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Abstract—This paper applies information theoretic analysis to
packet-based random multiple access communication systems. A
new channel coding approach is proposed for coding within each
data packet with built-in support for bursty traffic properties, such
as message underflow, and for random access properties, such as
packet collision detection. The coding approach does not require
joint communication rate determination either among the trans-
mitters or between the transmitters and the receiver. Its perfor-
mance limitation is characterized by an achievable region defined
in terms of communication rates, such that reliable packet recovery
is supported for all rates inside the region and reliable collision de-
tection is supported for all rates outside the region. For random
access communication over a discrete-time memoryless channel, it
is shown that the achievable rate region of the introduced coding
approach equals the Shannon information rate region without a
convex hull operation. Further connections between the achievable
rate region and the Shannon information rate region are developed
and explained.

Index Terms—Bursty traffic, channel coding, multiple access
communication, random access, Shannon capacity.

I. INTRODUCTION

C LASSICAL information theory regards each transmitter
in a multiuser communication system as backlogged

with an infinite reservoir of traffic [1], [2]. To achieve reliable
communication, transmitters first jointly determine their code-
books and their information rates and share this information
with the receiver and with each other. The encoded symbols are
then transmitted to the receiver continuously over a long time.
Channel capacity and channel coding theorems are proved
using the standard argument of jointly typical sequences by
taking the sequence (or codeword) length to infinity [1], [2].

Manuscript received September 03, 2009; revised April 29, 2011; accepted
September 17, 2011. Date of current version February 08, 2012. This work
was supported by the National Science Foundation by Grants CCF-0728826,
CCF-0728966, and CCF-1016985, by the Office of Naval Research by Grant
ONR N000141110127, by the U.S. Army Research Office by Grant ARO
W911NF-08-1-0238. The material in this paper was presented in part at the
2010 IEEE International Symposium on Information Theory. Any opinions,
findings, and conclusions or recommendations expressed in this paper are those
of the authors and do not necessarily reflect the views of the National Science
Foundation, the Office of Naval Research and the US Army Research Office.

J. Luo is with the Electrical and Computer Engineering Department, Colorado
State University, Fort Collins, CO 80523 USA (e-mail: rockey@engr.colostate.
edu).

A. Ephremides is with the Electrical and Computer Engineering Department,
University of Maryland, College Park, MD 20742 USA (e-mail: etony@umd.
edu).

Communicated by R. D. Yates, Associate Editor for Communication Net-
works.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIT.2011.2173705

By allowing a small acceptable communication error proba-
bility, information theoretic results can be extended to channel
coding within a finite-length time duration [3]. Consequently, in
a time-slotted communication model, if information bits arrive
stochastically and queue at the transmitters, the latter can jointly
adapt their information rates in each time slot to optimize certain
system performance based on coding theoretic results and on
the status of the message queues [4]–[6]. Determination of fun-
damental performance limitations, such as the throughput and
queuing delay tradeoff, can therefore be obtained as in [5]. Al-
though such an extension enabled a modest incorporation of sto-
chastic traffic arrivals in information theoretic analysis, it inher-
ited the key assumption, and hence also the limitation, of joint
information rate determination among transmitters in each time
slot [4]–[6].

For various reasons, such as bursty traffic arrivals, timely
data dissemination, and cognitive networking [7], transmitters
and receivers in a communication network may not always
want, or be able, to jointly design channel codes and determine
communication rates. Random channel access is therefore
commonly seen in practical networks [8]. In random access
communication, transmitters make distributed channel access
decisions, such as whether or not to transmit a packet. For
example, if we regard the idling of a transmitter as setting its
communication rate at zero and regard the transmission of a
packet as setting the communication rate of a transmitter at a
nonzero value, then communication rates of the transmitters are
determined individually. The rate information is shared neither
among the transmitters nor with the receiver. Distributed rate
determination leads frequently to packet collisions [9]. When
the joint rates of the transmitters are chosen such that reliable
packet recovery is not possible, for efficient functioning of the
upper layer protocols, the receiver is required to report a packet
collision rather than blindly forward unreliable messages to the
upper layers [10].

Due to the challenges that result from relaxing the joint rate
determination assumption among transmitters and the receiver,
and from making collision report decisions at the receiver
without knowing the communication rates, information the-
oretic analysis has not been fully and successfully extended
to practical random access systems. Consequently, without
the support of rigorous coding theorems, standard networking
practice often focuses on throughput optimization using
packet-based channel models [11]. The explicit connection of
the packet-based channel models to the physical layer channel
is usually not specified except through the limited means of
packet erasure channels (e.g., collision [12] and multipacket
reception [13] channels). Networking practice allows bursty
traffic arrivals and distributed determination of communication
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parameters. However, the use of packet-based communication
models and the lack of rigorous coding theoretic analysis
essentially prevent an insightful understanding of the impact of
physical layer communication to upper layer networking [8].

In this paper, we propose an approach that holds promise in
extending information theoretic analysis to packet random ac-
cess systems with bursty traffic. The essence of our approach
consists of using the classical foundation of coding for each
packet and explicitly building-in the support of random access
operations and bursty traffic phenomena in the following sense.
In our coding approach, each transmitter determines its com-
munication rate by choosing the number of data bits to encode
in each packet1. It requires neither joint communication rate
determination among transmitters, nor pre-sharing communi-
cation rate information with the receiver. It also enables colli-
sion detection at the receiver whenever reliable packet recovery
is not possible. Although defined quite differently from clas-
sical channel coding, we find that the introduced coding ap-
proach does lead to a meaningful achievable rate region char-
acterization that is consistent with current understanding and
methodology of information theory. More specifically, we de-
fine an achievable region on the communication rates (see Def-
initions 4 and 5 ) such that reliable packet recovery is sup-
ported for all rates inside the region and reliable packet col-
lision detection is supported for all rates outside the region2.
For random multiple access communication over a discrete-time
memoryless channel using a class of random coding schemes,
we show that the achievable rate region of the introduced coding
approach equals the Shannon information rate region without a
convex hull operation. Although we only illustrate our results
in single-user and simple multiple access systems, the general
problem formulation shown in the paper can be extended to
other random access scenarios3.

Next, we start with a detailed explanation of the coding ap-
proach in a single user system (i.e., single transmitter-receiver
pair) in Section II. We then extend it to a random multiple ac-
cess system and prove the main coding theorem in Section III.
Further extensions are discussed in Section IV.

II. A NEW PACKET CODING APPROACH:
THE SINGLE USER CASE

Let us first consider a single user communication system over
a discrete-time memoryless channel. The channel is modeled by
a conditional distribution function where is the
channel input symbol and is the channel output symbol.
The sets and are the (finite) input and output alphabets. We
assume that time is slotted with each slot equaling symbol du-
rations, which is also the length of a packet. Unless otherwise

1How should a transmitter determine/adapt the communication rate of each
packet in order to support the transmission of a message sequence is regarded
as a medium access control (MAC) layer problem. In the proposed coding ap-
proach, we assume that the communication rates can be chosen arbitrarily.

2Note that communication rates are chosen arbitrarily and the rate information
is unknown at the receiver.

3We want to emphasize that our work does not purport to fully bridge the gap
between networking and information theory. However, it does provide a useful
link between rigorous communication rate determination and practical random
access networking.

specified, we will confine our focus on block channel codes of
length that represent coding within each packet or each time
slot. Throughout this section, we assume that communication
channel is time-invariant. The channel is known at the receiver
but unknown at the transmitter. Our main objective is to use a
relatively simple system model to introduce the basic coding ap-
proach that provides multiple rate options to the transmitter and
enables collision detection at the receiver. Proofs of the claims
and theorems given in this section are skipped since they are triv-
ially implied by the more general theorems given in Section III.

A. Random Coding With Multiple Rate Options

Consider the simple case when the transmitter uses a clas-
sical random coding scheme, originally introduced in [14]. The
coding scheme is described as follows. Let
be a library of codebooks, indexed by a set . Each codebook
contains codewords of length , where is a prede-
termined rate parameter4. Denote by the th symbol
of the codeword corresponding to message in codebook .
Assume that, at the beginning of a time slot, the transmitter
randomly generates a codebook index according to a distri-
bution . The distribution and the codebooks are chosen
such that the random variables , are
i.i.d. according to a predetermined input distribution . We
assume that the code library and the value of are both known
at the receiver, that is, the receiver knows the randomly gen-
erated codebook. This can be achieved by sharing the random
codebook generation algorithm with the transmitter. Based upon
this information and upon the channel output, the receiver de-
termines an estimate of the transmitted message . Define

as the decoding error probability given
that is the transmitted message. By following the analysis in
[14], it is easily seen that, if , there exists a se-
quence of decoding algorithms that achieve

for all . The asymptotic result here should be interpreted as:
given two small positive constants , , there exists a threshold

, such that the conditions and
imply for all [15]. Although under-

standing of the tradeoff between , , is important, it is out-
side the scope of this paper. We will not repeat this well-known
observation in the rest of the paper.

Now recall the standard practice of packet networking with
bursty traffic [10]. Depending on message availability, in each
time slot, the transmitter will either stay idle or transmit a packet
according to data availability and the MAC layer protocol. Sup-
pose that the same coding scheme is used in multiple time slots,
which means that, when the channel code is designed, the trans-
mitter does not know whether or not a message will be available
in a particular time slot. To model the idle operation, we regard
“idle” as a specific channel input symbol and insert a particular
codeword into every codebook in the
library . When no input data is available, we declare and
the transmitter sends through the channel. It can be shown
that, if , we can still achieve
for all .

4Recall that each codeword represents one single packet, as opposed to mul-
tiple packets, that can be possibly chosen for transmission.
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Based on the above coding scheme, we will now introduce a
communication rate parameter . According to the usual prac-
tice, when the transmitter idles, we say the communication rate
is , otherwise, the communication rate is . We say
the codebook has two classes of codewords. The first class con-
tains one codeword corresponding to . The second
class contains codewords corresponding to . The
coding scheme enables the transmitter to choose its communica-
tion rate without sharing the rate information with
the receiver. If , reliable recovery of the
pair can be achieved asymptotically.

Next, let us consider a more complicated situation. Assume
that each codebook in the library contains three classes of code-
words. As before, the first two codeword classes contain one and

codewords, respectively. The third class contains
codewords corresponding to . We assume that the index
distribution and the codebooks are designed such that random
variables , are independently dis-
tributed. Codeword symbols in the second class are i.i.d. ac-
cording to an input distribution , while codeword sym-
bols in the third class are i.i.d. according to an input distribution

. Note that the two input distributions may be different.
Let and be the mutual information be-
tween channel input and output symbols computed using input
distributions and , respectively. Assume that

, while . In this case, the coding
scheme provides three rate options at the trans-
mitter. However, it is clear that reliable message recovery is
not always possible. Nevertheless, rather than trying to recover
the messages blindly, let us assume that the receiver intends
to achieve a different set of objectives. For all messages cor-
responding to and , the receiver intends to recover
the messages. For all messages corresponding to , the
receiver intends to report a packet “collision”5. Note that the re-
ceiver needs to achieve these objectives without knowing the ac-
tual communication rate . To be more specific, let be the
transmitted message and rate pair. The receiver either outputs an
estimated pair , or outputs a “collision.” For with

, we define as
the decoding error probability. For with , we de-
fine as the collision detection proba-
bility. It can be shown that, there exists a sequence of decoding
algorithms to asymptotically achieve
for all with , and for
all with .

In the above coding scheme, the transmitter has multiple
rate options. The encoding scheme can be designed with only
channel alphabet information. If the receiver knows the com-
munication channel, whenever the transmitter sends a message
with rate , the receiver can asymptotically re-
cover the message with an error probability arbitrarily close
to zero; whenever the transmitter sends a message with rate

, the receiver can asymptotically report a collision
with a probability arbitrarily close to one.

5Note that the term “collision” is used to maintain consistency with the net-
working terminology. Throughout the paper, “collision” means packet erasure,
irrespective whether it is caused by multipacket interference or not.

B. Generalized Random Coding Scheme and the Standard Rate

In the previous section, we defined communication rate as
the number of data bits per symbol encoded in a packet. Perfor-
mance of the system was presented in terms of the asymptotic
decoding and collision report probabilities corresponding to dif-
ferent rate values. However, in the following example, we show
that, so long as the input distributions of the random coding
scheme are given, the performance limitation of the system is
actually independent of the rate options defined at the trans-
mitter.

Consider the single user system where the same input distri-
bution is used for all codewords in the random coding scheme.
Suppose that the receiver chooses an arbitrary rate parameter

. Codewords are partitioned into two classes, with the first
class containing the first codewords and the second class
containing the rest of the codewords. It can be shown that, so
long as , asymptotically, the receiver is able to
decode reliably if the transmitted codeword is in the first class,
and to report a collision reliably if the transmitted codeword is
in the second class. Fundamental performance limitation of the
random access system is characterized by , which
is determined by the input distribution of the random coding
scheme. However, it is independent of the communication rate
assignments and the overall size of the codebook.

More specifically, since the transmitter uses a codebook to
map a message and rate pair into a codeword, one can
regard as a “macro” message, and index its possible
values using a variable . Communication rate then becomes
a function of , as defined by the transmitter. If we specify the
random coding scheme using the message index , as opposed
to , then performance limitation of the system can also
be characterized as a function of . From this viewpoint, the
mapping , which associates practical variables
with , is actually independent from the performance limita-
tion of the random access system.

To make the above argument rigorous, we introduce the con-
cept of standard rate as follows.

Definition 1: (standard communication rate) Assume that
codebook has codewords of length , where is
a large finite constant. Let the corresponding messages or code-
words be indexed by . For each mes-
sage , we define its standard communication rate, in bits per
symbol, as .

Note that, since the function is invertible,
the standard rate should be regarded as an equivalent form of the
message index . Practical meaning of the standard rate de-
pends on how the transmitter maps to the message and com-
munication rate pair. However, as explained above, we will de-
tach such mapping from the performance analysis of the system.

Next, we introduce a generalized random coding scheme, in
which, symbols of different codewords, as opposed to different
codeword classes, can be generated according to different input
distributions.

Definition 2: (generalized random coding) Let
be a library of codebooks. Each codebook in the li-
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brary contains codewords of length , where is
a large finite constant. Let the codebooks be indexed by a set .
Let the actual codebook chosen by the transmitter be where
the index is a random variable following distribution . We
define as a generalized random coding scheme following
distribution , given that the following two conditions are
satisfied. First, the random variables ,

, are independent. Second, given , are i.i.d. ac-
cording to the input distribution .

We now define a sequence of generalized random coding
schemes that follows an asymptotic input distribution.

Definition 3: Let be a sequence of random
coding schemes, where is a generalized random
coding scheme with codeword length and input distribution

. Assume that each codebook in library has

codewords. Let be an input distribution defined
as a function of the standard rate , for all . We say
that follows an asymptotic input distribution

, if for all sequences6 with well defined rate limit
, we have

(1)

We assume that both and converge uni-

formly to their limits with respect to . However, since
we do not assume that should be continuous in , we may
not have .

C. Achievable Rate Region of Single-User Random Access
Communication

Consider single-user random access communication using
a generalized random coding scheme with codeword
length . In each time slot, the transmitter randomly generates
a codebook index and uses codebook in the library to
map a message into a codeword. Assume that the channel
and the codebook are known at the receiver. Based on this
information and the received channel symbols, the receiver
either outputs a message estimate or reports a collision. Let

be the probability, conditioned
on , that the receiver is not able to recover message . Let

be the conditional probability
that the receiver reports a collision. We define and

as the unconditional error probability and the uncon-
ditional collision probability of message , respectively, as
follows:

(2)

With this error probability definition, we define an achievable
rate region of the system as follows.

6Here �� � refers to an arbitrary deterministic, i.e., not random, message
sequence. Each message � in the sequence takes value in the index
set ��� � � � � � �. The standard rate function ��� � is defined as
��� � � ��	 � .

Definition 4: Consider single user random access com-
munication using a sequence of random coding schemes

, where is a generalized
random coding scheme corresponding to codeword length

. Let be a region of standard rates.
Let be the closure of . We say is asymptoti-
cally achievable if there exists a sequence of decoding
algorithms under which the following two conditions are
satisfied. First, for all message sequences with

for all and , where
is the standard rate function,

we have . Second, for all mes-
sage sequences with for all and

, we have .

We are now ready to formally present the coding theorem for
a single-user random access system.

Theorem 1: Consider single user random access communi-
cation over a discrete time memoryless channel . Assume
that the transmitter is equipped with a sequence of generalized
random coding schemes following an asymp-
totic input distribution . Assume that is continuous
in except at a finite number of points. The following standard
communication rate region is asymptotically achievable,

(3)

where the mutual information is computed using input
distribution .

Furthermore, for any sequence of random coding schemes
following asymptotic input distribution , assume that is
an asymptotically achievable rate region. Let be an arbitrary
rate such that we can find with for all

. If the asymptotic conditional input distribution is
continuous in at , then we must have

(4)

Theorem 1 is implied by Theorem 2 given in Section III.
Because the receiver has the option of reporting a collision

even if it can decode the message reliably, any region contained
in an asymptotically achievable rate region is also asymptot-
ically achievable. To understand the practical meaning of the
achievable rate region result, assume that practical communica-
tion rates are defined as a function of at the transmitter. For
any subset of communication rates, if the standard rates of all
the corresponding messages are asymptotically contained in the
achievable rate region, then the subset of communication rates
are asymptotically achievable in the same sense as specified in
Section II-A.

It is important to note that the achievable rate region charac-
terized in Theorem 1 is significantly different from a Shannon
information rate region [1]. For reliable communication in the
classical Shannon sense, information rate equals the normalized
log of the codebook size. Given the codeword length, the rate
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must be predetermined since both the transmitter and the re-
ceiver need to know the codebook before message transmission
is started7. Collision or erasure detection is therefore not needed
if the receiver knows the channel [2]. In our coding approach for
random access communication, the codebook contains a large
number of codewords. The codewords are categorized into sub-
sets with different rate values. If the transmitter does not know
the channel and chooses its rate arbitrarily, it becomes the re-
ceiver’s responsibility to detect whether the transmitted code-
word is inside/outside the achievable rate region. This is a funda-
mental functionality required in random access communication
but not seen in classical information theoretic communication.

By regarding collision report at the receiver as message era-
sure, the new coding approach shares certain similarity with
error and erasure decoding [16] in a classical communication
system. However, there is also a fundamental difference. In clas-
sical communication, if the codebook is optimized with infor-
mation rate below the channel capacity, then both the error and
the erasure probabilities diminish asymptotically for all code-
words in the codebook. In our coding approach, however, the
normalized log of the codebook size can be significantly higher
than the channel capacity. In this case, codewords are essen-
tially partitioned into two exclusive subsets according to their
associated rate values. For codewords whose rates are inside the
achievable rate region, the probability of successful decoding
approaches one asymptotically. For codewords whose rates are
outside the region, however, the probability of message erasure
goes to one asymptotically. Such codeword categorization and
codeword-dependent asymptotic decoding behavior are not seen
in classical communication systems.

Note that, in Theorem 1, the asymptotic input distribution
could be discontinuous in . For random access commu-

nication, the inclusion of a possible discontinuous input distri-
bution is necessary. Consider the last example of a coding
scheme given in Section II-A. Each codebook in the library is
partitioned into three codeword classes. The codeword classes
contain 1, , codewords, respectively. We have ex-
plained that, practically, these codeword classes correspond to
the options of encoding 0, , and data bits into a
packet. Suppose that the communication channel is Gaussian.
For the three encoding options, a common choice of the trans-
mitter could be to set the input distributions as Gaussian corre-
sponding to three different transmission powers, ,

, and . Let us denote the three Gaussian input distri-
butions by , , . If we characterize the
asymptotic input distribution as a function of the standard com-
munication rate, we obtain

(5)

In this example, is discontinuous in at and .

7In a rateless communication model, the total number of data bits encoded
at the transmitter, which corresponds to the log of the codebook size, must be
predetermined.

III. A NEW PACKET CODING APPROACH: RANDOM

MULTIPLE ACCESS COMMUNICATION

In this section, we extend the previously developed coding
theorem to a -user, symbol synchronous, random multiple
access system over a discrete-time memoryless channel. The
channel is modeled by a conditional distribution function

, where is the channel input symbol
of user with being the input alphabet, and is
the channel output symbol with being the output alphabet.
To simplify the discussion, we assume that and , for all
, are finite. Extending the results to continuous channels is

straightforward. As in Section II, we assume that time is slotted
with each slot being equal to symbol durations, which is also
the length of a packet.

We assume that each user, say user , is equipped with a gener-
alized random coding scheme . Each codebook in the li-
brary contains codewords of length , where is a
pre-determined large constant whose particular value is not im-
portant. At the beginning of each time slot, user randomly gen-
erates a codebook index , and uses the corresponding code-
book in its library to encode a macro message into a code-
word. We assume that the channel is known both at the trans-
mitters and at the receiver. The receiver also knows the partic-
ular codebook chosen by each user, and this can be achieved by
sharing the random codebook generation algorithms with the
receiver. However, we assume that communication rates of the
users are shared neither among each other nor with the receiver.

We use bold-font characters to denote vectors whose th ele-
ments are the corresponding variables of user . For example,
represents the vector of code libraries of the users. Also, de-
notes the random index vector, denotes the codebook vector,

denotes the message vector, denotes the standard rate
vector, and denotes the asymptotic input distributions of
the random coding schemes, etc. For a vector variable, say , we
use to denote its th element, and use to denote a vector
extracted from containing only the elements of , .

A. Collision Detection for All Users

Let be the transmitted message vector, encoded using
codebook . Assume that, upon observing the received
channel symbols, the receiver either outputs message es-
timate for all users, or reports a collision. We define

as the probability, conditioned
on , that the receiver is not able to recover the message vector

. Define as the conditional
probability that the receiver reports a collision. Assume random
coding schemes . Let be drawn independently according
to . We define and as the unconditional error
probability and the unconditional collision probability of mes-
sage , respectively. That is

(6)

Definition 5: Consider random multiple access com-
munication using a sequence of random coding schemes
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, where is a vector of general-
ized random coding schemes with each codebook in
containing codewords of length . Let be a region
of standard rate vectors. Let be the closure of . We say

is asymptotically achievable if there exists a sequence of
decoding algorithms under which the following two condi-
tions are satisfied. First, for all message sequences
with for all and ,
we have . Second, for all mes-
sage sequences with for all and

, we have .

The following theorem characterizes the asymptotically
achievable rate region of a random multiple access system.

Theorem 2: Consider random multiple access communi-
cation over a discrete-time memoryless channel
using a sequence of random coding schemes .
Assume that follows asymptotic distribution

. Assume that, for any user , is only discontinuous
in at a finite number of points. The following standard
communication rate region is asymptotically achievable:

(7)

where the mutual information is computed
using input distribution .

Furthermore, for any sequence of random coding schemes
following the asymptotic conditional input distribution ,
assume that is an asymptotically achievable rate region. Let

be an arbitrary rate vector such that we can find with
for all , where is a vector of all ones. Let

be an arbitrary user subset. If the asymptotic
conditional input distribution is continuous in at ,
then we must have

(8)

The achievability part of Theorem 2 is implied by Theorem
3 which is provided later in this section. The proof of Theorem
3 is given in Appendix B and the converse part of Theorem 2 is
proved in Appendix A.

When the asymptotic conditional input distribution is
not a function of , i.e., codewords of each user are generated
according to the same input distribution, the achievable rate re-
gion given in (7) becomes

(9)
This is identical to the Shannon information rate region without
a convex hull operation for the multiple access channel under a
given input distribution [2].

Note that in a classical channel coding scheme, users jointly
determine their information rates by choosing codebooks with
appropriate numbers of codewords. To decode the messages,

the receiver essentially needs to search all codewords (e.g.,
maximum likelihood decoding or typical sequence decoding)
throughout the codebook [2]. Random access communication
does not assume joint rate determination among users [11].
Therefore the users cannot know a priori if their rate vector is
within the achievable rate region or not. In this sense, the situa-
tion is similar to the single-user case discussed in Section II. In
our coding approach, the codebooks of the users contain large
numbers of codewords. However, the codewords are indexed
by their standard rate parameters and the receiver only searches
for appropriate codewords within the achievable rate region,
which can be regarded as a subset of the joint codewords in the
codebooks. The receiver reports a collision if an appropriate
codeword cannot be found.

B. Collision Detection for Each Individual User

In Section III-A, we assumed that the receiver should either
output reliable message estimates for all users, or report a col-
lision. When multiple users compete for the channel, it is often
the case that the receiver may only be interested in recovering
messages from a subset of users. Correspondingly, a collision
should only be reported when messages from the users of in-
terest are not decodable. Let us first assume that the receiver
only wants to recover the message from a particular user, say
user . Given that message is transmitted over the multiple
access channel using codebook , the receiver either outputs a
message estimate for user , or reports a collision.

Before we proceed further, it is important to note that, even
though the receiver is only interested in decoding the message of
user , whether reliable message recovery is possible for user
still can depend on the transmitted messages of all users. There-
fore, when we define the error probabilities and the achievable
rate region, the rates of all users are still involved.

Define as the probability,
conditioned on that the receiver is not able to recover user

’s message . Define as the
conditional probability that the receiver reports a collision for
user . We define and as the unconditional
error probability and the unconditional collision probability of
message for user ; that is

(10)

Definition 6: Consider random multiple access com-
munication using a sequence of random coding schemes

, where is a generalized random
coding scheme with each codebook in containing
codewords of length . Let be a region of standard rate
vectors. Let be the closure of . We say is asymp-
totically achievable for user if there exists a sequence of
decoding algorithms under which the following two conditions
are satisfied. First, for all message sequences with

for all and ,
we have . Second, for all message
sequences with for all and

, we have .
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The following theorem gives an achievable rate region for
user .

Theorem 3: Consider random multiple access communica-
tion over a discrete-time memoryless multiple access channel

using a sequence of random coding schemes
. Assume that follows asymp-

totic input distributions . For any user , is only
discontinuous in at a finite number of points. The following
standard rate region is asymptotically achievable for user

, namely

(11)
where the mutual information is computed
using input distribution .

The proof of Theorem 3 is given in Appendix B.
Theorem 3 can be generalized to the case when the receiver

is interested in recovering messages from a subset of users, as
shown in the next theorem.

Theorem 4: Consider random multiple access communica-
tion over a discrete-time memoryless multiple access channel

using a sequence of random coding schemes
. Assume that follows the

asymptotic input distributions . Assume that, for any user
, the quantity is only discontinuous in at a finite

number of points. Let be a user subset. The
following rate region is asymptotically achievable for
users .

(12)

where the mutual information is computed
using the input distribution .

The proof of Theorem 4 is given in Appendix D. Note that
Theorem 3, which is indeed a special case of Theorem 4, is
used as a basic building block in the proof. Also note that when

, the region given in (12) is equal to the
rate region given in (9).

IV. SIMPLE EXAMPLES

In this section, we illustrate the achievable rate region results
in two simple example systems.

Example 1: Consider a -user random multiple access
system over a memoryless Gaussian channel modeled by

(13)

where is a white Gaussian noise with zero mean and variance
.

Assume that the input distribution of user is Gaussian with
zero mean and variance , irrespective of the rate parameter.

Assume that the receiver wants to recover messages of all users.
According to Theorem 1, the following rate region is asymptot-
ically achievable

(14)
Note that the achievable rate region is identical to the Shannon
channel capacity region [2].

If for each , the input distribution is Gaussian with zero mean
and variance for any nonzero rate, and user idles at rate
zero, then the achievable rate region is still given by (14).

Example 2: Consider a -user random multiple access
system over a memoryless symbol collision channel. We define
an th order symbol collision channel as follows. The channel
input alphabet of any user is given by ,
where 0 represents an idle symbol. The channel output alphabet
is given by , where represents a collision
symbol. If all users idle, the receiver receives an idle symbol,

; if only one user, say user , transmits a nonzero symbol
, the receiver receives ; if multiple users transmit

nonzero symbols, the receiver receives , i.e., a collision
symbol. We assume that in all input distributions the nonzero
symbols always have equal probabilities. Consequently, an
input distribution can be characterized through a single
parameter , which is the probability that any particular
symbol in the transmitted codeword takes a nonzero value.

Proposition 1: Assume that the conditional input distribution
of user , for all , is given by

(15)

In other words, let . Assume that the receiver
wants to recover the messages of all users. The following rate
region is asymptotically achievable:

(16)

Proposition 1 is proven in Appendix E.
Note that when , the rate region given in (16)

equals the random multiple access throughput and stability
regions of the collision channel [17], which also approaches
the asynchronous information capacity region of the collision
channel as [18]. Proposition 1 therefore motivates the
question whether there is a fundamental connection between the
achievable rate region studied in this paper and the throughput,
stability, information capacity regions of the random multiple
access channel discussed in [11]. Obtaining a theoretical an-
swer to this question is an important issue for future research.

In both examples, the achievable rate region is coordinate
convex in the sense that if then for all .
However, in general, depending on the choice of the asymptotic
input distribution, the region may not be continuous in the sense
that not every point pair in the region is connected by a contin-
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uous path in the region. In this case, the region is certainly not
coordinate convex.

V. FURTHER DISCUSSIONS

Throughout our analysis, we obtained asymptotic results by
taking the packet length to infinity. It is unfortunately the nature
of random access systems that their packets are often substan-
tially short. Therefore, it is necessary to investigate the achiev-
able rate and error performance under the assumption of a finite
packet length. This is similar to the channel dispersion analysis
presented in [15] for classical communication systems. Alter-
natively, one can also characterize the achievable rate and error
performance tradeoff in a way similarly to the error exponent
analysis for classical channel coding [3]. An example of such
derivation can be found in [19].

We have assumed that the multiple access channel is fully
known at the receiver. Even though users do not pre-share their
rate information, their codebooks are assumed known at the re-
ceiver. To extend our results to other random access scenarios,
one has to carefully examine whether these assumptions are still
valid or reasonable. If not, deriving coding performance under
various channel and codebook information availability assump-
tions becomes the key challenge.

The coding approach studied in this paper enabled a network
user to choose its communication rate by encoding a variable
number of data bits into a packet. How should a user determine
its communication rate in a particular time slot, however, is a
challenging MAC layer problem. Nevertheless, compared to the
packet-based channel model used in classical MAC layer perfor-
mance analysis [11], performance limitations of the introduced
coding approach provide a useful bridge to support the joint op-
timization of MAC layer networking and physical layer channel
coding.

VI. CONCLUSION

We proposed a new channel coding approach for coding
within each packet in a random access system with bursty
traffic. The coding approach enabled each user to choose its
communication rate without presharing the rate information
with the receiver and other users. Performance of the coding
approach is characterized by an achievable region defined on
the communication rates. The receiver is required to output
reliable message estimates if the communication rates are
inside the achievable rate region; the receiver should report a
collision if the rates are outside the region. We showed that the
maximum achievable rate region of random coding schemes
takes a form similar to the Shannon information rate region
without a convex hull operation. The achievable rate region
when the receiver is interested in recovering messages only
from a subset of users is also obtained.

There are numerous questions left open that would further
tighten the connection between random access networking and
information theory. We believe that our approach contributes an
important component to that connection by distinguishing the
issues of reliable communication and reliable collision detection
in a rigorous manner.

APPENDIX

A) Proof of Theorem 2:
Proof: Note that the achievability part of Theorem 2 is im-

plied by Theorem 3. Here we prove the converse part of The-
orem 2.

Let be an asymptotically achievable rate region. Let
be an arbitrary rate vector such that we can find a such
that for all .

Let be a given user subset. If the asymp-
totic distribution , and hence the entropy functions, are
continuous in at , we can find a small enough
and a bound with , such that the fol-
lowing inequality holds for all rates , with and

:

(17)

where the mutual information is evaluated
using input distribution and the mutual information

is evaluated using input distribution .
Let be the actual source message. We assume that

is generated randomly according to a uniform distribu-
tion under the condition that and

. Assume that the codewords

are known to the receiver. Let be the message es-

timate generated at the receiver. Define
as the error probability. Note that

(18)

We assume that is large enough such that
. According to Fano’s inequality [20], we have

(19)

For large enough , (19) implies that
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(20)

where the second inequality is due to the “data processing in-
equality” [2]. Taking in (20) yields (8).

B) Proof of Theorem 3:
Proof: Although the basic idea of the proof follows

from Shannon’s typical sequence arguments introduced in the
channel capacity proof [1], it is significantly complicated by
the following two factors. First, the receiver is only interested
in recovering a particular user’s message rather than messages
of all users. Second, the empirical input distribution of different
codewords may be different. Due to these complications, and
for easy understanding, we choose to present the full proof in
five detailed steps.

Step 1 (The Typical Sequence Decoder): We first define
a typical sequence decoder as follows. Consider a sequence of
random coding schemes following asymptotic
input distribution � . For any given codeword length ,
let be the randomly chosen codeword associated with
message . Let be the channel output sequence.
Define as the standard
rate vector corresponding to and . To simplify
the proof, we assume that the input distribution of the random
coding scheme , denoted by � , is indeed
equal to the asymptotic input distribution � , for all

. Extending the proof to the general case is straightforward.
As in [21] and [22], we define the set of strongly typ-

ical sequences with respect to the distribution
� as the set of length- sequences

whose empirical point mass functions are point-wise -close to
the true point mass function. Namely

(21)

where is the number of occurrences of
in .

Given a sequence pair , we define
� � as the entropy function computed using the

empirical distribution of . Given , we can find a
constant , such that for all
and for all user subsets , the following
inequalities hold:

� �

� � (22)

According to the strong typicality property (21), we can choose
to satisfy as and ,
Assume that, after observing the channel output sequence

, the receiver constructs a set of codewords that are
jointly typical with ; that is

(23)

The receiver outputs a message estimate for user if,
for all codewords , the th codeword of

corresponds to the same message . If such
doesn’t exist, the receiver outputs a collision for user .

Step 2 (Some Key Definitions): Let be a small con-
stant. We define as a subset of , by

(24)

Let be a large integer whose value will be specified
soon. We define as the set of grid

rates of a user. Define as a
function that outputs the largest grid rate less than or equal to

. Let be the corresponding vector function
of .

Let be an arbitrary message sequence satisfying
, for some . Assume that is the

transmitted message with codeword length . Let the actual
codeword associated with be , which is a random
variable depending on the codebook index . Let the channel
output sequence be . It is easy to show that

� �

(25)
That is, with an asymptotic probability of one, the receiver will
find to be jointly typical with the transmitted codeword
vector .

Step 3 (Error Type I, Outputting the Wrong Message): In
this step, we will show the probability that the receiver can find

another codeword vector in the achievable rate region,

i.e., , with , is asymptotically
zero.

Without loss of generality, we focus our discussion on an ar-
bitrary subset of messages in the achievable rate region. The
subset is denoted by , illustrated in Fig. 1, with the nota-
tion being explained as follows. Superscript denotes the code-
word length. Subscript is a subset of users

with . We assume that, for all messages

in the subset, we have , and ,
. In other words, for all users not in , their messages

should equal to the corresponding transmitted messages, and for
any user in , its message should not equal to the transmitted
message. Subscript is a vector characterizing the rates of mes-

sages in the subset. For all messages , we have
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Fig. 1. An illustration of achievable rate region and grid rates.

, and . In other words, en-

tries of take grid rate values, with
. In summary, the message subset is de-

fined as follows:

(26)

Let be large enough, such that the following inequalities

are satisfied for all messages and for all user

subsets :

(27)

where is a constant that satisfies as 8. We
also let be large enough such that

(28)

where as .
Define as the probability that the receiver can

find a message whose codeword satisfies

We will show next that , for all ,
, and that satisfy the assumptions.

8Note that, if the asymptotic input distribution��� � is not continuous in ���
at ���� for all ���� satisfying ���� ����� ,���� � ���� ����� � � ,
then (27) may not be satisfied only by setting � at a large value. In this case,
one needs to further partition the set �� into a finite number of subsets, such
that (27) is satisfied by messages within each subset. The partitioning is possible
because the asymptotic input distribution of every user is discontinuous at most
at a finite number of rate points. The rest of the proof can essentially be applied
to each subset of messages with only minor revisions. Hence the corresponding
detailed discussion is omitted.

Since , we can find a user subset with ,
such that

(29)

Let be a message whose codeword is de-

noted by . Define . We say is

jointly typical with with respect to , denoted by

�
�

, if there exists a

codeword with its corresponding message that sat-

isfies ,

and . According to the definition of , for

all , we have . Under this condition,

and are generated independently. Consequently,
due to the strongly typicality property (21), and (22), (27), the

probability that
�

�

�

can be upper bounded as follows:

�

�

(30)

Therefore

(31)

Assume that is large enough to yield

(32)

where the first inequality is due to the fact that

implies that for all , and the last
inequality is due to (28).

Consequently, (31) and (32) lead to

(33)
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Because , choose
, we get

(34)

Note that, given , (34) holds for all , , and satisfying
our assumptions. Therefore, by taking , we can see the

probability that the receiver finds a message in with

codeword being jointly typical with and
is asymptotically zero. Next, by taking , we con-

clude that, for all message sequences , the probability
for the receiver to output is asymptotically
zero. As a special case, for all message sequences
with , , and , we
have , where is defined
in (10).

Step 4 (Error Type II, Failing to Report a Collision): In
this step, we will show that if the standard rate vector is
outside the achievable rate region, i.e., , then the
probability that the receiver does not report a collision is asymp-
totically zero. Based on the result that we have already demon-
strated in Step 3, we only need to show that, asymptotically, the

receiver is not able to find another codeword vector inside
the rate region, , with and
being jointly typical with .

We again focus our discussion on a message subset denoted
by , as illustrated in Fig. 1, with the notation being ex-
plained below. As before, superscript denotes the codeword
length. Subscript is a user subset with

. Also as in Step 3, we assume that, for all messages

in the set, we have , and

for all , we have . However,
by contrast to Step 3, we assume that 9.
Subscript is a vector characterizing the rates of messages

in the subset. For all messages , we have

, and .
In other words, entries of take grid rate values, with

. In

summary, the message set is defined by

(35)

Define as the probability that the receiver can

find a message whose codeword satisfies

. We will show next

that, for all , , and , .

9Note that in Step 3, we already showed the probability for the receiver to
output an erroneous message estimate is asymptotically zero. Therefore, in this
Step, we only consider the possible situation that the receiver outputs the correct
message.

We let be large enough, such that (27) is satisfied

for all messages and for all user subsets
10. We also let be large enough, so that (28)

holds.
Next, we present a key proposition to support the rest of the

proof.

Proposition 2: There exists a user subset with
, such that for all user subsets , with being

the complement of , we have

(36)

Consequently, let be the standard rate of the ac-
tual transmitted message. For any positive constant , we can
find a large enough to satisfy

(37)

The proof of Proposition 2 is given in Appendix C.

Let be the user subset found in Proposition 2. Let

be a message whose codeword is denoted by . De-

fine . According to (25), for a large enough ,
the received signal is jointly typical with the actual code-
word . Consequently, due to (22), for all user subsets

, we have with high probability

� � �

(38)
where � � � is the conditional
mutual information computed using the empirical distribution
of .

Assume the receiver finds another message ,

whose codeword is jointly typical with . Since

, (38), (22), and (27) yield

� � �

�

(39)

10As in Step 3, if the asymptotic input distribution ��� is not continuous
in ��� at ���� for all ���� satisfying ���� � ���� , ���� �

���� ����� � � , then (27) may not be satisfied only
by setting� at a large value. In this case, one needs to further partition the set
�

���
into a finite number of subsets, such that (27) is satisfied by messages

within each subset. The rest of the proof can be applied to each subset of mes-
sages with only minor revisions. Hence the corresponding detailed discussion
is omitted.
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By assumption, we have . From (24)11 and (27), we
know that there exists a user subset , , and a user
subset , such that

(40)

Combining (39) and (40), we obtain

(41)

where the last inequality is due to the fact that codewords of
different users are independent.

According to the definition of , for all ,

we have . Under this condition,
and are independent. Consequently, the proba-

bility that the receiver finds being jointly

typical with with respect to , denoted by

�
� , is upper

bounded as follows:

�

(42)

Therefore

(43)

Assume that is large enough to yield

11Here we regard �� , which is the complement of � , as the user subset � in
(24).

(44)

Consequently, (43) and (44) lead to

(45)

If we choose , we obtain from (41)
and (45) that

(46)

Note that, given , (46) holds for all , , and satisfying the
assumptions. Therefore, by taking , we can see that,
if , then the probability that the receiver finds a mes-

sage in with codeword being jointly typical
with and is asymptotically zero. Next,
by taking , we conclude that, for all message sequences

with , , and
, we have .

We have now proved that is asymptotically achievable for
user .

C) Proof of Proposition 2:
Proof: If the claim of the proposition is not true, then for

all user subsets with , there exists a user subset
that satisfies

(47)

Consequently, given the mutually exclusive user subsets ,
and with , for all user subsets with and

, we have

(48)

From the derivation, we can see that can be chosen
to be any user subset satisfying .
Consequently, (48) implies , where is the closure
of defined in (11). This contradicts the assumption that

. Therefore, the conclusion of the proposition must hold.

D) Proof of Theorem 4:
Proof: Assume that we are given a set of rate regions

, where is asymptotically achievable for
user . We will show next that if the regions are de-
fined by (11) for , then defined by (12) is given by

. Since it is easy to see that ,
we only need to show , i.e., for all

implies .
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Assume for all . Given a user subset
, we can find a user subset and , such that

(49)

For the same reason, if , we can find a user
subset , such that

(50)

In general, if , we can find
, such that

(51)

This procedure can be carried out recursively until for some
integer , .

Consequently, define . Due to (51), we have

(52)

Because can be found for any ,
and , we conclude that .

E) Proof of Proposition 1:
Proof: Let be the achievable rate region given by The-

orem 2. It is easy to show that any rate region is also
asymptotically achievable. Therefore, we only need to show
that, for all rate vector with , the following
inequality holds for any user subset :

(53)

Note that since the channel output symbol is a determin-
istic function of the channel input symbol vector , we have

. Consequently

(54)

Since

(55)

we indeed have

(56)

where the last inequality follows from .
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