
912 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 4, JULY 1999

Principal Independent Component Analysis
Jie Luo, Bo Hu, Xie-Ting Ling, and Ruey-Wen Liu

Abstract—Conventional blind signal separation algorithms do
not adopt any asymmetric information of the input sources, thus
the convergence point of a single output is always unpredictable.
However, in most of the applications, we are usually interested
in only one or two of the source signals and prior information is
almost always available. In this paper, a principal independent
component analysis (PICA) concept is proposed. We try to extract
the objective independent component directly without separating
all the signals. A cumulant-based globally convergent algorithm
is presented and simulation results are given to show the hopeful
applicability of the PICA ideas.

Index Terms—Cumulants, globally convergent, high-order sta-
tistics, non-Gaussian energy, principal independent component
analysis.

I. INTRODUCTION

DURING the past several years, independent component
analysis (ICA) [1]–[3] has begun to find a wide ap-

plicability in many diverse fields. Among them are signal
detection, channel equalization, and feature extraction. Blind
signal separation (BSS) [4], [6], [8], which can be regarded as
one of the classical applications of the ICA model, focuses
on extracting all the independent components (IC’s) from
their linear combinations. Many BSS algorithms are already
well known. Among them are the H-J algorithm [6], [7],
modified H-J algorithm [8], [9], the nonlinear PCA network
[2], [3], and other cumulant-based approaches [4], [5]. BSS
methods are called “blind” since they usually assume that
the IC sources and the mixing matrix are totally unavailable
to the ICA network [10]. Without introducing any prior
information, the exact convergence point of a single output
is theoretically unpredictable. However, in some applications
such as signal detection and noise cancellation, we may not
be interested in all the IC’s simultaneously. Examining the
signal processing process in applications, sometime we may
come to the following questions. What will we do next to the
BSS process? If we are not interested in all source signals,
of course we would like to pick the desired signal out from
the separation results. However, if absolutely no asymmetric
information is available, how can we know which signal is
the one we are looking for? Or, if we really can identify
the source signals, why we do not use this prior information
in the signal separation process to simplify the network?
In fact, this is the key idea of the principal independent
component analysis (PICA) methods [11]. By introducing
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Fig. 1. PICA network with single reference.

some asymmetric information to the network, we now try to
extract the objective signal directly without separating all the
IC’s. Especially in the simulation part of this paper, we will
see that in most of the cases, limited prior information can do
great help to simplify the network complexity.

This paper is organized as follows. In Section II, a basic
model of PICA network is proposed. Thorough discussion to
the convergence is given. And in Section III, we extend the
PICA model to one with multireference. It can be seen that
such a kind of extension makes the PICA methods flexible
in applications. Especially from the simulation results given
in Section IV, the feasible value of the PICA methods will
become more and more clear.

II. PROBLEM DESCRIPTION AND THEBASIC PICA STRUCTURE

The basic PICA network can be described by Fig. 1.
Suppose we have n complex-valued non-Gaussian indepen-

dently identically distributed (i.i.d.) source signals which can
be denoted by in the vector form.
is a complex-valued mixing matrix of full
comlumn rank. is the observed signal
vector obtained from the receivers. is
the weight vector of the neural network andis the output. The
relation between the vectors and the output can be described by

(1)

As we have mentioned in the introduction part, without
any prior information, the convergence point of the output
is theoretically unpredictable. Here we will continue assuming
that the exact value of the IC sources and the mixing matrix are
blind to us. However, suppose we can get a reference signal,
which can also be expressed as linear combinations of the IC’s

(2)
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Some ideas about the reference generator will be shown in
the simulation part. Nevertheless, since the reference generator
will vary greatly in different applications, we will not go into
detail about it now, we just assume arbitrarily that a reference
signal is available.

The second-order cumulant and fourth-order cumulant of
are defined, respectively, by

(3)

(4)

where denote the expectation and is the conjugate
transposition of The fourth-order cross cumulant between

is defined by

(5)

According to [13], if the sources are i.i.d. signals, we have

(6)

(7)

(8)

Then we define the “cross-non-Gaussianity” betweenand
as

(9)

Obviously, for any arbitrary variable and , we
will have

(10)

The “non-Gaussian energy” of in is defined by

(11)

Unlike conventional concept on “energy,” we should
mention that, for super-Gaussian source(which satisfies

will always be nonnegtive,
for Gaussian source (which satisfies

will always be zero, while for sub-Gaussian source
(which satisfies will always

take an nonpositive value.
If for any arbitrary we have

(12)

Then the source signals can be arranged by their non-
Gaussian energy in We still assume there is no Gaussian
IC. Without loss of generality, suppose we have

(13)

According to their non-Gaussian energy value and their
Gaussian type, we define to be the “principal super-
Gaussian IC in ,” define to be the “minor super-Gaussian
IC in .” Similarly, we call to be the “minor sub-Gaussian
IC in ” and to be the “principal sub-Gaussian IC in.”

Then, given the cost function of the neural network as

(14)

Proposition 1: Given (13) with respect to IC’s and the
reference signal by maximizing the cost function (14), the
output of the network can finally be denoted by

(15)

and will be satisfied.
Proof: Of course, from the Proposition 1 we can see there

will be one and only one point of the cost function that can
satisfy all the requirements. In fact, none of the other points
can be maxima of the cost function.

First, if there exist a , which makes , we do a
perturbation with , let

(16)

(17)

We get

(18)

which means only can be nonzero.
Second, for any point with , do a

perturbation with , let

(19)
we get

(20)

Thus we can see proposition 1 will hold.

III. EXTENDED PICA NETWORK WITH MULTIREFERENCE

In part II, in order to provide some asymmetric information,
we assumed arbitrarily that a reference signal is available.
However, to most of the cases, it is not so easy to obtain the
asymmetric information in such a simple form. In this part,
we will extend the PICA network to a more flexible form.
The multireference PICA network can be described by Fig. 2.

Here we assume reference signals are available. All the
references can be expressed by the linear combinations of

the IC’s

(21)
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Fig. 2. PICA network with multireference.

Moreover, we define a multivariable linear function

(22)

with respect to variables And the object func-
tion of the network is designed as shown in (23) at the bottom
of the page. If we suppose for any

(24)

then we have
Proposition 2: Given (24), if the IC sources can be ar-

ranged by

(25)

maximizing the cost function (23), the output of the network
can finally be denoted by

(26)

and will be satisfied.
Proof: In fact, similar to that of proposition 1, the proof

of this proposition is quite simple, too.
For any , if , do a perturbation with let

(27)

(28)

Fig. 3. The geographical asymmetric information.

We get

(29)

while for any , do perturbation with
, let

(30)
we obtain

(31)

Proof completed.
Comparing with the basic PICA model, multireference

PICA network gives us more flexibility to extract the asym-
metric information of the IC source. In the next part, we will
give some examples to show the powerful feature of the
function in applications.

IV. SIMULATION RESULTS

In the first experiment, we suppose there are two sub-
Gaussian IC sources. The receivers and the IC sources are
shown in Fig. 3.

Suppose the only prior information in hand is that receiver
is relatively closer to IC source than receiver , while

it is relatively further to than In other words, if
can be expressed by

(32)

then the prior information here is and
Now we simply choose the reference signals

(23)
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as and , the function is set to be

(33)

Notice here both the two IC’s are sub-Gaussian, we have
, According to proposition

2, since

(34)

by maximizing the following cost function:

(35)

the network output will converge to IC
In the computer simulation, is a sub-Gaussian QAM

signal while is a 3 3 sub-Gaussian QAM signal of the
same distribution. The mixing matrix is randomly chosen as

(36)

We use gradient method and use the similar approach as that
in [14] to estimate the high-order moments of the signals. In
order to describe the convergence of the network, we use the
correlation coefficients defined by

(37)

Obviously, if can be satisfied, and
will be held true. The weight vector of the network is set to
be one initially. And Fig. 4(a) shows the output constellation
after 900 iterations while Fig. 4(b) gives the convergence of
the output presented by the covariance functions.

In the second experiment, we try to show a more skillful
design of the function in PICA network. Suppose we have
a base-band CDMA emulation system, shown in Fig. 5.

The received signal rec is denoted by linear combination of
three sub-Gaussian QAM IC’s

(38)

And suppose after the demodulation for each user respectively,
the final sampling signal yields

(39)

Here we use a single variable to simulate the attenua-
tion of demodulation. are additive white Gaussian
noises. The reference signals are set to be and Since

(a)

(b)

Fig. 4. Simulation of signal tracing. (a) Output constellation after 900 iter-
ations. (b) Convergence of the output presented by the covariance functions.

is not attenuated only in the prior information can be
expressed by

(40)

Then if we set the cost function to be

(41)

According to Proposition 2, we will get by max-
imizing (41). Similarly, by maximizing the following cost
functions:

(42)

(43)
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Fig. 5. Base-band CDMA emulation system.

(a) (b)

(c) (d)

(e) (f)

Fig. 6. Base-band CDMA “near-far” resistance using PICA network (SNR= 14 dB). (a) y1 output constellation. (b)y1 convergence. (c)y2 output
constellation. (d)y2 convergence. (e)y3 output constellation. (f)y3 convergence.
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we can get , respectively. In order to
improve the convergence, we add a prewhitening process
before the PICA network and make

(44)

to be held true.
In our experiment, are 4 4, 3 3, 2 2 sub-

Gaussian sources, respectively. We set
The SNR of the prewhitening input is set to be 14

db. And the correlation coefficients are given by

(45)

Fig. 6(a), (c), (e) shows the output constellations after 3600
iterations while (b), (d), (f) gives the convergence of the three
outputs, respectively.

Here we should mention that, according to Fig. 5,
We can see the interuser interferenceis

even larger than the user signal itself, which means a very
serious near-far problem exists. In addtion, our receiver have
only a low SNR of 14 dB. Though facing such a hard situation,
the PICA network can still extract the objet signal efficiently.

V. CONCLUSION

A new concept of PICA is proposed. Unlike conven-
tional BSS methods, PICA network focuses its scope on
extracting prior information and tracing the object signal
directly. Compare with the multioutput BSS algorithms, the
single-output PICA network is much simpler in computation
complexity. Especially the multireference extension makes the
PICA method flexible and powerful in applications.
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