= max

s1≥0,s2≤0
min
τh̃(y)

max
0≤λ≤1

(1− λ)Q1 + λQ2. (33)

Similar to Step II, (33) is optimized at (1−λ)s1+λρ̃s2 = 0.
Consequently,

ET (q(y)) = min
0≤λ≤1

−λrh̃ +
∑

y

q(y) ln
q(y)

ph(y)λ

−
∑

y

q(y) ln

(∑
x

PX|rh̃
(x)PY |X(y|x)

1−λ
1−λ+λρ̃

)1−λ+λρ̃

. (34)

Given λ and ρ̃, we first optimize (34) over q(y) to obtain ET .
Then substitute ρ = λρ̃ ∈ [0, 1], s = 1 − λ ∈ [0, 1 − ρ] into
the final solution to show the equality of ET and the second
term on the RHS of (7).

This completes the proof.
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