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Abstract— We extend Information Theoretic analysis to time-
slotted packet random access communication with bursty sources.
A new channel coding approach for coding within each packet
is proposed with built-in support for bursty sources phenomena,
such as message underflow, and for random access mechanisms,
such as packet collision detection. The coding approach does not
require joint communication rate determination either between
the transmitters or between the transmitters and the receiver. Its
performance limitation is characterized by an achievable region
defined in terms of communication rates, such that reliable packet
recovery is supported for all rates within the region and reliable
collision detection is supported for all rates outside the region. For
random access communication over a discrete-time memoryless
channel using a class of random coding schemes, it is shown that
the maximum achievable rate region of the introduced coding
approach equals the Shannon information rate region without a
convex hull operation.

I. INTRODUCTION

Classical information theory regards each transmitter in
a multiuser communication system as backlogged with an
infinite reservoir of traffic [1]. To achieve reliable communi-
cation, transmitters first jointly determine their codebooks and
information rates and share this information with the receiver.
The encoded symbols are then transmitted to the receiver
continuously over a long time duration. Channel capacity
and channel coding theorems are proved using the standard
argument of jointly typical sequences by taking the sequence
(or codeword) length to infinity [1].

By allowing a small acceptable communication error proba-
bility, information theoretic results can be extended to channel
coding within a long, but finite-length, time duration [2][3].
Consequently, in a time-slotted communication model, if infor-
mation bits arrive stochastically and queue at the transmitters,
transmitters can jointly adapt their information rates in each
time slot to optimize certain system performance based on
coding theoretic results and on the status of the message
queues [4][5]. Determination of fundamental performance
limitations, such as the throughput and queuing delay tradeoff,
can therefore be obtained as in [5]. Although such an extension
enabled the incorporation of stochastic traffic in information
theoretic analysis, it inherited the assumption and, hence, also
the limitation of joint information rate determination among
users in each time slot [4][5].

For various practical reasons such as bursty traffic ar-
rivals, timely data dissemination, and adaptive, i.e., cognitive,
networking, random access operation, such as opportunistic
packet transmission, is unavoidable in communication net-
works [6]. Random access leads to unavoidable packet col-
lision [7]. For the efficient functioning of the upper layer pro-
tocols, when reliable packet recovery is not possible, reporting
a packet collision is often much preferred than forwarding an
unreliable packet estimate to the upper layers [7].

Due to the challenging nature of relaxing the joint rate
determination assumption among transmitters and receivers,
information theoretic analysis has not been fully and success-
fully extended to practical random access systems. Without
the support of rigorous coding theorems, networking practice
often focuses on throughput optimization using packet-based
channel models [8]. The explicit connection of the packet-
based channel models to the physical layer channel is usually
not specified except through the limited means of packet
erasure channels. Networking practice allows bursty traffic at
the transmitters and does not require joint communication rate
determination among transmitters. However, a fundamental
performance characterization in that case, in a form similar
to Shannon’s coding theorem, is not available [6].

In this paper, we propose an approach that holds promise
in extending information theoretic analysis to packet random
access communication with bursty sources. The essence of
our approach consists of using the classical foundation of
coding for each packet and explicitly building-in the support
of random access operations and bursty sources phenomena in
the following sense. In our coding approach each transmitter
determines its communication rate by choosing the number
of data bits to encode in each packet. It requires neither
joint communication rate determination among transmitters,
nor pre-sharing the communication rate information with the
receiver. It also enables collision detection at the receiver
whenever reliable packet recovery is not possible. Although
defined quite differently from classical channel coding, we
find that the introduced coding approach does lead to a mean-
ingful achievable region characterization that is consistent
with current understanding and methodology of Information
Theory. More specifically, we define an achievable region on
the communication rates such that reliable packet recovery



is supported for all communication rates within the region
and reliable packet collision detection is supported for all
communication rates outside the region. For random multiple
access communication over a discrete-time memoryless chan-
nel using a class of random coding schemes, we show that
the maximum achievable rate region of the introduced coding
approach equals the Shannon information rate region without a
convex hull operation. Although we only illustrate our results
in single-user and simple multiple access systems, the general
problem formulation shown in the paper can be extended to
other random access scenaria.

Next, we start with a detailed explanation of the coding
approach in a single user system (i.e., single transmitter-
receiver pair) in Section II. We then extend it to a random
multiple access system and prove the main coding theorem in
Section III. Proofs of the results presented in this paper can be
found in [10] together with further extensions and discussions.

II. A NEW PACKET CODING APPROACH – THE SINGLE
USER CASE

Let us first consider a single user communication system
over a discrete-time memoryless channel. The channel is
modeled by a conditional distribution function PY |X where
X ∈ X is the channel input symbol and Y ∈ Y is the
channel output symbol and, X , Y are the finite input and
output alphabets. We assume that time is slotted with each slot
equaling N symbol durations, which is also the length of a
packet. Unless otherwise specified, we will confine our focus
on block channel codes of length N that represent coding
within each packet.

Recall the standard description of classical block channel
coding with a pre-determined information rate R0 and a code-
word length of N symbols [1]. The transmitter first chooses a
codebook C(N) with 2NR0 codewords and shares the code-
book information with the receiver. At the beginning of a
time-slot, the transmitter maps a message w ∈ {1, . . . , 2NR0}
into a codeword C(N)(w) = {xw1, . . . , xwN} and sends it
through the channel. The receiver outputs a message estimate
ŵ upon observing the channel output {y1, . . . , yN}. The error
probability is defined as Pe(C(N)) = maxw Pr{w 6= ŵ}.
Let C be the Shannon capacity of the channel. If R0 <
C, there exists a sequence of codebooks {C(N)} such that
limN→∞ Pe(C(N)) = 0 [1]. The asymptotic result here
should be interpreted as follows: given two small positive
constants ε1, ε2, there exists a threshold N(ε1, ε2), such that
N > N(ε1, ε2) and R0 < C − ε2 imply Pe(C(N)) ≤ ε1 [3].
Discussions on the tradeoff between N , ε1, ε2 is skipped. We
will not repeat this well-known observation in the rest of the
paper.

Now recall the standard practice of packet networking with
bursty sources [7]. Depending on message availability, in each
time slot, the transmitter will either stay idle or transmit a
packet according to the MAC layer protocol. Suppose that
the same codebook is used in multiple time slots, which
means that when the codebook is designed, the transmitter
does not know whether or not a message will be available

in a particular time slot. To model the idle operation, we
can regard “idle” as a specific channel input symbol and add
a particular codeword C(N)(0) = {idle, . . . , idle} into the
codebook. When no message is available, we say w = 0 and
the transmitter sends C(N)(0) through the channel. It can be
shown that reliable message recovery, including reliable idle
status detection, can be achieved asymptotically, if R0 < C.

The above channel coding scheme is still a classical one.
However, we will make a conceptual extension by introducing
a communication rate parameter r. According to the usual
practice, when the transmitter idles, we say the communication
rate is r = 0, otherwise, the communication rate is r = R0.
We say the codebook has two classes of codewords. The first
class contains one codeword C(N)(0) corresponding to r = 0.
The second class contains 2NR0 codewords corresponding to
r = R0. The transmitter can choose its communication rate
by mapping a message and rate pair (w, r) into a codeword.
Reliable recovery of (w, r) can be achieved asymptotically if
R0 < C.

Now consider a more complicated situation when the chan-
nel is random and can take two possible values P

(1)
Y |X , P

(2)
Y |X .

We assume the channel is time-invariant within each time slot
but its state is unknown to the transmitter. This channel model
is considered here for illustration purpose, and its significance
will become clear when we study multiuser systems. To
simplify the analysis, let us assume that the channels described
by P

(1)
Y |X and P

(2)
Y |X have capacities C1 and C2, with C1 <

C2, respectively, and that both capacities are achieved for
the same input distribution (e.g. binary symmetric channels
with different cross probabilities). Because channel coding
is applied only within a packet, it can be beneficial if the
transmitter occasionally communicates information at a rate
higher than C1. Let us consider a codebook that contains three
classes of codewords. The first class contains one codeword
C(N)(0) = {idle, . . . , idle} corresponding to communication
rate r = 0. The second class contains 2NR0 codewords
corresponding to r = R0 < C1. The third class contains 2NR1

codewords corresponding to r = R1, s.t. C1 < R1 < C2.
The transmitter now has three rate options r = 0, R0, R1,
which respectively correspond to idling, or encoding NR0,
or NR1 data bits in a packet of N symbols. This extends
the standard networking operation where only a fixed number
of bits is encoded in each packet. Because the capacity C
of the channel in a particular time slot is random, that is
it can take either value C1 or C2, when r = R1 > C1,
reliable message recovery is not always possible. Without
sharing r with the receiver, we require the receiver to identify
whether the estimated communication rate r̂ is above the
channel capacity. If r̂ < C, the receiver outputs the estimated
(ŵ, r̂) pair. If r̂ > C, the receiver reports a packet collision
(or an erasure) by letting r̂ = collision. Note that the term
“collision” is used to maintain consistency with the networking
terminology. Throughout the paper, “collision” means packet
erasure, irrespective of whether it is caused by multi-packet
interference or channel fading.

Given a channel capacity C, define the error probability



Pe(C(N), r) and the collision probability Pc(C(N), r), both
as functions of r, as follows

Pe(C(N), r) = sup
w

Pr{w 6= ŵ or r̂ 6= r}

Pc(C(N), r) = sup
w

Pr{r̂ = collision}. (1)

It can be shown that there exists a sequence of codebooks
{C(N)} and decoding algorithms such that the following
asymptotic results hold for both C = C1 and C = C2.

lim
N→∞

Pe(C(N), r) = 0, for r < C,
lim

N→∞
Pc(C(N), r) = 1, for r > C. (2)

When the random channel can take an infinite number of
values P

(s)
Y |X , s ∈ {1, . . . ,∞}, it is generally impossible to

achieve (2) for all channel realizations with the same sequence
of codebooks. Alternatively, if capacities of all channel real-
izations P

(s)
Y |X are achieved for the same input distribution PX ,

asymptotic properties similar to (2) can still be achieved using
a sequence of random coding schemes, which we will define
soon.

The reader may have noticed that the communication rate
parameter introduced in the above discussion is a subtle con-
cept. From a practical point of view, Nr represents the number
of information bits the transmitter encodes in a packet. From a
theoretic point of view, however, if the transmitter maps (w, r)
into a codeword, one can index all possible values of (w, r),
and regard the index W as a macro message. Consequently,
the communication rate r = r(W ) is an arbitrarily defined
function of W . Properties of achievable rates are dependent
on the particular form of the r(W ) function. This motivated
us to consider the following standard r(W ) function. Assume
codebook C(N) has 2NRmax codewords, where Rmax is an
arbitrary large constant. Let the codewords be indexed by W ∈
{1, . . . , 2NRmax}. We define the standard communication rate
parameter by r = r(W ) = 1

N log2 W . Because the standard
rate function is invertible, achievable rates of any other rate
function can be derived from achievable rates of the standard
rate function.

Now we define a random coding scheme as follows. The
definition is motivated by a similar presentation given in [9].

Definition 1: Let L = {Cθ : θ ∈ Θ} be a library of
codebooks. Each codebook in the library contains 2NRmax

codewords of length N , where Rmax is an arbitrary large con-
stant. Let the codebooks be indexed by a set Θ. Let the actual
codebook chosen by the transmitter be Cθ where the index θ is
a random variable following distribution γ. We define (L, γ)
as a random coding scheme following distribution PX , given
that the random variables XW,j : θ → Cθ(W )j , ∀j,W , should
be i.i.d. based on the input distribution PX .

Let (L(N), γ(N)) be a random coding scheme following
distribution PX , where each codebook in library L(N) contains
2NRmax codeword of length N . In each time slot, we assume
the transmitter randomly generates a codebook index θ and
use codebook C

(N)
θ to encode source message W . We assume

L(N), and the actual realization of θ is known to the receiver.

Note that, in a practical system, this assumption only implies
that a random codebook generation algorithm should be shared
by the transmitter and the receiver. Given the channel PY |X ,
let Pe|θ(Cθ,W ) be the probability, conditioned on θ, that the
receiver is not able to recover message W , and let Pc|θ(Cθ,W )
be the conditional probability that the receiver reports a
collision. We define Pe(W ) and Pc(W ) as the unconditional
error probability and the unconditional collision probability of
message W , respectively, as follows

Pe(W ) = Eθ[Pe|θ(Cθ,W )], Pc|θ(W ) = Eθ[Pc|θ(Cθ,W )].
(3)

Let the standard rate function be r(W ) = 1
N log2 W . We

say that a communication rate region [0, R) is asymptot-
ically achievable by the random coding scheme if there
exists a sequence of decoding algorithms under which the
following two conditions are satisfied. First, for all mes-
sage sequences {W (N)} with limN→∞ r(W (N)) < R, we
have limN→∞ Pe{W (N)} = 0. Second, for all message
sequences {W (N)} with limN→∞ r(W (N)) > R, we have
limN→∞ Pc{W (N)} = 1. We have the following theorem.

Theorem 1: For a discrete-time memoryless channel PY |X
with Shannon capacity C and optimal input distribution PX ,
communication rate region [0, C) is asymptotically achievable
by a random coding scheme with input distribution PX .

It is important to note that the definition of the achievable
rate region introduced in this paper is significantly different
from that of the Shannon capacity. For reliable communi-
cation in the classical Shannon sense, information rate is
pre-determined and known to receiver. Collision or erasure
detection is not needed [1]. In our coding approach, the
codebook contains a large number of codewords corresponding
to different communication rates. Reliable communication is
only supported for rates within the achievable region. It is
the receiver’s responsibility to detect whether the random
communication rate is within the achievable region or not.

III. A NEW PACKET CODING APPROACH – RANDOM
MULTIPLE ACCESS COMMUNICATION

Consider now a K-user, symbol-synchronous, random mul-
tiple access communication system over a discrete-time mem-
oryless channel. The channel is modeled by a conditional
distribution function PY |X1,...,XK

, where Xi ∈ Xi is the
channel input symbol of user i with Xi being the input
alphabet, and Y ∈ Y is the channel output symbol with
Y being the output alphabet. To simplify the discussion, we
assume Y and Xi, for all i, are finite. Extending the results to
continuous channels is straightforward. As in Section II, we
assume time is slotted with each slot being equal to N symbol
durations, which is also the length of a packet.

Before message transmission is started, each user, say user
i, chooses a codebook Ci, termed a random access codebook,
with 2NRmax codewords of length N , where Rmax is an ar-
bitrary large constant whose particular value is not important.
Then Ci is a mapping Ci : {1, . . . , 2NRmax} → X (N)

i that
associates to each message W in {1, . . . , 2NRmax} a block of
channel input symbols Ci(W ) = (XiW1, XiW2, . . . , XiWN ).



We consider a class of random coding schemes defined in
Definition 2. Compared to the random coding scheme defined
in Section II, the following coding scheme allows different
input distributions to be used at different communication rates.

Definition 2: Let Li = {Ciθi
: θi ∈ Θi} be a library of

codebooks for user i. Each codebook in the library contains
2NRmax codewords of length N . Let the codebooks be indexed
by a set Θi. Let the actual codebook chosen by user i be Ciθi

where the index θi is a random variable following distribution
γi. We define (Li, γi) as a random coding scheme follow-
ing distribution PXi|W for user i, given that the following
conditions are satisfied. First, the random variables Xi,W,j :
θi → Ciθi(W )j , ∀j, W , are independent. Second, for given i
and W , Xi,W,j should be i.i.d. based on the conditional input
distribution PXi|W .

We assume each user, say user i, is equipped with a random
coding scheme (Li, γi), which is known to the receiver. Before
message transmission is started, user i, for all i, chooses its
codebook by generating a codebook index θi according to
distribution γi, independently from other users. We assume
the actual value of θi, ∀i, is known to the receiver. The
standard communication rate of message W (N) is defined as
r(W (N)) = 1

N log2(W (N)).
Definition 3: Given a sequence of random coding schemes

{(L(N)
i , γ

(N)
i )} of user i, where (L(N)

i , γ
(N)
i ) is a random

coding scheme with each codebook in library L(N)
i containing

2NRmax codewords of length N , Rmax is the maximum
rate. Denote the conditional input distribution associated with
(L(N)

i , γ
(N)
i ) and message W (N) by P

(N)

Xi|W (N) . Let PXi|r be
a conditional input distribution function defined for all rates
r ≤ Rmax. We say that {(L(N)

i , γ
(N)
i )} follows an asymptotic

conditional input distribution PXi|r if for all r̂ ≤ Rmax and for
all message sequence {W (N)} with limN→∞ r(W (N)) = r̂,
the following limits exist, and satisfy

lim
N→∞

P
(N)

Xi|W (N) = lim
N→∞

PXi|r(W (N)). (4)

Note that since we do not assume PXi|r is continuous in r at
r̂, we may not have limN→∞ PXi|r(W (N)) = PXi|r̂.

We use bold-font characters to denote vectors whose ith el-
ements are the corresponding variables of user i. For example,
L represents the vector of code libraries of the users. Also, θ
denotes the random index vector, Cθ denotes the codebook
vector, W denotes the message vector, r(W ) denotes the
standard rate vector, and P X|r denotes the asymptotic input
distributions of the random coding schemes, etc.

Assume message W is transmitted over the multiple access
channel using codebook Cθ . Assume a decoding algorithm is
given. We define Pe|θ(Cθ,W ) as the probability, conditioned
on θ, that the receiver is not able to recover the message
vector W . Define Pc|θ(Cθ,W ) as the conditional probability
that the receiver reports a collision. Assume random coding
schemes (L, γ). Let θ be drawn independently according
to γ. We define Pe(W ) and Pc(W ) as the unconditional
error probability and the unconditional collision probability

of message W , respectively.

Pe(W ) = Eθ[Pe|θ(Cθ,W )], Pc(W ) = Eθ[Pc|θ(Cθ, W )].
(5)

Definition 4: Consider a discrete-time memoryless mul-
tiple access channel PY |X1,...,XK

and a sequence of ran-
dom coding schemes {(L(N),γ(N))}, where (L(N), γ(N))
is a random coding scheme with each codebook in L(N)

containing 2NRmax codewords of length N , and Rmax is
the maximum rate for all users1. Let R be a region of
standard rate vectors. Let Rc be the closure of R. We say
R is asymptotically achievable if there exists a sequence of
decoding algorithms under which the following two conditions
are satisfied. First, for all message sequences {W (N)} with
r(W (N)) ∈ R for all N and limN→∞ r(W (N)) ∈ R,
we have limN→∞ Pe(W (N)) = 0. Second, for all mes-
sage sequences {W (N)} with r(W (N)) 6∈ closure(Rc)
for all N and limN→∞ r(W (N)) 6∈ closure(Rc), we have
limN→∞ Pc(W (N)) = 1.

The following theorem shows that the maximum asymptot-
ically achievable rate region of a random coding scheme can
be characterized by a set of mutual information inequalities.

Theorem 2: Consider a discrete-time memoryless multiple
access channel PY |X1,...,XK

and an asymptotic conditional
input distributions P X|r. Assume for any user i, that PXi|ri

is only discontinuous in ri at a finite number of points. For
any sequence of random coding schemes {(L(N),γ(N))} that
follows the asymptotic conditional input distribution P X|r,
the following standard communication rate region R is asymp-
totically achievable.

R =
{

r̂

∣∣∣∣
∀S ⊆ {1, . . . ,K}, either r̂i∈S = 0,
or

∑
i∈S r̂i < Ir̂(Xi∈S ; Y |Xi 6∈S)

}
, (6)

where the mutual information Ir̂(Xi∈S ; Y |Xi 6∈S) is com-
puted based on the distribution P X|r̂.

Furthermore, for any sequence of random coding schemes
following the asymptotic conditional input distribution P X|r,
assume R̃ is an asymptotically achievable rate region. Let r̂
be an arbitrary rate vector inside R̃ in the sense that we can
find δ > 0 with r ∈ R̃ for all r̂ ≤ r ≤ r̂ + δ × 1, where 1 is
a vector of all 1’s. Let S ⊆ {1, . . . ,K} be an arbitrary user
subset. If the asymptotic conditional input distribution P X|r
is continuous in ri∈S at r̂, then we must have

∑

i∈S

r̂i ≤ Ir̂(Xi∈S ;Y |Xi 6∈S). (7)

When the asymptotic conditional input distribution P X|r is
not a function of r, i.e. codewords of each user are generated
according to the same input distribution, the achievable rate
region R given in (6) becomes

R =

{
r̂

∣∣∣∣∣∀S ⊆ {1, . . . , K},
∑

i∈S

r̂i < I(Xi∈S ; Y |Xi 6∈S)

}
.

(8)

1Because, as we will see, the value of Rmax is not important, there is no
loss of generality by assuming all users have the same maximum rate.



This is identical to the Shannon information rate region
without a convex hull operation for the multiple access channel
under a given input distribution [1].

Note that random access communication does not assume
joint rate determination among users [8]. Hence whether
the actual rate vector is within the achievable rate region
is unknown to any particular user. This is similar to the
random channel case we discussed in Section II. In our coding
approach, codebooks of the users contain large numbers of
codewords. However, the codewords are indexed by their
standard rate parameters and the receiver only searches for
appropriate codewords within the achievable rate region. The
receiver reports a collision if an appropriate codeword cannot
be found.

IV. SIMPLE EXAMPLES

In this section, we illustrate the asymptotically achievable
rate region results in two simple examples of random multiple
access systems.

Example 1: Consider a K-user, random multiple access
communication system over a memoryless Gaussian channel
modeled by Y =

∑K
i=1 Xi +V , where V is the additive white

Gaussian noise with zero mean and variance N0.
Assume that the input distribution of user k, for all k, is

Gaussian with zero mean and variance Pk, irrespective of
the rate parameter. According to Theorem 2, the maximum
achievable rate region is given by

R =

{
r

∣∣∣∣∣∀S ⊆ {1, . . . , K},
∑

i∈S

ri <
1
2

log
(

1 +
∑

i∈S Pi

N0

)}
.

(9)
Note that the achievable rate region R is identical to the
Shannon channel capacity region [1].

If for all k, the input distribution is Gaussian with zero mean
and variance Pk for any non-zero rate, and user k idles at rate
zero, the achievable rate region is still given by (9).

Example 2: Consider a K-user, random multiple
access communication system over a memoryless collision
channel. We define an nth order collision channel as follows.
The channel input alphabet of any user is given by X =
{0, 1, . . . , 2n}, where 0 represents an idle symbol. The channel
output alphabet is given by Y = {0, 1, . . . , 2n, c}, where c
represents a collision symbol. If all users idle, the receiver
receives an idle symbol, Y = 0; if only one user, say user
k, transmits a non-zero symbol Xk, the receiver receives
Y = Xk; if multiple users transmit non-zero symbols, the
receiver receives Y = c, i.e., a collision symbol. We assume in
all input distributions the non-zero symbols always take equal
probabilities. Consequently, an input distribution PXk|rk

can
be characterized through a single parameter p(rk), which is
the probability that any particular symbol in the transmitted
codeword takes a non-zero value.

Proposition 1: Assume the conditional input distribution

of user k, for all k, is given by

PXk|rk
=

{
1−

√
rk/n for Xk = 0

1
2n

√
rk/n for Xk = j ∈ {1, . . . , 2n} .

(10)
In other words, p(rk) =

√
rk/n. The following rate region R

is asymptotically achievable.

R =

{
r

∣∣∣∣∣
K∑

i=1

√
rk/n < 1

}
. (11)

V. CONCLUSION

We proposed a new channel coding approach for coding
within each packet in random access communication with
bursty sources. Extensions of the coding approaches, such as
the receiver reporting a collision for each individual user, are
presented in [10]. Error performance analysis of the coding
schemes is given in [11]. Further discussions about coding in
random access communication can also be found in [10].

There are numerous questions left open that would further
tighten the connection between random access networking and
Information Theory. We believe that our approach contributes
toward that connection by relaxing the joint rate determination
assumption among users, and by distinguishing the issues of
reliable communication and reliable collision detection in a
rigorous manner.
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