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Abstract— 1 Random access communication is used in practical
systems to deliver bursty short messages. Because users only
transmit occasionally, it is often difficult for the receiver to keep
track of the time varying wireless channel states. Under this
motivation, we develop channel coding theorems for random
multiple access communication over compound channels with
finite codeword length. Error performance bound and asymptotic
error probability scaling laws are derived. We found that the
results also help in deriving error performance bounds for
the random multiple access system where the receiver is only
interested in decoding messages from a user subset.

I. INTRODUCTION

In a series of recent works [1][2], information theoretic
channel coding was extended to distributed random multiple
access communication where users determine their codes and
communication rates individually, without sharing rate infor-
mation with the receiver. Due to the lack of rate coordination,
reliable message recovery in random access communication is
not always possible. Receiver in this case decodes the transmit-
ted messages only if a pre-determined reliability requirement
is met, otherwise the receiver reports a collision. In [1], it
was shown that the fundamental performance limitation of a
random multiple access system can be characterized using an
achievable rate region. Asymptotically as the codeword length
is taken to infinity, the receiver is able to recover the messages
reliably if the communication rate vector happens to be inside
the rate region, and to reliably report a collision if the rate
vector happens to be outside the region. The achievable rate
region was shown to coincide with the Shannon information
rate region without a convex hull operation [1]. In [2], the
result was further strengthened to a rate and error probability
scaling law. Achievable error probability bound with finite
codeword length was also obtained [2].

In both [1] and [2], state of the communication channel
is assumed known at the receiver. However, because random
access communication deals with bursty short messages, chan-
nel access of a user is often fractional. This makes channel
estimation and tracking very difficult at the receiver. It is
therefore an important task to understand the fundamental
system performance when the communication channel is not
perfectly known. In this paper, we illustrate how coding
theorems developed in [1][2] can be extended to random
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access communication over a compound channel [3]. We first
consider a single user time-slotted random access system.
Assume that, in each time slot, the transmitter chooses an
arbitrary communication rate, which is defined as the normal-
ized number of data nats encoded in a packet. Without rate
and complete channel state information, receiver decodes the
message only if a pre-determined error probability requirement
is satisfied. We assume that the receiver chooses an “operation
region”, which is the set of rate and channel state pairs within
which the receiver intends to decode the message, and outside
which the receiver intends to report a collision (or outage).
Given the operation region and a finite codeword length, a
bound on the achievable system error probability, defined
as the maximum of the decoding error probability and the
collision miss detection probability, is derived. We then show
that the compound channel results also help in obtaining error
performance bounds for the random multiple access system
where the receiver is only interested in recovering messages
from a subset of users. This is because, conditioned on the
receiver not decoding messages from the rest of users, the
impact of their communication activities on the user subset of
interest is equivalent to that of a compound channel.

II. SINGLE-USER RANDOM ACCESS COMMUNICATION
OVER A COMPOUND CHANNEL

To simplify the presentation, we only consider a single-user
system with in mind that extension to a multi-user system
follows naturally. Assume that time is slotted with each slot
equaling the length of N symbol durations. This is also
the length of a packet. We model the compound discrete-
time memoryless channel using a finite set of conditional
probabilities

{
P

(1)
Y |X , · · · , P

(H)
Y |X

}
with cardinality H , where

X ∈ X is the channel input symbol with X being the the finite
input alphabet, and Y ∈ Y is the channel output symbol with
Y being the finite output alphabet. In each time slot, a channel
realization is randomly chosen. Both the transmitter and the
receiver know the channel set, but not the actual realization.

Suppose that, at the beginning of a time slot, the user
chooses an arbitrary communication rate r, in nats per symbol,
and encodes bNrc data nats, denoted by a message w, into a
packet of N symbols. Assume that r ∈ {r1, · · · , rM}, where
{r1, · · · , rM} is a pre-determined set of rates with cardinality
M . The receiver knows about the rate set, but not the actual
rate realization. Encoding is done using a random coding



scheme described as in [2] and also in the following. Let L =
{Cθ : θ ∈ Θ} be a codebook library of the user, the codebooks
of which are indexed by set Θ. Each codebook consists of M
codeword classes. The ith (i ∈ {1, · · · ,M}) codeword class
contains beNric codewords, each with N symbols. Denote
Cθ(w, r)j as the jth symbol of the codeword corresponding
to message w and communication rate r in codebook Cθ. The
user first generates θ according to a distribution γ, such that
random variables X(w,r),j : θ → Cθ(w, r)j are independently
distributed according to an input distribution PX|r2. The user
then uses Cθ to map (w, r) into a codeword, denoted by x(w,r),
and sends it to the receiver.

We assume that the receiver is shared with the
codebook generation algorithm and hence knows the
randomly generated codebook. Before transmission,
the receiver chooses an “operation region” R,
which is a set of rate and channel pairs, i.e. R ⊆{

(r, PY |X) : r ∈ {r1, · · · , rM}, PY |X ∈ {P
(1)
Y |X , · · · , P

(H)
Y |X}

}
.

Although the actual rate and channel pair, denoted by
(r, PY |X), is unknown at the receiver, the receiver intends to
decode the message for (r, PY |X) ∈ R and intends to report a
collision for (r, PY |X) 6∈ R. In each time slot, upon receiving
the channel output symbol vector y, the receiver estimates the
communication rate and channel pair, denoted by (r̂, P̂Y |X).
The receiver outputs the estimated message and rate vector
pair (ŵ, r̂) only if (r̂, P̂Y |X) ∈ R and a pre-determined error
probability requirement is satisfied. Otherwise the receiver
outputs a collision.

Conditioned on that (w, r) is transmitted over the chan-
nel PY |X , we define the decoding error probability for
(w, r, PY |X) with (r, PY |X) ∈ R as

Pe(w, r, PY |X) = Pr{(ŵ, r̂) 6= (w, r)|(w, r, PY |X)},
∀(w, r, PY |X), (r, PY |X) ∈ R. (1)

We define the collision miss detection probability for
(w, r, PY |X) with (r, PY |X) /∈ R as

P̄c(w, r, PY |X) = 1− Pr{“collision”|(w, r, PY |X)}
−Pr{(ŵ, r̂) = (w, r)|(w, r, PY |X)},

∀(w, r, PY |X), (r, PY |X) 6∈ R. (2)

Note that when (r, PY |X) /∈ R, we do not regard correct
message recovery as “collision miss detection”.

Assume that r < I(r,PY |X)(X;Y ) for all (r, PY |X) ∈ R,
where I(r,PY |X) is the mutual information function computed
using input distribution PX|r and channel PY |X . Define the
system error probability Pes as

Pes = max

{
max

(w,r,PY |X),(r,PY |X)∈R
Pe(w, r, PY |X) ,

max
(w,r,PY |X),(r,PY |X)/∈R

P̄c(w, r, PY |X)

}
. (3)

The following theorem gives an upper bound on the achiev-
able system error probability Pes.

2Note that the input distribution is a function of the communication rate.

Theorem 1: For single-user random access communica-
tion over the compound discrete-time memoryless channel
{P (1)

Y |X , · · · , P
(H)
Y |X}. Assume that finite codeword length N ,

and random coding with input distribution PX|r for all r ∈
{r1, · · · , rM}. Let R be the operation region. There exists
a decoding algorithm, whose system error probability Pes is
upper bounded by

Pes ≤ max

{
max

(r,PY |X)∈R[
max

(r̃,P̃Y |X)/∈R
exp{−NEi(r, r̃, PY |X , P̃Y |X)}

+
∑

(r̃,P̃Y |X)∈R

exp{−NEm(r, r̃, PY |X , P̃Y |X)}

 ,
∑

(r,PY |X)∈R

max
(r̃,P̃Y |X)/∈R

exp{−NEi(r, r̃, PY |X , P̃Y |X)}

 ,

(4)

where Em(r, r̃, PY |X , P̃Y |X) and Ei(r, r̃, PY |X , P̃Y |X) are
given by

Em(r, r̃, PY |X , P̃Y |X) = max
0<ρ,s≤1

−ρr̃

− log
∑
Y

[∑
X

PX|r(X)PY |X(Y |X)1−s

]

×

[∑
X

PX|r̃(X)P̃Y |X(Y |X)
s
ρ

]ρ
,

Ei(r, r̃, PY |X , P̃Y |X) = max
0<ρ≤1,0<s≤1−ρ

−ρr

− log
∑
Y

[∑
X

PX|r̃(X)P̃Y |X(Y |X)

]1−s

×

[∑
X

PX|r(X)PY |X(Y |X)
s
s+ρ

]s+ρ
. (5)

The proof of Theorem 1 is given in the Appendix. In the
proof, we assume the following decoding algorithm. Upon
receiving the channel output symbols y, the receiver outputs
an estimated message and rate pair (w, r) together with an
estimated channel PY |X if the following condition is satisfied,

−
logPr{y|x(w,r), PY |X}

N
< −

logPr{y|x(w̃,r̃), P̃Y |X}
N

,

for all (w̃, r̃, P̃Y |X), (w̃, r̃) 6= (w, r), and

(w̃, r̃, P̃Y |X), (w, r, PY |X) ∈ Ry, with

Ry =
{

(w̃, r̃, P̃Y |X)
∣∣∣ (r̃, P̃Y |X) ∈ R,

−
logPr{y|x(w̃,r̃), P̃Y |X}

N
< τ(r̃,P̃Y |X)(y)

}
. (6)

Here τ(r̃,P̃Y |X)(·) is a pre-determined typicality threshold
function of the channel output symbols y, associated with



the rate and channel pair (r̃, P̃Y |X). If there is no codeword
satisfying condition (6), the decoder reports a collision.

Define the corresponding system error exponent as Es =
limN→∞− 1

N logPes. The following lower bound on the
achievable system error exponent Es can be directly obtained
from Theorem 1.

Corollary 1: The system error exponent of the single-user
random access communication system given in Theorem 1 is
lower-bounded by

Es ≥ min

{
min

(r,PY |X),(r̃,P̃Y |X)∈R
Em(r, r̃, PY |X , P̃Y |X) ,

min
(r,PY |X)∈R,(r̃,P̃Y |X)/∈R

Ei(r, r̃, PY |X , P̃Y |X)

}
. (7)

where Em(r, r̃, PY |X , P̃Y |X) and Ei(r, r̃, PY |X , P̃Y |X) are
defined in (5).

III. INDIVIDUAL USER DECODING IN RANDOM MULTIPLE
ACCESS COMMUNICATION

In this section, we show that the results obtained in Section
II can also help to derive error probability bounds in a random
multiple access system where the receiver is only interested in
recovering the messages from a user subset. We consider a K-
user system over a discrete-time memoryless channel, modeled
by PY |X , where X denotes the channel input symbols for all
users. We assume that the channel information is known both
at the users and at the receiver, Note that the result can be
generalized to the compound channel case.

Assume that in each time slot, each user, say user k
(k ∈ {1, · · · ,K}), encodes its message wk into a codeword
x(wk,rk) with rate rk ∈ {rk1, · · · , rkM} using the random
coding scheme described in Section II. The communication
rate is shared neither among the users nor with the receiver. We
use bold-font vector symbols w and r to denote the messages
and rates of multiple users. Let PX|r be the input distribu-
tions of the users, which are functions of the corresponding
communication rates. Given a user subset D ⊆ {1, · · · ,K},
let D̄ be its complementary. We use rD to denote the rates of
users in D, and use rk to denote the rate of user k, etc.

Given a user subset D ⊆ {1, · · · ,K} and a rate region
RD which is a collection of rate vectors, we define an
elementary decoder, called “(D,RD)-decoder”, as follows. We
assume that the decoder regards signals from users not in D
as interference. Let Pr{y|x(wD,rD), rD̄} be the conditional
probability of getting channel output y, with users in D
transmitting (wD, rD) and users not in D choosing rate rD̄.
In other words,

Pr{y|x(wD,rD), rD̄} =
∑
wD̄

Pr{x(wD̄,rD̄)}Pr{y|x(w,r)}.

(8)
Upon receiving the channel output symbols y, the (D,RD)-
decoder outputs an estimated message and rate pair (wD, rD)
for users in D together with an estimated rate rD̄ for users

not in D, if the following condition is satisfied,

−
logPr{y|x(wD,rD), rD̄}

N
< −

logPr{y|x(w̃D,r̃D), r̃D̄}
N

,

for all (w̃D, r̃D, r̃D̄), (w̃D, r̃D) 6= (wD, rD), and
(w̃D, r̃D, r̃D̄), (wD, rD, rD̄) ∈ RDy, with

RDy = {(w̃D, r̃D, r̃D̄)| r̃ ∈ RD,

−
logPr{y|x(w̃D,r̃D), r̃D̄}

N
< τ(r̃,D)(y)

}
, (9)

where τ(r̃,D)(·) is a pre-determined typicality threshold.
By comparting (9) with (6), we can see that, in an (D,RD)-

decoder, the impact of signals not in D is essentially equivalent
to that of a compound channel.

Conditioned on users in D transmitting (wD, rD) and users
not in D choosing rate rD̄, let us denote the estimated
messages and rates by (ŵD, r̂D) and r̂D̄ if the decoder does
not report a collision. We define the decoding error probability
of the (D,RD)-decoder for (wD, rD, rD̄) with r ∈ RD as

Pe(wD, rD, rD̄) =

Pr{(ŵD, r̂D) 6= (wD, rD)|(wD, rD, rD̄)},
∀(wD, rD, rD̄), r ∈ RD. (10)

We define the collision miss detection probability for
(wD, rD, rD̄) with r 6∈ RD as

P̄c(wD, rD, rD̄) = 1− Pr{“collision”|(wD, rD, rD̄)}
−Pr{(ŵD, r̂D) = (wD, rD)|(wD, rD, rD̄)},
∀(wD, rD, rD̄), r 6∈ RD. (11)

System error probability of the (D,RD)-decoder is defined by

Pes(D,RD) = max

{
max

(wD,rD,rD̄),r∈RD
Pe(wD, rD, rD̄),

max
(wD,rD,rD̄),r 6∈RD

P̄c(wD, rD, rD̄)

}
. (12)

We assume that, for any r ∈ RD, we have∑
k∈D̃

rk < Ir(XD̃;Y |XD\D̃), ∀D̃ ⊆ D, (13)

where Ir(XD̃;Y |XD\D̃) is the mutual information computed
using the input distribution corresponding to rate r.

When the codeword length N is finite, the follow lemma
gives an upper bound on the achievable Pes defined in (12).

Lemma 1: Consider a K-user random multiple access
communication system over a discrete-time memoryless chan-
nel PY |X with an (D,RD)-decoder. Given that (13) is satis-
fied, the typicality threshold given in (9) can be optimized to



achieve the following system error probability bound,

Pes(D,RD) ≤ max

{

max
r∈RD

∑
D̃⊂D

[ ∑
r̃ ∈ RD,
r̃D̃ = rD̃

exp{−NEmD(D̃, r, r̃)}

+ max
r′ 6∈ RD,
r′
D̃

= rD̃

exp{−NEiD(D̃, r, r′)}

]
,

max
r̃ 6∈R

∑
D̃⊂D

∑
r ∈ RD,
rD̃ = r̃D̃

max
r′ 6∈ RD,
r′
D̃

= r̃D̃

exp{−NEiD(D̃, r, r′)}

}
,

(14)

where EmD(D̃, r, r̃) and EiD(D̃, r, r′) are given by,

EmD(D̃, r, r̃) = max
0<ρ≤1

−ρ
∑

k∈D\D̃

r̃k

+ max
0<s≤1

− log
∑
Y

∑
XD̃

∏
k∈D̃

PX|rk(Xk)

×

 ∑
XD\D̃

∏
k∈D\D̃

PX|rk(Xk)P (Y |XD, r)1−s


×

 ∑
XD\D̃

∏
k∈D\D̃

PX|r̃k(Xk)P (Y |XD, r̃)
s
ρ

ρ

,

EiD(D̃, r, r′) = max
0<ρ≤1

−ρ
∑

k∈D\D̃

rk

+ max
0<s≤1−ρ

− log
∑
Y

∑
XD̃

∏
k∈D̃

PX|rk(Xk)

×

 ∑
XD\D̃

∏
k∈D\D̃

PX|rk(Xk)P (Y |XD, r)
s
s+ρ

s+ρ

×

 ∑
XD\D̃

∏
k∈D\D̃

PX|r′
k
(Xk)P (Y |XD, r′)

1−s

,

P (Y |XD, r) =
∑
XD̄

∏
k 6∈D

PX|rk(Xk)PY |X(Y |X). (15)

Even though the notation in Lemma 1 is quite complicated,
it is not difficult to obtain its proof by combining the proof of
[2, Theorem 2] and the proof of Theorem 1. Due to the page
limitation, the detail is skipped in this paper.

Next, we consider the case when the receiver in the K-
user random multiple access system is only interested in
recovering the message from user k. However, we will drop the
assumption that the receiver should regard signals from other
users as interference. We assume that the receiver chooses
an operation region R. Upon receiving the channel output
symbols y, the receiver estimates the message ŵk for user k
and the rate vector r̂. The receiver outputs ŵk if r̂ ∈ R and ŵk

satisfies a pre-determined reliability requirement. Otherwise
the receiver outputs a collision for user k.

The achievable rate region of such a system with single-user
decoding was originally characterized in [1] as

Rk =

r

∣∣∣∣∣∣
∀S ⊆ {1, · · · ,K}, k ∈ S, either rk = 0,

or ∃S̃ ⊆ S, k ∈ S̃, such that,∑
i∈S̃ ri < Ir(X S̃ ;Y |X S̄)

 .

(16)
(16) implies that, asymptotically as N →∞, if the communi-
cation rate vector r ∈ Rk is within the achievable rate region,
the receiver can always find a user subset S̃ with k ∈ S̃, such
that all messages from users in S̃ can be reliably decoded by
regarding other user signals as interference.

Based on the above understanding, we have the following
lemma whose proof is skipped.

Lemma 2: Any operation region R ⊂ Rk contained inside
the achievable rate region Rk can be partitioned into the
following sub-regions

R =
⋃

D:D⊆{1,···,K},k∈D

RD,

RD ∩RD′ = φ, ∀D 6= D′,D,D′ ⊆ {1, · · · ,K}, k ∈ D,D′,∑
i∈D̃

ri < Ir(XD̃;Y |XD\D̃),∀D, r ∈ RD, D̃ ⊆ D. (17)

Given an operation region partitioning as in Lemma 2 and
the corresponding (D,RD)-decoders, the single-user decoder
outputs an estimated message ŵk for user k if the estimates
for user k given by all the (D,RD)-decoders agree with each
other. Otherwise, the single-user decoder reports a collision
for user k.

Define the system error probability similarly as in previous
systems. The following theorem gives an upper bound on the
achievable system error probability of the single-user decoder.

Theorem 2: Consider a K-user random multiple access
system over a discrete-time memoryless channel PY |X , with
the receiver only interested in recovering the message from
user k. Assume that the receiver chooses an operation region
R ⊂ Rk contained inside the achievable rate region. Let σ be
an arbitrary partitioning of the operation region R satisfying
(17). System error probability of the single-user decoder is
upper-bounded by,

Pes ≤ min
σ

∑
D:D⊆{1,···,K},k∈D

Pes(D,RD), (18)

where Pes(D,RD) is the system error probability of the
(D,RD)-decoder, and can be further bounded by (14).

Theorem 2 is implied by Lemmas 1 and 2. Note that the
error probability bound provided in Theorem 2 is an implicit
one since how to optimize the partitioning scheme σ in (18)
remains a challenging open problem.

APPENDIX

Proof of Theorem 1: Assume that the decoding algorithm
given in (6). To derive the upper bound of the system error
probability, we define the following probability terms.



First, assume that (w, r) is transmitted over channel PY |X
with (r, PY |X) ∈ R. Define Pt[r,PY |X ] as the probability that
the likelihood value of the transmitted codeword is no larger
than the corresponding typicality threshold,

Pt[r,PY |X ] = Pr
{
P (y|x(w,r), PY |X) ≤ e−Nτ(r,PY |X )(y)

}
.

(19)
Define Pm[(r,PY |X),(r̃,P̃Y |X)] as the probability that the likeli-
hood value of the transmitted codeword over channel PY |X is
no larger than that of some codeword x(w̃,r̃) 6= x(w,r) over
channel P̃Y |X with (r̃, P̃Y |X) ∈ R,

Pm[(r,PY |X),(r̃,P̃Y |X)]

= Pr
{
P (y|x(w,r), PY |X) ≤ P (y|x(w̃,r̃), P̃Y |X)

}
,

(w̃, r̃) 6= (w, r), (r̃, P̃Y |X) ∈ R. (20)

Second, assume that (w̃, r̃) is transmitted over channel
P̃Y |X with (r̃, P̃Y |X) /∈ R. Let Pi[(r̃,P̃Y |X),(r,PY |X)] be the
probability that there exist (w, r) 6= (w̃, r̃) and a channel PY |X
with (r, PY |X) ∈ R, such that the corresponding likelihood
value is larger than the typicality threshold,

Pi[(r̃,P̃Y |X),(r,PY |X)]

= Pr
{
P (y|x(w,r), PY |X) > e

−Nτ(r,PY |X )(y)
}
,

(w, r) 6= (w̃, r̃), (r, PY |X) ∈ R. (21)

With these definitions, we can upper bound Pes by

Pes ≤ max

{
max

(w,r,PY |X),(r,PY |X)∈R

[
Pt[r,PY |X ]

+
∑

(r̃,P̃Y |X)∈R

Pm[(r,PY |X),(r̃,P̃Y |X)]

 ,
max

(w̃,r̃,P̃Y |X),(r̃,P̃Y |X)/∈R

∑
(r,PY |X)∈R

Pi[(r̃,P̃Y |X),(r,PY |X)]

 .

(22)

By following a derivation similar to [2, (24)-(28)], we can
upper bound Pm[(r,PY |X),(r̃,P̃Y |X)] by

Pm[(r,PY |X),(r̃,P̃Y |X)] ≤ exp{−NEm(r, r̃, PY |X , P̃Y |X)}, (23)

where Em(r, r̃, PY |X , P̃Y |X) is given in (5).
By following derivations similar to [2, (30)-(32)] and [2,

(33)-(36)], we can upper bound Pt[r,PY |X ] by

Pt[r,PY |X ] ≤
∑
y

Eθ
[
P (y|x(w,r), PY |X)1−s1

]
×e−Ns1τ(r,PY |X )(y)

, ∀s1 > 0, (24)

and upper bound Pi[(r̃,P̃Y |X),(r,PY |X)] by

Pi[(r̃,P̃Y |X),(r,PY |X)] ≤ max
(r̃,P̃Y |X)/∈R

∑
y

Eθ

[
P (y|x(w̃,r̃), P̃Y |X)

]{
Eθ

[
P (y|x(w,r), PY |X)

s2
ρ̃

]}ρ̃
×eNs2τ(r,PY |X )(y)

eNρ̃r, s2 > 0, 0 < ρ̃ ≤ 1. (25)

We determine the optimal τ(r,PY |X)(y) for all (r, PY |X) ∈
R by jointly optimizing the bounds in (24) and (25). Note that
given (r, PY |X) ∈ R, y and the auxiliary variables s1, s2 > 0,
0 < ρ̃ ≤ 1, the bound in (24) decreases in τ(r,PY |X)(y), while
the bounds in (25) increases in τ(r,PY |X)(y). Therefore, we
choose τ(r,PY |X)(y) to satisfy the following equality,

Eθ
[
P (y|x(w,r), PY |X)1−s1

]
e
−Ns1τ(r,PY |X )(y)

= Eθ

[
P (y|x(w̃,r̃∗), P̃

∗
Y |X)

]
×
{
Eθ

[
P (y|x(w,r), PY |X)

s2
ρ̃

]}ρ̃
e
Ns2τ(r,PY |X )(y)

eNρ̃r.

(26)

where (r̃∗, P̃ ∗Y |X) 6∈ R is the rate and channel pair that
maximize the right hand side of (25).

Substituting the optimal τ(r,PY |X)(y) that satisfies (26) into
(24) gives us

Pt[r,PY |X ] ≤
∑
y

{
Eθ
[
P (y|x(w,r), PY |X)1−s1

]} s2
s1+s2

×
{
Eθ

[
P (y|x(w̃,r̃∗), P̃

∗
Y |X)

]} s1
s1+s2

×
{
Eθ

[
P (y|x(w,r), PY |X)

s2
ρ̃

]} ρ̃s1
s1+s2

eNr
ρ̃s1
s1+s2 . (27)

Let s2 < ρ̃ and s1 = 1− s2
ρ̃ , and then do a variable change

with ρ = ρ̃(ρ̃−s2)
ρ̃−(1−ρ̃)s2 and s = 1 − ρ̃−s2

ρ̃−(1−ρ̃)s2 . Inequality (27)
becomes

Pt[r,PY |X ] ≤

∑
Y

[∑
X

PX|r(X)PY |X(Y |X)
s
s+ρ

]s+ρ

×

[∑
X

PX|r̃∗(X)P̃ ∗Y |X(Y |X)

]1−s

N

eNρr. (28)

By following a similar derivation, Pi[(r̃,P̃Y |X),(r,PY |X)] can
be proved to satisfy the same upper bound given in (28). Since
(28) holds for all 0 < ρ ≤ 1 and 0 < s ≤ 1− ρ, we have

Pt[r,PY |X ], Pi[(r̃,P̃Y |X),(r,PY |X)]

≤ max
(r̃,P̃Y |X)/∈R

exp{−NEi(r, r̃, PY |X , P̃Y |X)}, (29)

where Ei(r, r̃, PY |X , P̃Y |X) is given in (5).
Substitute (23) and (29) into (22) yields the desired upper

bound on Pes.
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