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In Code Division Multiple Access (CDMA) communications, Multiuser De-

tection (MUD), that reduces the multi-access interference (MAI) and that solves

the near-far problem, has been widely studied for over 15 years. Since optimal

multiuser detection is generally NP hard, many sub-optimal algorithms that pro-

vide reliable performance and ensure polynomial complexity have been proposed.

However, there is still a large gap between the performance of the sub-optimal

detectors and that of the optimal detector. Due to the advances in the hardware

computational speeds, advanced MUD algorithms that achieve near-optimal per-

formance, while maintaining high computational efficiency, are of special interest

to both researchers and industry.

The main objective of this research is to improve the existing multiuser de-

tectors and propose new advanced near-optimal and optimal detectors.

In our research, we improve the performance of the Group Decision Feedback

(GDF) detector by finding the optimal user partitioning and ordering. We solve

the time labeling issue in asynchronous CDMA and improve the performance of

the DF detector by finding the optimal time labeling and user ordering.
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Based on the user ordering and Branch-and-Bound search, we improve the

computational efficiency of the optimal detector by proposing a fast optimal

algorithm that significantly reduces the average computational cost.

In addition, we also develop a new multiuser detection algorithm based on the

idea of Probabilistic Data Association (PDA) from target tracking. The PDA de-

tector achieves near-optimal performance in both synchronous and asynchronous

systems with O(K3) complexity whereK is the number of users. The situation of

overloaded system in both synchronous and asynchronous cases are also studied.

The soft-output feature of the PDA method makes it extremely flexible and easy

to extend to multiuser detection problems in a wide variety of communication

settings.
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Chapter 1

Introduction

1.1 Background

The demand for personal communication services (PCS), especially those re-

lated to wireless communications, has been increasing dramatically during the

past two decades. With the goals of improving service quality and increasing sys-

tem capacity, wireless communication systems tend to utilize advanced channel

access technologies. The commonly considered channel access schemes include

Frequency Division Multiple Access (FDMA), Time Division Multiple Access

(TDMA), and Code Division Multiple Access (CDMA). Unlike FDMA, which

transmits signals over carriers with separated frequencies, and TDMA, which

transmits signals to the receiver through separated time slots, CDMA identifies

channels by the user-specific signature waveforms (signature sequences). When

the correlations between user signatures are zero, CDMA can be treated as a gen-

eralized orthogonal channel access scheme. However, theoretical analysis showed

1
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that CDMA with non-orthogonal signature design gives a higher channel capac-

ity than that of TDMA and FDMA over the same communication bandwidth

[Gh91]. In mobile communications, due to the voice activity gain, the antenna

sectorization gain and the frequency reuse gain, the capacity of CDMA can be

four times that of TDMA and twenty times that of FDMA [Gh91]. Aside from

the theoretical advantage in capacity, CDMA also has several other desirable

features in wireless communications [Vt94] [Wx96].

Nevertheless, with a non-orthogonal signature design, interference between

user signals is introduced due to the correlation among signatures. This is called

the Multi-Access Interference (MAI). Generally, the interference from one user to

another is proportional to the signatures correlation as well as the powers of the

signals. Especially when user signal powers differ significantly from one another,

the MAI from strong users to weak users can be very serious. This is known as the

“near-far” problem. In mobile channels, reflectors in wireless channel generate

“multipath”, and the movement of a mobile results in a “Doppler frequency

shift”; these together are termed “channel fading” and they further aggravate

the “near-far” problem in CDMA.

Multiuser Detection (MUD) algorithms that reduce the interference and com-

bat the near-far problem have been hotly discussed from mid 1980’s [Vd85]

[Vd83] [Vd86]. Due to the variety of communication environments, multiuser

detection problems assume different forms in different applications. In cellular

communications, the up-link communications (from mobile to base station) are
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often characterized as asynchronous CDMA since the mobiles usually send their

signals to the base station with their bit intervals unaligned. The reverse-link

communications (from base station to mobile), however, are characterized as

synchronous CDMA since it is feasible for the base station to send user signals

synchronously. In both situations, when the communication rate is high and the

mobile is moving fast, channel fading will occur due to environmental changes

and the effect of Doppler shift. Although the multiuser detection problem for

synchronous CDMA without channel fading is relatively simple to formulate, op-

timal detection has been shown to be generally NP hard, meaning that it cannot

be solved with a computational effort that scales polynomially with the number

of users [LV89]. It is thus unlikely to be implemented in practice. For this rea-

son, prior research has focused on developing reliable sub-optimal methods with

polynomial complexity.

One of the most popular classes of sub-optimal multiuser detector is the linear

detector, which generally applies a linear mapping to the output of the matched

filter bank. The decorrelating linear detector, called the decorrelator, is proposed

in [Kh83] and extensively analyzed in [LV89]. The decorrelator eliminates the

MAI at the expense of increasing background noise power. One of its good

features is that the algorithm does not require the powers of the interferers.

Another well known linear detector is the Minimum Mean Square Error

(MMSE) based detector, originally proposed in [X90]. The performance of the
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MMSE detector approaches that of the decorrelator if the environment is inter-

ference limited, and approaches the performance of the conventional detector if

the environment is background noise limited.

Linear detectors improve the performance of the conventional matched fil-

ter significantly in most of the cases, while their computational complexities are

O(K2) whereK is the number of users. The linear structure make these detectors

easy to analyze as well as to extend to various CDMA communication environ-

ments such as the long-code CDMA [GRL99] where signatures are changing for

each time frame and blind CDMA multiuser detection [HMV95] [UY98a] where

no information on interferers is available.

Decision driven multiuser detectors form another popular class of suboptimal

detectors in CDMA. The multistage detector was originally proposed in [Va90]

and extended in [Va91]. This detector makes temporary decisions in the first

several stages. The final decision is obtained by canceling the MAI, which is

approximated based on the temporary decisions from the previous stages. There

are several variations on the MAI cancellation, including the parallel MAI can-

cellation, the sequential MAI cancellation and the partial MAI cancellation. The

sequential multistage detection algorithm can also be interpreted as a first order

coordinate descent search [LLPW00].

Decision Feedback (DF) detector was originally proposed in [Dh93], extended

in [Dh95] and extensively analyzed in [Va99]. The DF detector makes decisions

sequentially on one user at a time with the weak users taking the advantage of



5

the decisions on strong users to cancel out the MAI. Although, usually, the per-

formance of the DF detector is significantly better than the linear detectors, its

complexity remains O(K2) and can be even lower than that of the linear decor-

relator [LPWL00]. However, the performance strongly relies on the detection

order. If the decisions on weak users are made first, the probability of error will

be high because of the strong interference from other users. In addition, canceling

the MAI based on wrong decisions on the previously-decided user signals exacer-

bates the noise in the later-decided signals. Although it is intuitive to order users

according to their received power, the optimal user ordering involves not only the

received power, but also the correlations among signature waveforms of different

users. Optimal user ordering for the DF detector in synchronous CDMA is found

in [Va99] and is in fact an extension to the user ordering from [WFGV98].

Group detection was first proposed in [Va95]. Unlike the DF detector, a group

detector partitions users into several groups. Users with highly correlated sig-

nature waveforms are assigned to the same group and the signature correlations

between the groups are relatively low. While the decisions on different groups are

made sequentially, the decisions on user signals within a group are made simulta-

neously by exploring all the possible combinations within the group. Therefore,

the sequential group detection, termed the Group Decision Feedback (GDF), can

be viewed as a generalization of the DF detector. The complexity of the GDF

detector remains O(K2), but it is exponential in the maximum group size, which
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is usually small. Similarly to the DF detector, user ordering as well as user

partitioning are critical to the performance of the GDF detector.

Among the decision-driven multiuser detectors, the DF detector is computa-

tionally most efficient. The probability of error of a DF detector can be 2 orders

of magnitude lower than the linear detectors, while the computational cost can

be also lower than the decorrelator. However, the performance of the decision

driven detector strongly depends on the structure of the correlation matrix and

is hard to control in practical situations. Furthermore, there is usually still a

large gap between the probability of the DF detector and that of the ML optimal

detector.

Due to the increasing demand on bandwidth efficiency in modern communica-

tion systems, advanced multiuser detection algorithms that fill the performance

gap between the decision-driven multiuser detectors and the ML detector become

more attractive. Since the multiuser detection problem is generally a quadratic

optimization problem with binary or integer constraints, many advanced methods

in binary quadratic programming have been applied to multiuser detection in the

past several years. Among them are the coordinate descent methods [LLPW00],

the quadratic programming methods with various constraints [HLPW02], semi-

definite relaxation [MDWLC00] [TR01], Tabu search [TR02], Boltzmann ma-

chine [HLPW02] and genetic algorithm [EH00].

Coordinate descent is a local search method that ensures a local minimum of

the final solution [LLPW00]. A good initial point is critical for the performance
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of the coordinate descent search. Although the first order coordinate descent

is a good patch to improve other multiuser detectors, searching more than one

coordinate at a time will increase the computational complexity substantially.

Quadratic programming and semidefinite programming methods are relax-

ation methods that solve a relaxed problem first and then find the final decisions

by projecting the result onto the binary set. Quadratic programming methods

[HLPW02] relax the binary constrains on user signals to box constraints (they

assume signals to take values in [¡1, 1]) and then solve a quadratic program-

ming problem using a primal-dual method [Bk99]. Similarly, the semidefinite-

relaxation method [MDWLC00] [TR01] relaxes the original problem to a semi-

definite programming problem and solves it using interior-point methods [VB96].

Although the quadratic programming method is simple, its performance is also

moderate. The semidefinite-relaxation method, however, is reported to have close

to optimum performance with a complexity of O(K3.5). Nevertheless, when com-

pared with other detectors, the computational cost of the semidefinite relaxation

method is relatively high even for small-sized problems [LPWF01a].

Tabu search [Gv86], Boltzmann machine [Gd96] and genetic algorithm [Hl75]

are global search strategies for solving the binary programming problems. While

the main purpose of the optimization is to decrease the cost function, these

methods allow search directions, with a relatively small probability, to increase

the cost of the objective function. Such strategies help these algorithms to avoid

local minima. Tabu search starts from an initial point and searches the binary
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signal set by changing one signal value at a time. If a signal value is changed

in one step, it will be forced to remain the same value in the following several

steps. Although the algorithm tries to flip the signal that decreases the cost

value, it also forces flips even when no improvement in the cost can be found.

Unlike the Tabu search, the Boltzmann machine changes user signal values in

a random fashion. The change that decreases the cost is accepted with a large

probability while the change increasing the cost is accepted with a relatively

small probability. These probabilities are determined by checking the difference

between the resulting costs with binary values of a user signal at its two extremes.

The probability of accepting a decision that increases cost is also reduced in

subsequent iterations. The genetic algorithm, introduced in [EH00], starts with

a solution pool. The solutions with low cost values are called “good”, while the

solutions with high cost values are termed “bad”. At each step, the bad solutions

are replaced by solutions that are randomly generated from the good solutions

by following certain evolution rules. In addition, a one-step coordinate descent

search is performed at the end on all the solutions to generate solutions with

possibly lower costs.

Although, in general, the optimization algorithms for binary quadratic pro-

gramming problems can be applied to multiuser detection, multiuser detection

problems also differ from general optimization problems in the following ways:

² The parameters in the cost function are not generated arbitrarily. The

observation vector yields a statistical model defined by the CDMA system.
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² Since the noise in the CDMA system is generally small, in most of the cases,

simple multiuser detectors can provide solutions close to optimal.

² Communication systems evaluate the detection results using the probability

of error. Therefore, as long as an algorithm can achieve the same probability

of error as the optimal detector, it is equivalent to the optimal detector from

a communication point of view. In other words, we do not care how close

the solution is to the optimal one; what we really are interested is the

probability that the solution equals the true signal.

Due to the above differences and in view of the fact that the MUD prob-

lem is also a maximum likelihood (ML) estimation problem, several methods

have also been proposed from a statistical point of view. The Space Alternat-

ing Generalized EM (SAGE) algorithm, proposed in [NP96], is based on the

Expectation-Maximization (EM) algorithm [DLR77]. By considering other user

signals as missing data, the initial estimation of the user signals can be obtained

as a soft-valued decorrelator. Coordinate descent search is added in the following

stages to improve its performance. The key idea of soft initialization makes the

probability of error of the SAGE algorithm much lower than that of the multi-

stage detector. Another method based on the Gibbs sampling idea [GS90] was

proposed in [WC00]. Gibbs sampling is a general method for ML estimation

when a closed form of the marginal density of the variables of interest is not
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available. The advantage of sample-based methods is that they support com-

plicated statistical models since no marginal densities need be computed in the

algorithm. However, a major disadvantage of the sample-based methods is their

high computational complexity.

Although MUD problem differs from a general optimization problem, it also

differs from the general ML estimation problem. The MUD problem must be

solved online and very quickly. The issue is not to find the global optimal solu-

tion, but to find the best solution given a computational limit. In addition, the

resulting probability of error must be very small in order to satisfy the quality of

service requirements of practical communication systems. Therefore, combining

the optimization methods with statistical ones is desirable and is a major goal of

the research in this thesis.

In synchronous CDMA, the outstanding performance of the DF detector relies

strongly on intelligent user ordering, which is based on the statistical information

from the system model. Motivated by the DF user ordering [Va99], we derive

the optimal user partitioning and user ordering for the GDF detector, and signif-

icantly enhance its performance. During the research, we also found that the DF

solution is actually a first order approximation to the optimal solution. By com-

bining the user ordering idea with an optimal branch-and-bound algorithm for

binary quadratic programming, we developed a fast optimal algorithm for multi-

user detection in synchronous CDMA. Although the worst case computational

cost is still exponential in the number of users, good user ordering helps reduce
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the average computational cost dramatically. While it is hard for a conventional

branch-and-bound method to solve a 30-user problem, the fast optimal algorithm

makes it possible to simulate a 60-user problem with 500,000 Monte-Carlo runs

in a reasonable time. In asynchronous CDMA, in addition to the user ordering,

we find that the performance of the DF detector is also affected by time labeling.

Although mentioned originally in [Dh95], time labeling was not studied exten-

sively in the literature. However, different time labelings do affect the detection

sequence of the signals which, in turn, affect the overall performance of the DF

detector. In our research we derive the optimal time labeling and user ordering

for the ideal DF detector that assumes no error propagation. Our simulations

also show that the optimal time labeling and user ordering helps the actual DF

detector to achieve its performance lower bound.

In addition to improving the DF detector, the GDF detector and the optimal

detector, we also propose a new detection algorithm based on the Probabilistic

Data Association (PDA) [BT75] [BL95], an idea that was originally proposed

in target tracking. PDA models user signals as binary random variables and ap-

proximates the MAI, together with the channel noise, by a single Gaussian with

matched mean and covariance. The ML estimation is obtained by iteratively

updating the associated probabilities. Although theoretical analysis for the con-

vergence as well as the performance is not available, simulation results show that

the probability of error of the PDA detector is very close to, and sometime even



12

indistinguishable from, that of the optimal detector. The computational com-

plexity of the PDA method is O(K3) and is much lower than other methods

with comparable performance. The soft-output feature of the PDA method also

makes it extremely flexible and easily extended to more realistic communication

settings. In our research, we extend the PDA method to asynchronous CDMA

and overloaded systems where the number of users is larger than the signature

length. An interesting result is that the performance of the asynchronous PDA

detector does not degrade significantly when the number of users exceeds the sig-

nature length. This is in contrast to synchronous CDMA, where the performance

of even the optimal detector degrades dramatically when the system becomes

overloaded and when the signature sequences are not very carefully designed.

1.2 Outline of the Thesis

The goal of our research is to improve the performance of the existing multi-

user detection methods, and develop a new multiuser detection methods that give

high performance with a relatively low computational complexity. Throughout

the thesis, we have made the following assumptions:

² The channel is perfectly estimated, i.e., the powers of user signals are known

to the receiver.

² The signatures of all active users are known to the receiver.
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² The noise before the matched-filter at the receiver is white Gaussian with

zero mean. The power spectral density of this white Gaussian noise is

known.

² In asynchronous CDMA we assume that the delays of the user signals are

known.

Although practical systems may involve noncoherent reception, coding, fad-

ing, multipath, intersymbol interference, etc., they are beyond the scope of this

research and are not addressed here. However, ideas for dealing with some of

these problems are discussed in Chapter 5.

In Chapter 2 we introduce synchronous and asynchronous CDMA system

models. Several common multiuser detectors are described and studied. Closed

form analyses for the probability of error of the related detectors are given.

In Chapter 3 we study the user ordering of DF detector in synchronous

CDMA. As an extension to the DF user ordering, given the maximum group

size, the optimum user partitioning and user ordering algorithm for the GDF

detector is derived. The time labeling issue for the DF detector in asynchronous

CDMA is studied in the last section. The optimal time labeling and user ordering

for the ideal DF detector is derived.
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In Chapter 4, based on the user ordering and the Branch-and-Bound search,

a fast optimum multiuser detection algorithm for synchronous CDMA is intro-

duced and analyzed. As a byproduct, a suboptimal “any-time” algorithms is also

proposed.

In Chapter 5 we propose the PDA detector for synchronous CDMA. The al-

gorithm is then modified and extended to the synchronous overloaded system.

PDA detection for asynchronous CDMA is studied in the final section of the

chapter. Several simulations of the PDA detector in heavily overloaded asynchro-

nous systems are shown. Since there is no theoretical difference in the multiuser

detection of asynchronous non-overloaded and overloaded system, asynchronous

transmission with designed delay pattern is recommended as an alternative to

the synchronous CDMA system for a heavily overloaded system.

The thesis is summarized in Chapter 6 with a brief introduction to some future

research directions.

1.3 Major Contributions

1. Derived the optimal user partitioning and ordering for Group Decision Feed-

back detector in synchronous CDMA given the maximum group size.

2. Proposed a fast optimal algorithm for synchronous CDMA multiuser detec-

tion. The average computational cost is significantly reduced in comparison

to the method introduced in [PR90]. The fast optimal algorithm makes it
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possible to simulate a 60-user detection problem with 500, 000 Monte-Carlo

runs in a reasonable time.

3. Obtained the optimal time labeling and user ordering for ideal Decision

Feedback detector in asynchronous CDMA.

4. Proposed the Probabilistic Data Association (PDA) detector for synchro-

nous CDMA. Achieved near optimal performance with O(K3) complexity

where K is the number of users.

5. Extended the PDA detector to synchronous overloaded system as well as the

asynchronous CDMA multiuser detection. Close to optimal performance is

achieved.
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Chapter 2

System Models and Multiuser Detectors

In this chapter, we introduce the system models of synchronous and asynchro-

nous CDMA systems. We investigate the structures of several common multiuser

detectors related to our research. The performance is evaluated by the average

probability of group detection error. 1

The chapter is organized as follows. Section 2.1 introduces the mathematical

model of the synchronous CDMA system. The related multiuser detectors are

presented in section 2.2. Asynchronous CDMA is introduced in section 2.3 and

the related detectors are given in section 2.4

2.1 Synchronous CDMA System

Consider a synchronous CDMA system illustrated in Figure 1.

1The probability that all user signals in the same time frame are detected correctly.

20
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Figure 1: Synchronous CDMA system

The received baseband signal of the i-th symbol period can be represented by

x(t) = b(i)TWs(t¡ iT ) + z(t) t 2 [iT, iT + T ] (1)

where b(i) 2 f¡1,+1gK denotes the K-length vector of bits transmitted by the

K active users during the ith symbol period. W is a diagonal matrix whose kth

diagonal element, wkk, is the square root of the received signal energy per bit of

the k-th user. s(t) is a column vector whose kth element sk(t) is the designed

signature waveform for the kth user. z(t) is a zero mean white Gaussian random

process whose variance is σ2. Without loss of generality, we assume that the

signature waveform is normalized in the sense that

∫ T

0
s2k(τ )dτ = 1 (2)

At the receiver side, the matched filter output of the ith symbol period y(i) is

obtained by passing x(t) through the K symbol matched filters and sampling at



22

time (i+ 1)T , which can be represented by

y(i) = RWb + n(i) (3)

Here R is the normalized correlation matrix whose component located on the kth

row and jth column, rkj, is

rkj =
∫ T

0
sk(τ )sj(τ )dτ (4)

Here n(i) is a real-valued zero-mean Gaussian random vector with a covariance

matrix σ2R.

In Direct Sequence (DS) CDMA, user signature waveforms sk(t) can be further

represented by

sk(t) = [φ(t), φ(t¡ Tc), . . . , φ(t¡ (N ¡ 1)Tc)]sk (5)

where sk is a N £ 1 vector, also known as the signature sequence for user k. N

is called the spreading factor [Vd98]. φ(t), t 2 [0, Tc] is the chip waveform and

Tc is the chip period. Assume sk and φ(t) are also normalized,

sTk sk = 1

∫ Tc

0
φ2
j (τ)dτ = 1 (6)

Another equivalent implementation, also known as the chip-matched-filter for

synchronous DS-CDMA, is shown in 2

The chip-matched-filter output of the ith time frame is

x(i) = SWb(i) + z(i) (7)
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Figure 2: Chip Matched Filter Synchronous DS-CDMA system

where S = [s1, . . . , sK] is the signature matrix and z(i) is a white Gaussian noise

with zero mean and covariance matrix σ2I.

The symbol matched filter output y(i) satisfies,

y(i) = STx(i) = RWb(i) + n(i) (8)

which is the same as (3).

In synchronous CDMA, since the detection of user signals in each time frame

is independent of those from other time frames, for the convenience of notation,

we usually ignore the time index and write the system model as

y = RWb + n (9)

Denote LTL = R as the Cholesky decomposition of R. Then (9) can be

equivalently written as the white noise model,

ỹ = L
−T

y = LWb + ñ (10)
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where L−T denotes the inverse of LT , and ñ = L−Tn is a zero mean white Gaussian

noise with covariance matrix σ2I.

2.2 Common Multiuser Detectors in Synchronous CDMA

2.2.1 Detection Algorithms

Assume all the user signals are equally probable. If user signature sequences

are orthogonal to each other, i.e., 8k 6= j, sTk sj = 0, R becomes an identity

matrix. Then, the optimal decision on b is given by the conventional matched

filter,

ΦMF : b̂ = sign(y) (11)

However, there are theoretical advantages to use non-orthogonal signature

sequences. In this case, the optimal solution of (9) is the output of a Maximum

Likelihood (ML) detector [LV89]

ΦML : b̂ = arg min
b∈{−1,+1}K

(
b
T
WRWb¡ 2yT

Wb
)

(12)

The ML detector has the property that it minimizes, among all detectors, the

probability that not all users’ decisions are correct. Usually, ΦML is considered

NP-hard and exponentially complex to implement [LV89] unless some special

structure of the correlation matrix can be found [SE98] [UY98]. Due to this, the

focus is then on developing easily implementable and effective multiuser detectors.

The linear detector, including the conventional matched filter (11), the decor-

relator and the MMSE detector, is one of the most popular classes of suboptimal
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detectors. The decision of the decorrelator [LV89]

ΦD : b̂ = sign(R−1y) (13)

is found in two steps. First, the unconstrained solution b̃ = R−1y is computed.

This is then projected onto the constraint set via: b̂k = sign
(
b̃k
)
.

Similar to the decorrelator, the MMSE detector [X90] make decisions via

ΦMMSE : b̂ = sign(W(WRW+ σ2I)−1Wy) (14)

The reason why it is called MMSE is that C = W(WRW + σ2I)−1W actually

minimizes the mean square error E
(
kWb¡Cyk22

)
.

Since we assume W, R and σ are known to the receiver, the computational

complexities of the decorrelator and the MMSE detector are evidently O(K2).

The complexity per user is also linear in the number of users.

Another popular class of the suboptimal detectors is the decision-driven de-

tector, including the multistage detector, the DF detector and the GDF detector.

The multistage detector [Va90] initializes the decision of the first stage using

the decorrelator.

b̂
(0)

= sign(R−1
y) (15)

The kth decision of the (m + 1)st stage is then refined by canceling MAI based

on decisions of the mth stage

ΦMS : b̂
(m)

k = sign(yk ¡
∑
j �=k

wjjrjb
(m−1)
j ) (16)
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where rj denotes the jth column of R. The complexity of the multistage detector

is also O(K2) and is linear in the number of stages.

The decorrelator-based DF detector [Dh93] makes decisions on user signals

sequentially via

ΦDF : b̂k = sign


[L−Ty]k ¡

k−1∑
j=1

lkjwjj b̂j


 (17)

Since the higher-indexed users cancel MAI based on the decisions of lower-indexed

user signals, the performance of the DF detector is strongly affected by the de-

tection order. The optimal user ordering for the decorrelating-based DF detector

is given in Theorem 1 of [Va99], and a proof of the optimality can be dated back

to [WFGV98]. Although finding the optimal user order requires O(K3) com-

putations, it is considered as an offline computational load since it only requires

W and R, which are known to the receiver. Therefore, the online computational

cost of the DF detector remains O(K2).

The sequential group detection, which can be viewed as an extension of the

DF detector, was first introduced in [Va95]. Suppose users are partitioned into

an ordered set of P groups, G0, . . . , GP−1. The number of users in group Gj is

denoted by jGj j, and naturally
∑P−1

j=0 jGjj = K. The decision on group fG0g is

made by

b̂G0 = arg min
bG0

∈{−1,+1}|G0|


min
bḠ0

(
bTWRWb¡ 2yTWb

) (18)
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where bG0 denotes the part of vector b that corresponds to users in group G0,

and Ḡ0 denotes the complement of G0, i.e., the union of G1, . . . , GP−1. The de-

cisions of (18) are then used to subtract the multiple-access interference due to

users in G0 from the remaining decision statistics yḠ0
. The detector for the next

group G1 is designed under the assumption that the multiple-access interference

cancelation is perfect. This process of interference cancelation and group detec-

tion is carried out sequentially for users in groups G2, . . . , GP−1, with the group

detector for group Gj taking advantage of the decisions made by group detectors

for G0, . . . , Gj−1. Denote the channel model for the user expurgated channel that

only has users in groups Gj , . . . , GP−1 by

y
(j) = R

(j)
W

(j)
b
(j) + n

(j) (19)

Define Ḡ
(j)
j as the complement of Gj in the user-expurgated channel, i.e., the

union of Gj+1, . . . , GP−1. The decisions on group Gj can be represented as

b̂Gj
= arg min

b
(j)
Gj

∈{−1,+1}|Gj |


min
b

(j)

Ḡ
(j)
j

(
b(j)TW(j)R(j)W(j)b(j) ¡ 2y(j)TW(j)b(j)

) (20)

Define jGjmax = max(jG0j, . . . , jGP−1j). The complexity of the GDF detector

can be expressed as O(e|G|maxK2) since (66) is generally NP hard. Similar to the

DF detector, the user partitioning and ordering is critical to the performance of

the GDF detector. However, only ordering is given in [Va95] (without proof of

optimality), and that is also based on the assumption that the user partitioning

is given.
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In addition to the linear detector and the decision driven detector, many

advanced detectors have been proposed in the last several years. Here we will

only introduce the semi-definite relaxation method. A detailed discussion and

comparison of advanced detection algorithms can be found in [HLPW02].

Define vector uT = [bT , uK+1], where uK+1 is a dummy variable which is

forced to be 1. The ML detector can be represented by

ΦML : b̂ = arg min
b∈{−1,+1}K


uT




WRW ¡Wy

¡Wy 0


u



= arg min
b∈{−1,+1}K

trace






WRW ¡Wy

¡Wy 0


uuT




uT = [bT , 1] (21)

Based on (21), the semi-definite relaxation method can be described as a two

step procedure. In the first step, a semidefinite programming problem is solved.

X̂ = argmin
X

trace






WRW ¡Wy

¡Wy 0


X




s.t. X ¸ 0 8k, xkk = 1 (22)

In the second step, the decisions on user signals are made by taking the first

K elements of vector û, which is obtained by

û = sign(ξmax[ξmax]K+1) (23)

where ξmax is the eigenvector corresponding to the maximum eigenvalue of X̂.



29

The computational complexity of solving (22) is O(K3.5) [VB96].

2.2.2 Performance Evaluation

In multi-user detection, the Asymptotic Effective Energy (AEE) and the Sym-

metric Energy (SE) are two important performance measures [Va99]. Define

Pk(e) to be the probability of error for user k, and define P (e) to be the prob-

ability that not all users are detected correctly. The AEE of user k is define

by

Ek = sup

(
E ¸ 0; lim

σ→0

Pk(e)

Q(
p
E/σ)

< 1
)

(24)

where Q(.) is defined by Q(x) =
∫∞
x

1√
2π
e−

x2

2 dx. The SE of the detector Φ is

given by

E(Φ) = sup

(
E ¸ 0; lim

σ→0

P (e)

Q(
p
E/σ)

< 1
)

(25)

It is easy to see that the SE of the ML detector is

E(ΦML) = min
e∈{−1,0,1}K ,e�=0

feTWRWeg (26)

Usually,

dmin =
√

min
e∈{−1,0,1}K ,e�=0

feTHeg (27)

is termed the minimum distance of matrix H.

For the decorrelator, the decision on user 1 can be represented by

b̂1 = sign([L−1
L
−T

y]1) (28)
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From the white noise model (10), we have

b̂1 = sign([L−1]11ỹ1)

= sign(
1

l11
ỹ1)

= sign(w11b1 +
1

l11
ñ1) (29)

Since ñ1 is zero mean white Gaussian with variance σ2, we have

P1(e) = Q(
w11l11
σ

) = Q(
w11

σ
√
[R−1]11

) (30)

Due to the symmetry of (13), the AEE of user k is

Ek =
wkk√
[R−1]kk

(31)

Since when σ ! 0

P (e) ¼
K∑
k=1

Pk(e) (32)

We get the SE of the decorrelator as

E(ΦD) = min
k


 wkk√

[R−1]kk


 (33)

For the DF detector, assume that the decision on user signal j is correct for

j < k. Then, the AEE of user k can be obtained from (17) as [Va99]

Ek = wkklkk (34)

Consequently, the SE of the DF detector can be represented by

E(ΦD) = min
k
fwkklkkg (35)
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For GDF detector, we first define the Asymptotic Effective Group Energy

(AEGE) for each user group. Define the probability that not all users in group

fGjg are detected correctly in a GDF detector ΦGDF as PGi
(e). Then, the AEGE

for group Gj is given by

EGj
= sup


E ¸ 0; lim

σ→0

PGj
(e)

Q
(√

E

σ

) < 1

 (36)

Similar to the DF detector, assume that the decisions on user signals in group

i < j are correct. The AEGE for group Gj can be expressed by

EGj
=
√

min
e∈{−1,0,1}|Gj | ,e�=0

feTWGjGj
LT
GjGj

LGjGj
WGjGj

eg (37)

Evidently, the SE of the GDF detector can be obtained via

E(ΦGDF ) = min(EG0 , . . . , EGP−1
) (38)

Unfortunately, the SE of most other advanced multiuser detectors are not

available in the literature and thus can only be obtained via computer simulations.

2.3 Asynchronous CDMA

2.3.1 System Model

The asynchronous CDMA system is illustrated in Figure 3.

The received baseband signal can be represented by

x(t) =
∞∑

i=−∞

K∑
k=1

bk(i)wkks(t¡ iT ¡ τk) + z(t) (39)

where τk is the delay corresponding to user signal k. Assume that the delays are

known to the receiver, and are not changing during the whole transmission. Also
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Figure 3: Asynchronous CDMA system

assume that the kth matched filter is synchronized with the signal of the kth

user. The kth matched filter output in its ith time frame can be represented by

yk(i) =
∞∑

j=−∞

∫ iT+T+τk

iT+τk

K∑
m=1

wmmbm(j)sm(t¡ jT ¡ τm)sk(t¡ iT ¡ τk)dt

+
∫ iT+T+τk

iT+τk

z(t)sk(t¡ iT ¡ τk)dt (40)

Suppose users are ordered so that τ1 · τ2 · . . . · τK. The integral in (40) can

be further separated and written as

yk(i) =
∫ iT+T+τk

iT+τk

K∑
m=k+1

wmmbm(j)sm(t¡ jT + T ¡ τm)sk(t¡ iT ¡ τk)dt

+
∫ iT+T+τk

iT+τk

K∑
m=1

wmmbm(j)sm(t¡ jT ¡ τm)sk(t¡ iT ¡ τk)dt

+
∫ iT+T+τk

iT+τk

k−1∑
m=1

wmmbm(j)sm(t¡ jT ¡ T ¡ τm)sk(t¡ iT ¡ τk)dt

+
∫ iT+T+τk

iT+τk

z(t)sk(t¡ iT ¡ τk)dt (41)

Define two matrices R[0], R[1] such that

r[0]km =
∫ T+min(τk,τm)

max(τk,τm)
sk(t¡ τk)sm(t¡ τm)dt = r[0]mk
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r[1]km =



∫ τm
τk

sm(t+ T ¡ τm)sk(t¡ τk)dt τm > τk

0 τm · τk

(42)

Evidently, R[0] is a symmetric positive definite matrix with unity diagonal ele-

ments, and R[1] is a singular matrix.

The matched filter output vector y(i) can then be represented by [Vd98]

y(i) = R[1]TWb(i+ 1) +R[0]Wb(i) +R[1]Wb(i¡ 1) + n(i) (43)

Applying the Z-transform to (43), we obtain,

y(z) = R(z)Wb(z) + n(z) (44)

where R(z) = R[1]T z +R[0] +R[1]z−1 is the correlation matrix. Here, n(z) is a

zero mean colored Gaussian noise with correlation matrix σ2R(z) [Vd98].

2.3.2 White Noise Model and Related Computations

Similar to the Cholesky decomposition in the synchronous case, R(z) can be

factored as [Dh95]

R(z) = R[1]T z +R[0] +R[1]z−1

= (F[0] + F[1]z)T (F[0] + F[1]z−1) (45)

F[0] and F[1] can be obtained by the following iterative procedure [AR98],

(1) Set j = 0 and initialize F[0](0) by

[F[0](0)]T [F[0](0)] = R[0] (46)
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(2) Initialize F[1](0) by

[F[1](0)] = [F[0](0)]−TR[1] (47)

(3) Let j = j + 1, and compute

[F[0](j)]T [F[0](j)] = R[0]¡ [F[1](j)]T [F[1](j)]

[F[1](j)] = [F[0](j)]−TR[1] (48)

(4) Goto step 3 till convergence.

With the factorization, (44) can be equivalently written as the white noise

model

ỹ(z) = (F[0] + F[1]z)−T
y(z)

= (F[0] + F[1]z−1)Wb(z) + ñ(z) (49)

where ñ(z) = (F[0] + F[1]z)−Tn(z) is a zero mean white Gaussian noise with

covariance matrix σ2I.

There are two ways to implement the anti-causal filter (F[0] + F[1]z)−T and

get ỹ(i) in time domain.

The first way is to convert (F[0]+F[1]z)−T to a truncated anti-causal Moving

Average (MA) filter

(F[0] + F[1]z)−T ¼
J∑

j=0

(¡1)jF[0]−T (F[1]TF[0]−T z)j (50)

and approximate ỹ(i) by

ỹ(i) ¼
J∑

j=0

(¡1)jF[0]−T (F[1]TF[0]−T )jy(i+ j) (51)
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The MA implementation requires minimum delay, and the computational cost of

getting ỹ(i) is O(JK2) where J is the order of the MA filter.

The other way is to implement the anti-causal AR filter directly and obtain

ỹ(i) by

ỹ(i) = F[0]−T (y(i)¡ F[1]T ỹ(i+ 1)) (52)

Since J in the MA implementation is usually much larger than 2, the compu-

tational cost of the AR implementation is evidently lower than the MA model.

However, the AR implementation requires the receipt of the entire data, which

will certainly cause a significant delay on the detection output.

In a practical situation, one can combine the MA and AR implementation

together to balance complexity and delay.

2.4 Common Multiuser Detectors in Asynchronous CDMA

Suppose there are overall M time frames in the transmission. Stack the

observations of all time frames together and define

y
T = [y(0)T ,y(1)T , . . . ,y(M ¡ 1)T ] (53)

Similarly, treat each bit as if it was transmitted by a different (fictitious) user.

Define

bT = [b(0)T ,b(1)T , . . . ,b(M ¡ 1)T ] (54)
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The K-user M -frame asynchronous CDMA system can be viewed as a KM user

synchronous system [Vd98]

y = RΞb + n (55)

where

R =




R[0] R[1]T 0 . . . 0

R[1] R[0]
. . . . . .

...

0
. . . . . . . . . 0

...
. . . . . . R[0] R[1]T

0 . . . 0 R[1] R[0]




Ξ =




W 0 . . . . . . 0

0 W 0
. . .

...

. . . . . . . . . . . . . . .

...
. . . 0 W 0

0 . . . . . . 0 W




nT = [n(0)T ,n(1)T , . . . ,n(M ¡ 1)T ] (56)

Define LTL = R to be the Cholesky decomposition matrix of R. From the

iterative procedure of computing F[0] and F[1], it can be easily verified [AR98]

L =




. . . 0 . . . . . . 0

F[1] F[0] 0
. . .

...

...
. . . . . . . . .

...

...
. . . F[1](1) F[0](1) 0

0 . . . 0 F[1](0) F[0](0)




(57)
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Theoretically, any multiuser detection algorithm for synchronous CDMA can

be directly extended to asynchronous CDMA by considering the above equivalent

synchronous system. However, since MK >> K, the computational complexity

of a direct extension of the advanced detection algorithms can be very high.

In (55), the optimal decision is again given by the ML detector 2

ΦML : b̂ = arg min
b∈{−1,+1}KM

(
b
TΞRΞb¡ 2yTΞb

)
(58)

ML detection is generally NP hard. Although the overall computational cost can

be significantly lower than the worst case one [Vd98], it is still too high to be

implemented in practice. In computer simulations, it is hard to do large numbers

of Monte-Carlo runs with ML detection for even moderate-sized problem.

Similar to the synchronous situation, the conventional matched filter makes

decisions by directly taking the signs of the observations

ΦMF : b̂(i) = sign(y(i)) (59)

The DF detector [Dh95] works on the white noise model (44), which can also

be represented in time domain by

ỹ(i)¡ F[1]Wb(i¡ 1) = F[0]Wb(i) + ñ(i) (60)

DF detector makes decisions sequentially and utilizes past decisions in addition

to channel outputs, where b̂k(i) is given by

ΦDF : b̂k(i) = sign


ỹk(i)¡ k−1∑

j=1

F [0]kj b̂j(i)¡
K∑
j=1

F [1]kj b̂j(i¡ 1)


 (61)

2ML detector for the equivalent synchronous system corresponds to the ML sequence detec-

tor for asynchronous CDMA
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The DF detector assumes that the decisions for user bits bk(i¡1) are made prior

to the decision of bj(i), 8k, j.

The Decorrelator multiplies R(z)−1 from left on both sides of (44) first to

obtain

˜̃y(z) = R(z)−1y(z) (62)

and then makes decisions by

ΦD : b̂(i) = sign(˜̃y(i)) (63)

Since

R(z)−1 = (F[0] + F[1]z−1)−1(F[0] + F[1]z)−T (64)

We can compute and implement R(z)−1 in a way similar to the implementation

of (F[0] + F[1]z)−T

Unfortunately, the performance analysis for most multiuser detectors in asyn-

chronous CDMA is not available in the literature. The reason is that due to

the overlap of user signals, a decision error in one time frame may cause a de-

tection error in the next time frame. Such error propagation makes the actual

performance of a multiuser detector hard to analyze except via simulation.



Chapter 3

Improving Decision-Feedback-based Detectors

Decision Feedback detector is one of the most efficient methods in both syn-

chronous and asynchronous CDMA due to its simplicity and its outstanding per-

formance. However, there is usually still a large gap between the performance of

the DF detector and that of the optimal detector. The original motivation of our

research was to improve the performance of the DF detector while maintaining

its high computational efficiency.

The performance of the DF detector depends critically on the detection order.

Although the DF idea is rather a simple idea in optimization, its outstanding

performance comes from the use of statistical information of the system model

in its user ordering algorithm. By studying the user ordering proposed in [Va99]

for the DF detector, we found the optimal user partitioning and ordering for

the GDF detector, which can be generally considered as an extension to the DF

detector. In asynchronous CDMA, we found that the performance of the DF

39
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detector is affected not only by user ordering, but also by the time labeling of

the system. An optimal time labeling and user ordering algorithm for the ideal

DF detector is then derived.

The chapter is organized as follows. The optimal user ordering for the DF

detector is introduced in section 3.1. Based on the idea of optimal user ordering,

given the maximum group size, the optimal user partitioning and ordering for the

GDF detector is derived. The DF detector in asynchronous CDMA is studied

and the optimal user ordering and time labeling is presented in section 3.2.

3.1 Optimal User Partitioning and Ordering for A Group DF Detec-

tor in Synchronous CDMA

3.1.1 Group Decision Feedback

In the GDF detector, suppose users are partitioned into an ordered set of P

groups, G0, . . . , GP−1. Denote the channel model for the user expurgated channel

that only has users in groups Gj, . . . ,GP−1 by

y
(j) = R

(j)
W

(j)
b
(j) + n

(j) (65)

The decisions on group Gj can be represented by

b̂Gj
= arg min

b
(j)
Gj

∈{−1,+1}|Gj |


min
b

(j)

Ḡ
(j)
j

(
b
(j)T

W
(j)

R
(j)

W
(j)

b
(j) ¡ 2y(j)T

W
(j)
b
(j)
) (66)

The complexity of the GDF detector can be expressed as O(e|G|maxK2).

Define J(j) =
[
W(j)R(j)W(j)

]−1
, and denote J

(j)
GjGj

to be the sub-matrix of J(j)

that only contains the columns and rows corresponding to users in Gj. Define
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dGj
to be the minimum distance of matrix

(
J
(j)
GjGj

)−1
, i.e.,

d2Gj
= min

e∈{−1,0,1}|Gj |\{0}|Gj |
e
T
(
J
(j)
GjGj

)−1
e (67)

Assuming that the decisions on user signals in group i < j are correct, the AEGE

for group Gj can be expressed by

EGj
= d2Gj

(68)

Consequently, the SE of the GDF detector is,

E(ΦGDF ) = min(d2G0
, . . . , d2GP−1

) (69)

3.1.2 Optimal Grouping and Detection Order

Since the overall computation of GDF detector is exponential in jGjmax, which

is the maximum group size, in this section, we develop a grouping and ordering

algorithm that maximizes the SE of the GDF detector given jGjmax as a design

parameter.

Define

H = WRW

L̃ = LW (70)

The white noise model (10) can be written as

ỹ = L̃b+ ñ (71)
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Define Ḡ0 to be the complement of G0, i.e., the union of G1, . . . , GP−1. Partition

the matrices and vectors according to G0 and Ḡ0 to obtain


ỹG0

ỹḠ0


 =




L̃G0G0 0

L̃Ḡ0G0
L̃Ḡ0Ḡ0






bG0

bḠ0


+




ñG0

ñḠ0


 (72)

Since H = L̃
T
L̃, we have

L̃
T

G0G0
L̃G0G0 =

[
(H−1)G0G0

]−1
=
[
J
(0)
G0G0

]−1
(73)

A similar result can be obtained for group Gj . In the user expurgated sys-

tem with parameter H(j) = W(j)R(j)W(j), if we let H(j) =
[
L̃
(j)
]T [

L̃
(j)
]
, then[

L̃
(j)

GjGj

]T [
L̃
(j)

GjGj

]
=
(
J
(j)
GjGj

)−1
. Since H(j) is the south-east sub-diagonal matrix

of H, it is easy to see that L̃
(j)

is the south-east sub-diagonal matrix of L̃ and

L̃
(j)

Gj
= L̃Gj

. Hence,

L̃
T

GjGj
L̃GjGj

=
(
J
(j)
GjGj

)−1
(74)

The above result shows that dGj
is determined by the diagonal block-matrix L̃Gj

of L̃. Now, since the SE of GDF detector is given by

E(φGDF ) = min(d2G0
, ..., d2GP−1

) (75)

and jGjmax is given as a design parameter, the problem is then to find an optimal

partition and detection order that maximizes min(d2G0
, ..., d2GP−1

). Notice that

different GDF detectors may have the same jGjmax but different numbers of

groups since P is not a design parameter.

Grouping and Ordering Algorithm : Find the optimal grouping and

detection order via the following steps.
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Step 1: Partition the K users into two groups fG0g and fḠ0g with jG0j · jGjmax.

Among these partitions (fG0g and jG0j are not fixed), select the one that

maximizes dG0,min (which is the minimum distance of matrix
[
J
(0)
G0G0

]−1
).

Step 2: Partition the remaining K ¡ jG0j users into two groups G1 and Ḡ1 with

jG1j · jGjmax. Among these partitions, select the one that maximizes

dG1,min.

Step 3: Continue this process until all the users are assigned to groups.

Example 1 : The algorithm is illustrated by the following 4-user example.

Suppose the H matrix is given by

H =




4.30 1.00 0.60 0.30

1.00 3.00 1.70 0.50

0.60 1.70 2.20 0.70

0.30 0.50 0.70 1.90




(76)

Assume that the desired maximum group size is jGjmax = 2. In step 1 of the

algorithm, the possible choices for group G0 and the resulting d2G0
are shown in

Table 1.

User(s) 0 1 2 3 0,1
d2G0

3.96 1.62 1.14 1.67 1.69

User(s) 0,2 0,3 1,2 1,3 2,3
d2G0

1.14 1.68 1.74 1.62 1.24

Table 1: Choices of group G0 and the corresponding d2G0,min
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The best choice for group G0 is fuser 0g. Then, for the user expurgated

channel, we have

H
(1) =




3.00 1.70 0.50

1.70 2.20 0.70

0.50 0.70 1.90




(77)

The possible choices for group G1 and the resulting dG1,min are shown in Table 2.

We can see that the best choice for group G1 is fuser 1, user 2g. Naturally fuser

User(s) 1 2 3 1,2 1,3 2,3
d2G1

1.69 1.14 1.68 1.78 1.68 1.24

Table 2: Choices of group G1 and the corresponding dG1,min

3g will be the last group. The resulting SE for this partitioning and ordering is

E = 1.78.

Note that the above example has 4 users and jGjmax = 2. One may think

that partitioning users into 2 groups with 2 users in each group is a good choice.

However, since user 0 is a strong user, this user has to be detected first. And

since user 1 and user 2 are strongly correlated, they have to be assigned to

the same group. If, for example, we assign two groups as fuser0, user3g and

fuser1, user2g, then, as a penalty for detecting the weak user (user 3) first, we

obtain E = 1.68 < 1.78.

Before giving the proof of optimality to the GDF ordering, we present the

following three key lemmas.
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Lemma 1: Suppose H = L̃
T
L̃ is partitioned on an arbitrary diagonal element

as 


H11 HT
21

H21 H22


 =




L̃11 0

L̃21 L̃22



T 


L̃11 0

L̃21 L̃22


 (78)

For any permutation matrix P of the same size as H22, if




H11 HT
21P

PH21 PH22P


 =




C11 0

C21 C22



T 


C11 0

C21 C22


 (79)

The following results hold.

C11 = L̃11 , CT
22C22 = PL̃

T

22L̃22P (80)

The proof is straightforward and is therefore omitted. 2

Lemma 2: Suppose H is a m £m symmetric and positive definite matrix.

Suppose H = L̃
T
L̃ is the Cholesky decomposition. Partition H and L̃ on the last

(south-east) diagonal component as




H11 hT
21

h21 h22


 =




L̃11 0

l̃21 l̃22



T 


L̃11 0

l̃21 l̃22


 (81)

Now “move up” the last “user” to the first, denote the action and the new

Cholesky decomposition matrix by



h22 h21

hT
21 H11


 =



c11 0

c21 C22



T 

c11 0

c21 C22


 (82)

Then matrix CT
22C22 ¡ L̃

T

11L̃11 is non-negative definite.
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Proof : Substituting (81) into (82) yields

CT
22L22 ¡ L̃

T

11L̃11 = l̃
T

21̃l21 ¸ 0 (83)

2

Lemma 3: Suppose L and L̃ are two lower triangular matrices of size m£m,

and assume that LTL¡L̃
T
L̃ ¸ 0. Partition L on an arbitrary diagonal component,

and partition L̃ accordingly as

L =




L11 0

L21 L22


 , L̃ =




L̃11 0

L̃21 L̃22


 (84)

We have

LT
11L11 ¡ L̃

T

11L̃11 ¸ 0 , LT
22L22 ¡ L̃

T

22L̃22 ¸ 0 (85)

Proof : Since LTL¡ L̃
T
L̃ ¸ 0, we can find a lower triangular matrix C which

satisfies

L
T
L = L̃

T
(
I+C

T
C
)
L̃ (86)

According to (84), partition C as

C =




C11 0

C21 C22


 (87)

Substitute (84) and (87) into (86) to obtain

LT
22L22 = L̃

T

22

(
I+CT

22C22

)
L̃22

L
T
11L11 = L̃

T

11

(
I+C

T
11C11

)
L̃11 +4 (88)

where 4 is a symmetric non-negative definite matrix. The proof is complete. 2
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Note that in Lemma 3, we can continue partitioning the sub-diagonal block

matrices, and apply Lemma 3 iteratively to obtain a result similar to (85) for an

arbitrary partition.

With the help of the above three lemmas, we now show the following results.

Proposition 1 : The proposed grouping and ordering algorithm maximizes

the ASE in (75).

Proof : Denote the optimal group and detection sequence determined by

the proposed algorithm as G, which has groups G0, . . . ,GP−1. Denote the GDF

detector using detection sequence G by ΦG−GDF . The idea of the proof can be

summarized as follows. Suppose there is another group and detection sequence

G(i), which has groups G
(i)
0 , . . . , G

(i)

P (i)−1
. Without loss of generality, assume 8j

(0 · j < i) G(i)
j = Gj (The superscript (i) means that the first i groups in G(i)

are identical to the first i groups in G). 2

Now construct a new group and detection sequence G(i+1). The groups of

G(i+1) are defined by




G(i+1)
j = G(i)

j = Gj 0 · j < i

G
(i+1)
j = Gj j = i

G(i+1)
j = G(i)

j−1 nGi j > i

(89)

To simplify the notation, in the above construction, if G(i+1)
j = NULL, we still

keep group G
(i+1)
j and define d2

G
(i+1)
j

= 1. Evidently, G(i+1) has one more group

than G(i). The following result holds for G(i+1).
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Proposition 2: If G(i+1) is constructed according to the above definition,

then

(1) 8j (0 · j < i), d2
G

(i+1)
j

= d2
G

(i)
j

.

(2) d2
G

(i+1)
i

¸ d2
G

(i)
i

.

(3) 8j (i < j · P (i)), d2
G

(i+1)
j

¸ d2
G

(i)
j−1

.

Proof :

(1) For any j < i, the decision for group G
(i)
j is made by treating the signal

corresponding to G(i)
j+1, ..., G

(i)

P (i)−1
as noise and minimizing the probability

of error in ML sense. Therefore, any swapping of users within groups of

index larger than j will not affect the performance of G
(i)
j . This result can

be formally proved using Lemma 1.

(2) Since G(i)
j = G(i+1)

j (8j < i), this result can be directly obtained from the

definition of the optimal grouping and ordering algorithm.

(3) The proof for this part is relatively tricky. In fact, the construction of G(i+1)

from G(i) can be divided into three stages. Define the users in group Gi as

K0, ..., K|Gi|−1. For convenience of discussion, we first consider user K0.

Stage 1 Suppose, in G(i), user K0 belongs to group G
(i)
j (j ¸ i). Define the

action “take out user K0 from group G(i)
j ”, which converts G(i) to
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G(S1), as, 


G(S1)
k = G(i)

k k < j

G(S1)
k = fuserK0g k = j

G
(S1)
k = G

(i)
j n fuserK0g k = j + 1

G(S1)
k = G(i)

k−1 k > j + 1

(90)

The “take out” action is illustrated in Figure 4.

Figure 4: Illustration of “take out user K0 from group G
(i)
j ”

Stage 2 Now in G(S1), we have G(S1)
j = fuserK0g. Define the action “move

up user K0 to follow group G(S1)
i−1 ”, which converts G(S1) to G(S2), as

follows, 


G
(S2)
k = G

(S1)
k k < i

G(S2)
k = fuserK0g k = i

G
(S2)
k = G

(S1)
k−1 i < k · j

G(S2)
k = G(S1)

k k > j

(91)

And this is illustrated in Figure 5.
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Figure 5: Illustration of “move up user K0 to follow group G
(S1)
i−1 ”

Continue performing the above two stages on all users K0, ..., K|Gi|−1.

Denote the resulting group and detection sequence as G(S3). Denote

the number of groups in G(S3) by P (S3).

Stage 3 In G(S3), combine groups fK|Gi |−1g, ..., fK0g, which converts G(S3) to

G(i+1), as,




G
(i+1)
k = G

(S3)
k k < i

G(i+1)
k = fuserK0, ...,K|Gi|−1g k = i

G
(i+1)
k = G

(S3)
k−|Gi|+1 k > i

(92)

The “Combine” action is illustrated in Figure 6.

In the first stage, without loss of generality, suppose user K0 is the first user

in group G
(i)
j . The “take out” action does not change the order of the users,

thus the Cholesky decomposition matrix L̃ remains unchanged. This shows
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Figure 6: Illustration of “combine groups fK|Gi|−1g, ..., fK0g”

that L̃
G

(S1)
j+1 G

(S1)
j+1

is the south-east diagonal sub-block of L̃
G

(i)
j

G
(i)
j

. Therefore,

d2
G

(S1)
j+1

¸ d2
G

(i)
j

(93)

In the second stage, since the “minimum distance” of a sub-block is the

performance measure for the corresponding user group given all the user

groups with smaller indices are correctly detected, putting more users into

the detected user list will result in a better performance and a larger “min-

imum distance”. In fact, from Lemma 2 and Lemma 3, for any groups

G(S2)
k = G(S1)

k−1 , i < k · j, we have,

L̃
T

G
(S2)
k

G
(S2)
k

L̃
G

(S2)
k

G
(S2)
k

¡ L̃
T

G
(S1)
k−1

G
(S1)
k−1

L̃
G

(S1)
k−1

G
(S1)
k−1

¸ 0 (94)

Hence, in G(i+1), for any j > i, d2
G

(i+1)
j

¸ d2
G

(i)
j−1

, which proves part (3) of

proposition 3. 2
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Proposition 2 shows that

E(ΦG(i+1)−GDF ) ¸ E(ΦG(i)−GDF ) (95)

By iteratively using the above construction procedure in the proof of Proposition

1, we will finally get G(P ) = G and

E(φG(P )−GDF ) ¸ E(φG(i)−GDF ) (96)

which completes the proof. 2

The grouping and ordering algorithm is also optimal in the following sense.

Proposition 3 : The proposed grouping and ordering algorithm maximizes

the performance lower bound in (37) for every group. In other words, suppose G

is the grouping and ordering result obtained from the proposed algorithm, and Gk

is one of the groups in G. Further suppose there is another group and detection

sequence Ĝ with Ĝl being one of the groups in Ĝ, and Ĝl = Gk. The following

result holds,

min(d2G1
, . . . , d2Gk

) ¸ min(d2
Ĝ1
, . . . , d2

Ĝl
) (97)

Proof : In the above proof for proposition 1, let G(i) = Ĝ. Construct G(i+1)

using the same procedure. Note that G
(i)
l = Ĝl = Gk, and Gk \ Gi = NULL.

Therefore, in G(i+1), we have G
(i+1)
l+1 = Gk. And

min(d2
G

(i+1)
0

, . . . , d2
G

(i+1)
l+1

) ¸ min(d2
Ĝ0
, . . . , d2

Ĝl
) (98)

By iteratively using the construction procedure, we will finally get G(P ) = G

which satisfies

min(d2G0
, . . . , d2Gk

) ¸ min(d2
Ĝ0
, . . . , d2

Ĝl
) (99)
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Hence the proof is complete. 2

In addition to the above 2 propositions, we can derive a fast computational

method for the GDF detector. We suggest the following steps for the group

detection.

Computational Method for GDF Detector: Suppose the GDF detector

has P groups, G0, ..., GP−1.

1) Initialize ỹ(1) = (L−1)Ty, L̃ = LW, L̃
(1)

= L̃. Let j = 1;

2) Form the white noise system model for the user-expurgated channel, par-

tition the vectors and matrices according to group Gj and its complement

Ḡj as 


ỹ
(j)
Gj

ỹ
(j)

Ḡj


 =




L̃
(j)

GjGj
0

L̃
(j)

ḠjGj
L̃
(j)

ḠjḠj






b
(j)
Gj

b
(j)

Ḡj


+




ñ
(j)
Gj

ñ
(j)

Ḡj


 (100)

Find the decision on group Gj by

b̂Gj
= arg min

bGj
∈{−1,+1}|Gj |

∥∥∥L̃GjGj
bGj

¡ ỹ
(j)
Gj

∥∥∥2
2

(101)

3) Compute ỹ(j+1) by

ỹ(j+1) = ỹ
(j)

Ḡj
¡ L̃

(j)

ḠjGj
b̂Gj

(102)

Let

L̃
(j+1)

= L̃
(j)

ḠjḠj
(103)

4) Let j = j + 1. If j < P , go to step 2; otherwise, stop the computation.
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The computational cost for step 1 is K(K+1)
2

multiplications and K(K−1)
2

addi-

tions. Assume the computational cost for step 2 can be bounded by

“ £ ” · M (jGjj) , “ + ” · S(jGjj) (104)

where “£ ” denotes the number of multiplications and “+” denotes the number

of additions. In step 3, since b can only take known discrete values and L̃ can be

precomputed and stored, only jGjj∑P−1
k=j+1 jGkj additions are needed. Therefore,

the overall computational cost is bounded by

“£ ” · K(K + 1)

2
+

P−1∑
k=0

[M (jGkj)]

“ + ” · K(K ¡ 1)

2
+

P−1∑
k=0


S(jGkj) + jGkj

P−1∑
j=k+1

jGj j



(105)

3.1.3 Simulation Results

Example 1 - continued : In the previous 4-user example, η(φGDFD) =

1.78. The SE for optimal decorrelating-DF detector and the ML detector can be

obtained from [Va99] as E(φD−DF ) = 1.69 and E(φML) = 1.8. The simulation

results are shown in Figure 7, which are consistent with the theoretical analysis.

Example 2 : In this 60-user example, we use 63-length Gold codes as user

signature sequences. The power of the user signals are generated by wkk »

N(4.5,4) (N (.) represents the Gaussian distribution) and are limited within the
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Figure 7: Performance of various methods (4 users, 100000 Monte-Carlo runs
with importance sampling)

range of [2, 7]. The maximum group size is assumed to be 5. Figure 8 shows the

simulation results of the performances of different detectors.

Example 3 : In the last example, we compare the computational loads for

different multiuser detectors. We fix the SNR at 12 dB and fix the maximum

group size at 5. The signature sequences are randomly generated and the ratio

between the spreading factor and the number of users is fixed at 1.2. Let the

number of users vary from 5 to 60. Figure 9 shows the worst case computational

complexity measured in terms of the number of multiplications plus number of

additions of different detectors. For GDF detector, although the computation for

finding the optimal user partitioning and user ordering is O(K |G|max), it can be

done offline. When jGjmax is small, as can be seen from the figure, the increase in
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Figure 8: Performance of various methods (60 users, 63-length Gold codes as
signature sequences, 100000 Monte-Carlo runs with importance sampling)

the online computational cost of the GDF detector to D-DF detector is marginal.

The computational method used for the D-DF detector as well as for the ML

detector in this example may be found in [LPWL00].

3.1.4 Conclusions

An optimal grouping and ordering algorithm for Group Decision Feedback

Detector is proposed. Together with a fast computational method based on the

idea of branch and bound, the proposed algorithm provides a systematic way

of improving the Decision Feedback Detector, especially when strong correlation

exists among the users. Simulation results show that GDF detector with the

optimal grouping and ordering algorithm provides a considerable improvement
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Figure 9: Comparison of worst-case computational cost (random signature se-
quences, 10000 Monte-Carlo runs)

over DF detector, while the increase in online computational cost is marginal.

The proposed method can be easily extended to finite-alphabet signals instead

of binary ones.

3.2 Optimal Time Labeling and User Ordering for Ideal DF Detector

in Asynchronous CDMA

In asynchronous CDMA, it is commonly (and wrongly) accepted that users

should be detected either in decreasing order of their signal powers or in chrono-

logical order of their arrival times. In synchronous CDMA, as we have shown

in the previous sections, there are K! different user orders, and ordering users
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according to decreasing signal power is not necessarily optimal when user corre-

lations are considered; this remains so in the asynchronous case. Furthermore,

although it may at first appear that ordering in terms of arrival times is at least

a fixed strategy, one can actually consider any user as the first-arriving user by

fixing a fictitious initial bit to be zero.

In this section, we study user ordering and time labeling for the DF detec-

tor. Although our final goal is to minimize its probability of error, even the

asymptotic performance of a DF detector is, due to error propagation, hard to

estimate. In [Dh95], assuming no error propagation, the theoretical asymptotic

performance of the ideal DF detector is given. Building on this, we find a user

ordering and time labeling that maximizes the SE of the ideal DF detector. We

further show in computer simulations that, with the proposed user ordering and

time labeling, the asymptotic performance of an actual DF detector is indistin-

guishable from the theoretical performance bound. The overall computation for

the optimal user ordering and time labeling is shown to be O(K4), and is, of

course, considered as offline computational load since it is required only once for

a given user configuration.

3.2.1 DF Detector and The Time Labeling Issue

The asynchronous CDMA system can be described in the z domain by [Vd98]

y(z) = R(z)Wb(z) + n(z) (106)

where R(z) = R[1]T z +R[0] +R[1]z−1 is the correlation matrix.
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The asynchronous CDMA system is illustrated in Figure 10.

Figure 10: Bit epochs for Asynchronous CDMA (T is the symbol duration, τi is
the time delay for user i).

In the time domain representation, we denote b(i) to be the binary signal

vector for the ith time frame and denote bk(i) to be the binary signal of user k

in time frame i. We refer the time labeling issue as the assignment of the ith or

(i+ 1)st bit of each user to b(i).

It is easy to see that the time labeling of the system is not unique. In Figure

10, suppose we change the time label for user 1: an equivalent bit epoch can be

obtained as in Figure 11.

Now, given a time labeling, and after ordering users according to their times of

arrival, R[1] becomes an upper triangular matrix with zero diagonal components.

Factorize R(z) as R(z) = (F[0]T + F[1]T z)(F[0] + F[1]z−1). The corresponding

time-domain representation of the white noise model is

ỹ(i) = F[0]Wb(i) + F[1]Wb(i¡ 1) + ñ(i) (107)



60

Figure 11: Bit epochs for an equivalent system by changing the time labeling of
user 1 in Figure 10 (b1(i¡ 1) in this figure is physically b1(i) in Figure 10).

The DF detector assumes that the decisions for user bit bk(i ¡ 1) are made

prior to the decision of bj(i), 8k, j. Hence the performance is affected by both

user ordering and time labeling.

Assuming that the past decisions are correct, the SE of the ideal DF detector

at time index i can be found via [Va99]

E(Φideal DF ) = min
k=1,2,...,K

(F [0]kkwkk)
2 (108)

3.2.2 Optimal Time Labeling and User Ordering

Rewrite the system model (188) as,

F[0]T [ỹ(i) ¡ F[1]Wb(i¡ 1)] = F[0]TF[0]Wb(i) + F[0]T ñ(i) (109)

Given the idealized assumption that the past decisions are correct, the above

system model is equivalent to a synchronous CDMA model, in which RAEC =

F[0]TF[0], termed the asymptotic effective correlation, is the equivalent signature

correlation matrix. We begin with:
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Proposition 1: Given the time labeling, suppose R̃(z) = PTR(z)P is the

signature correlation matrix of the same system but with a different user order

(P is an arbitrary permutation matrix). The AEC matrix of the permuted system

satisfies R̃AEC = PTRAECP. The SE of the ideal DF detector is maximized by

applying the user ordering technique in Theorem 1 of [Va99] to WRAECW.

Proof: Define a sequence of matrices R(j), where

R(j) = R[0]¡R[1]T
[
R(j−1)

]−1
R[1] (110)

and R(0) = R[0].

From the iterative procedure proposed in [AR98], it follows that, in the

above procedure, R(j) ! RAEC as j ! 1. Since R̃(z) = PTR(z)P, we have

R̃[0] = PTR[0]P and R̃[1] = PTR[1]P. By defining the corresponding iterative

procedure for the permuted system, we can see that

R̃
(j)

= P
T
R

(j)
P (111)

Therefore, R̃AEC = PTRAECP. The proof follows from Theorem 1 of [Va99].

2

Via Proposition 1, we can perform user ordering for all possible time labelings

and choose the one that maximizes the SE. However, the matrices R[0] and R[1]

for different time labelings are different: we certainly do not want to apply the

expensive iterative procedure (110) to all time labelings to find the best.

Fortunately, this is unnecessary. Given a time labeling, we first order users

according to their times of arrival (see Figure 10). Apparently, the chronological
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user ordering vector uniquely represents the corresponding time labeling. For

example, the time labeling in Figure 10 can be represented by a vector T1 =

[1, . . . ,K], and the time labeling in Figure 11 is represented by a vector T2 =

[2, . . . ,K,1]. To change time labeling from T1 to T2, we only need to change the

time index definition of user 1, i.e., 8i, redefine b1(i) in time labeling T2 to be

b1(i + 1) in time labeling T1
1 . Consequently, we denote the conversion from

time labeling T1 to T2 by

T1
{user1}¡! T2 (112)

Note that for a valid time labeling, bk(i) must overlap with bj(i) 8k, j and for

any i. We have:

Proposition 2: Suppose there is a time labeling TG, where T1
G¡! TG that

converts T1 to TG. Then this G can be separated into two sets, G1, G2, where

G1 = fuser 1g and G2 is the rest of the users in G, i.e., G2 = G n G1. The

operation T1
G¡! TG can also be written as

T1
G1¡! T2 followed by T2

G2¡! TG (113)

Proof: Suppose user i 2 G and user 1 /2 G. Redefine bk(i) in time label TG

to bk(i+ 1) in T1. Now bk(i) and b1(i) in time label TG do not overlap, and this

is not valid. Therefore, user 1 2 G must be true. 2

1An equivalent conversion can be expressed as, 8j 6= 1,8i, redefining bj(i) in time labeling
T2 to be bj(i ¡ 1) in time labeling T1. However, without loss of generality, we only consider a
single-direction conversion in this paper, i.e., 8(k, i), the redefinition of bk(i) in T2 to be bk(i¡1)
in T1 is prohibited.
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It is clear now that the only valid time labelings are circular permutations,

that is, T1 = [1, . . . ,K], T2 = [2, . . . ,K, 1], . . ., TK = [K,1, . . . ,K ¡ 1]. Even

better, we have:

Proposition 3: Partition R[0], R[1], F[0], F[1] on their second diagonal com-

ponents (from upper-left corner) as

R[0] =



r11[0] r21[0]T

r21[0] R22[0]


 , R[1] =



0 r12[1]

0 R22[1]




F[0] =



f11[0] 0

f21[0] F22[0]


 , F[1] =



0 f12[1]

0 F22[1]




Then, the matrices corresponding to time labeling T2 become, respectively,

R̃[0], R̃[1], F̃[0] and F̃[1]:

R̃[0] =




R22[0] r12[1]T

r12[1] r11[0]


 , R̃[1] =




R22[1] r21[0]

0 0




F̃[0] =




F22[0] 0

f12[1] f11[0]


 , F̃[1] =




F22[1] f21[0]

0 0




Proof: Suppose the asynchronous CDMA system has M time frames. We

can view the asynchronous CDMA system as a KM -user synchronous CDMA

system (as introduced in [Vd98]). The overall signature correlation matrix R is

illustrated in Figure 12.

By partitioning the R matrix according to the time frame definition of T1

(shown by black solid lines in Figure 12), the diagonal block matrices are equal

to R[0], while the first off-diagonal block matrices are R[1] and R[1]T (shown by
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Figure 12: Relation between signature correlation matrices of different time la-
belings.

the light-grey blocks in Figure 12). Conversion of time labeling from T1 to T2 only

changes the time frame definition; hence, if we partition the R matrix according

to the time frame definition of T2 (dashed grey lines in Figure 12), the resulting

diagonal block matrices must equal R̃[0] and the first off-diagonal block matrices

are R̃[1] and R̃[1]T (the dark-grey blocks in Figure 12), respectively. This can be

easily extended to all time labelings. 2

It may also be observed from proposition 3 that the SEs of the ideal DF detec-

tors using chronological user ordering are identical. Furthermore, for chronologi-

cal user ordering, since time labeling does not change the detection order of the

physical signals, apparently, the performances of the actual DF detectors with

chronological user ordering are identical.

With the above results, the user ordering and time labeling algorithm proceeds

as follows.
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User Ordering and Time Labeling Procedure:

(1) Choose an arbitrary time labeling. Order users according to their times of

arrival.

(2) Apply the iterative procedure proposed in [AR98] to obtain F[0], F[1].

(3) Via Proposition 2, obtain the other K ¡ 1 time labelings with the corre-

sponding chronological user order.

(4) Via Proposition 3, obtain the corresponding F[0], F[1] matrices for the other

K ¡ 1 time labelings.

(5) Compute RAEC for all K different time labelings.

(6) Apply the user ordering proposed in Theorem 1 of [Va99] to WRAECW for

theK time labelings to obtain the optimal user order and the corresponding

SE of the ideal DF detector for the K time labelings.

(7) Choose the time-labeling and user-ordering pair that maximizes the ideal

SE.

The following 3-user example illustrates the user ordering and time labeling

procedure.

Example 1: Suppose users are ordered according to their physical times

of arrival (without adding any fictitious signal bits). Define the original time
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labeling as T1 = [1,2, 3]. The correlation matrices of the system and the W

matrix are given by

RT1[0] =




1.0 ¡0.27 ¡0.01

¡0.27 1.0 0.16

¡0.01 0.16 1.0



; RT1[1] =




0 ¡0.06 0.55

0 0 ¡0.49

0 0 0



;

W = diag(4.36, 4.48, 4.1) (114)

By applying the iterative procedure proposed in [AR98], the factorization

matrices corresponding to time labeling T1 are obtained as

FT1[0] =




0.96 0 0

¡0.28 0.97 0

¡0.01 0.25 0.75



; FT1[1] =




0 ¡0.06 0.43

0 0 ¡0.51

0 0 0




(115)

According to proposition 2, the two other valid time labelings are T2 = [2, 3, 1]:

RT2 [0] =




1.0 0.16 ¡0.06

0.16 1.0 0.55

¡0.06 0.55 1.0



; RT2[1] =




0 ¡0.49 ¡0.27

0 0 ¡0.01

0 0 0



(116)

and T3 = [3, 1, 2]:

RT3[0] =




1.0 0.55 ¡0.49

0.55 1.0 ¡0.27

¡0.49 ¡0.27 1.0



; RT3[1] =




0 ¡0.01 0.16

0 0 ¡0.06

0 0 0



(117)
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From proposition 3, the factorization matrices corresponding to time labeling

T2 and T3 are,

FT2 [0] =




0.97 0 0

0.25 0.75 0

¡0.06 0.43 0.96



; FT2[1] =




0 ¡0.51 ¡0.28

0 0 ¡0.01

0 0 0




FT3[0] =




0.75 0 0

0.43 0.96 0

¡0.51 ¡0.28 0.97



; FT3[1] =




0 ¡0.01 0.25

0 0 ¡0.06

0 0 0



(118)

In step 5, we calculate the RAEC matrices for all 3 time labelings,

(RAEC)T1 =




1.0 ¡0.27 ¡0.01

¡0.27 1.0 0.19

¡0.01 0.19 0.56




(RAEC)T2 =




1.0 0.16 ¡0.06

0.16 0.74 0.41

¡0.06 0.41 0.92




(RAEC)T3 =




1.0 0.55 ¡0.49

0.55 1.0 ¡0.27

¡0.49 ¡0.27 0.93




(119)

By using the user ordering algorithm proposed in Theorem 1 of [Va99], the

optimal SE and the corresponding optimal user order of the ideal DF detector

corresponding to time labelings T1, T2 and T3 are ET1 = 9.43, for which the
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algorithm of [Va99] finds fuser1, user2, user3g to be the best user ordering

within this time labeling; ET2 = 12.49, for which we get fuser2, user1, user3g;

and ET3 = 13.26, which yields fuser2, user1, user3g; respectively. Therefore, the

optimal time labeling is T3 and the optimal user order is fuser2, user1, user3g.

Since the iterative procedure (110) needs to be applied at least once in the DF

detector for asynchronous CDMA, the extra computation to obtain the optimal

user order and time labeling is O(K4).

3.2.3 Computer Simulations

In this section, we use computer simulations to verify the optimality of the

proposed user ordering and time labeling algorithm on actual DF detectors. The

following conventions are used:

(1) Optimal DF Detector: The DF detector that uses the optimal user order

and time labeling proposed here.

(2) Chronological User Order: The DF detector whose order of decisions

is exactly that of the time of arrival of each bit.

(3) Decreasing Power User Order with Physical Time Labeling: DF

detector with the same time labeling of bit epochs as (2). However, within

each epoch, ordering is based on user signal powers.
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(4) Decreasing Power User Order with Optimal Time Labeling: DF

detector with optimal time labeling as (1). However, ordering within each

epoch is based on user signal powers.

(5) Ideal DF Detector: Optimal DF detector (as in (1)) for which previously-

decoded bits are error-free. This can be considered as a lower bound on the

probability of group detection error for a DF detector.

(6) Truncated DF Detector: Although the proposed algorithm maximizes

the SE of the ideal DF detector, the performance of the actual DF detector

is hard to estimate due to error propagation [Dh95]. Suppose the entire

transmission data hasM time frames. As shown in [Vd98], one can consider

every bit as being transmitted by a different fictitious user and consider the

K-user M -frame asynchronous CDMA system as a MK user synchronous

system. Consequently, the optimal DF detector that minimizes the prob-

ability of asymptotic group detection error for the K user asynchronous

CDMA is obtained by applying the optimal user ordering algorithm, in-

troduced in Theorem 1 of [Va99], to the MK user synchronous CDMA.2

Unfortunately, such a DF detector is quite hard to implement. To avoid

this, in (185), we only consider the data within a processing window from

time frame (i¡ L) to (i+L) when detecting the user signal vector in time

frame (i). When L is sufficiently large, the performance of the truncated

2Asymptotically, the probability of error of the K user asynchronous CDMA system is
dominated by the users with minimum Asymptotic Effective Energy [Dh95], which is also the
SE of the MK user synchronous system.
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DF detector is practically the same as that of the optimal DF detector.

In computer simulations, we also assume that the user signals outside the

processing window are known.

Example 1 (continued): In Figure 27, the performances of four DF detectors

are considered. The performances of the actual DF detector and the ideal DF

detector are indistinguishable. Although the optimal user ordering in this exam-

ple happens to be the decreasing power user order, without a good time labeling

the decreasing-power user ordering strangely cannot even ensure a near-optimal

performance. From the simulation results, the performance of the DF detector

with decreasing power user order is the same as that of the chronological user

order.

Although in most of the cases, the proposed DF detector achieves the same

performance as its corresponding ideal version, one of the exceptions is shown

below.

Example 2 : The correlation matrices of the system and the W matrix of

this 3-user example is given by

R[0] =




1.0 0.47 ¡0.44

0.47 1.0 ¡0.47

¡0.44 ¡0.47 1.0



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Figure 13: Performance comparison of DF detectors with different user order and
time labeling. 3-Users, 100000 Monte-Carlo runs.

R[1] =




0 ¡0.51 0.02

0 0 0.01

0 0 0




W = diag(4.45, 4.53,4.45) (120)

The performances of several detectors are depicted in Figure 28. Due to error

propagation, the performance of the actual DF detector does not match its ideal

version. However, the lower bound provided by the truncated DF is still achieved;

note that the ideal DF detector does not necessarily provide a tight bound and, in

fact, the truncated DF detector is a reasonable bound on achievable performance.

In this example, since there is no significant difference in user signal powers, the
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decreasing power user ordering strategy is equivalent to a random user ordering

in terms of performance. Even with optimal time labeling, the DF detector with

decreasing power user order shows a significantly degraded performance.

Figure 14: Performance Comparison of DF detectors with different user ordering
and time labeling. 3-Users, 100000 Monte-Carlo runs. The truncated DF detector
uses a window width L = 81, meaning that it is equivalent to synchronous CDMA
with 243 “users”.

Example 3 : In the last example, we consider an overloaded system that

has 70 users. The signature sequences are chosen to be 31-length Gold codes.

The time delays of user signals are random and uniformly-distributed within a

symbol duration and we use the system model introduced in [Ps77] to generate

the signature correlation matrix. The signal to noise ratio is fixed at 16.6dB. The

square roots of user signal powers are generated randomly by wkk » N (4.5, 4)

(N(.) represents the Gaussian distribution) and are limited within the range of
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[3, 6]. Figure 15 shows the histogram of the performances of 70 DF detectors with

randomly generated user orders and time labelings. Apparently, the performance

of a DF detector with random user ordering and time labeling can be far from

optimal. In order to show the effect of time labeling only, in Figure 16, we show

the histogram of performances of 70 DF detectors with different time labelings

and the corresponding optimal user orders. We can see that, even when an

optimal user order is guaranteed, the performance improvement with an optimal

time labeling can still be significant.

Figure 15: Performance histogram (Random time labeling with random user
ordering, 70 users with 31-length Gold codes, 200000 Monte-Carlo runs)
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Figure 16: Performance histogram (Random time labeling with optimal user
ordering, 70 users with 31-length Gold codes, 200000 Monte-Carlo runs)

3.2.4 Conclusions

The time labeling and user ordering that jointly optimize the asymptotic per-

formance of an ideal decision feedback detector in asynchronous CDMA are given.

Simulation results show that the ordering provided is not just asymptotically op-

timal (i.e., in terms of symmetric energy), but is also practically significant. The

proposed ordering can be performed offline with a computational complexity of

O(K4). The performance improvement can be substantial when compared to

a chronological or a received signal power user-ordering, the natural and sim-

plest first choices. The ideas can easily be extended to group decision feedback

detection [LPW01] in asynchronous CDMA.



Chapter 4

Fast Optimal and Suboptimal “Any-time”

Algorithm Based on Branch-and-Bound

Although optimal multiuser detection is generally NP hard and is therefore

unlikely to be implemented in practice, it is often included in computer simulta-

tions for comparisons and research purposes. Fast optimal algorithms enable the

simulation of optimal detection for large size systems and are very helpful for the

research of advance suboptimal detection methods.

Define H and L̃ by (70). Then, the ML optimal detector can be represented

by

ΦML : b̂ = arg min
b∈{−1,+1}K

(
bTHb¡ 2yTWb

)
(121)

The idea of using a branch and bound method in solving optimization prob-

lems is already well known [PR90]. However, the tradeoff between a tight lower

bound and a lower bound with less computational requirements is common to

75
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most of the problems. In multiuser detection, branch-and-bound method with

breadth-first search has been used in [SW97] to find the minimum distance of

H. In this chapter, we propose a new optimal algorithm based on the Branch-

and-Bound search. Although the worst case computational cost for any optimal

algorithm is exponential in the number of users, with the help of the user order-

ing and a tight MSE lower bound on the optimal cost, the proposed algorithm

reduces the average computational cost significantly.

The optimal algorithm is proposed and studied in section 4.1. As a by-

product, a suboptimal “Any-time” algorithm is proposed in section 4.2. Sim-

ulation results are shown in section 4.3.

4.1 Optimal Algorithm Based on Branch and Bound

Since H−1 = L̃
−1

L̃
−T

, from the white noise model, the objective function in

(121) can be equivalently written as

ΦML : b̂ = arg min
b∈{−1,+1}K

∥∥∥L̃b¡ ỹ
∥∥∥2
2

(122)

Define D = L̃b, and denote the kth component of D and ỹ by Dk and ỹk,

respectively. Consequently, we have

φML : b̂ = arg min
b∈{−1,+1}K

kD¡ ỹk22

= arg min
b∈{−1,+1}K

K∑
k=1

(Dk ¡ ỹk)
2 (123)

Here, since L̃ is a lower triangular matrix, Dk depends only on (b1, b2, ..., bk).

When the decisions for the first k users are fixed, the term



77

ξk =
k∑

i=1

(Di ¡ ỹi)
2 (124)

can serve as a lower bound of (123). It can be easily seen that the lower bound

is in fact an unconstrained MMSE solution and is achievable when the binary

constraints on (bk+1, ..., bK) are disregarded. The branch and bound tree search

to find the minimum value of kD¡ ỹk22 is described below.

Similar to a general branch and bound method [Bk99], the algorithm main-

tains a node list called OPEN , and a scalar called UPPER, which is equal

to the minimum feasible cost found so far, i.e., the “Current-Best” solution.

Define k to be the level of a node (virtual root node has level 0). Label the

branches with Dk(b1, b2, ..., bk+1), which connect the two nodes (b1, ..., bk) and

(b1, ..., bk+1). The node (b1, ..., bk) is labeled with the lower bound ξk. Also, de-

fine vk =
∑k

i=1

[
bi ¤ (the ith column of L̃)

]
¡ỹ, denote [vk]j as the jth component

of vector vk, and lij as the (i, j)th element of L. The branch and bound algorithm

proceeds as follows.

1) Precompute ỹ = L−1Ty;

2) Initialize k = 0. vk = ¡ỹ, ξk = 0, UPPER = +1 and OPEN = NULL;

3) Set k = k+1. Choose the node in level k such that bk = ¡sign ([vk−1]k). If

k < K, append the node with bk = sign ([vk−1]k) to the end of the OPEN

list;

4) Compute vk = vk−1 + bk ¤ (the kth column of L̃);
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5) Compute ξk = ξk−1 + (Dk ¡ ỹk)2 = ξk−1 + (vk)2k;

6) If ξk ¸ UPPER and the OPEN list is not empty, drop this node. Pick

the node from the end of the OPEN list, set k equal to the level of this

node and go to step 4;

7) If ξk < UPPER, k = K and the OPEN list is not empty, update the

“Current-Best” solution and UPPER = ξk. Pick the node from the end of

the OPEN list, set k equal to the level of this node and go to step 4;

8) If ξk < UPPER and k 6= K, go to step 3;

9) If ξk < UPPER, k = K and the OPEN list is empty, update the “current-

best” solution and UPPER = ξk;

10) For all other cases, stop and report the “current-best” solution.

Example 1: The following 3-user example illustrates the procedure. The

system is given by

H =




4.25 0.85 0.57

0.85 3.0 1.6

0.57 1.6 2.0




=




2.0 0 0

0.3 1.3 0

0.4 1.1 1.4




T 


2.0 0 0

0.3 1.3 0

0.4 1.1 1.4




(125)
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Assume the source signal is b = [1,¡1, 1]T , the noise vector multiplied by W

is Wn = [0.81,1.93,¡0.22]T , hence Wy = [4.78, 1.38, 0.75]T . Figure 17 shows

the branch-and-bound tree structure.

Figure 17: Example of the depth-first Branch-and-Bound algorithm

In step 1), we precompute ỹ = (L−1)Ty = (L̃
−1
)TWy = [2.2, 0.6, 0.5]T . Then,

initialize k = 0, v0 = [¡2.2,¡0.6,¡0.5]T , ξ0 = 0, UPPER = +1, OPEN =

NULL. In step 3), let k = 1, choose the node with b1 = ¡sign(¡2.2) = 1 (node

1 in Figure 17). Add node 5 to the OPEN list. Update v1 = [¡0.2,¡0.3,¡0.1]T ,

ξ1 = 0.04. Since ξ1 < UPPER, goto step 3. This leads us to node 2. Add node
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4 to the end of the OPEN list. Then, since the next level is the bottom level,

from step 3, we know node 3 gives better result than node (1, 1,¡1). Therefore,

without changing the OPEN list, we go to node 3 (which is the first feasible

solution and, as shown later, it also corresponds to the D-DF solution) and update

UPPER = ξ3 = 2.64. In step 6, we pick node 4 from the end of the OPEN list.

Go to node 5, and obtain ξ3 = 2.63 < UPPER, which means that node 5 is a

better solution. Update UPPER = 2.63 and pick node 6 from the OPEN list.

For node 6, since ξ1 = 17.6 > UPPER, we drop this node. Now the OPEN list

is empty, the algorithm stops and reports node 5 as the optimal solution.

The above algorithm is a branch and bound method with depth-first search.

The computational cost for step 1) is K(K+1)
2

multiplications and K(K−1)
2

addi-

tions. In step 3), since bk can only take known discrete values, L̃ can be pre-

computed and stored; hence, only K ¡ k + 1 additions are needed to obtain vk.

Step 5) needs 1 addition and 1 multiplication. Notice that step 1) is outside

the branch-and-bound search. To update the lower bound for a node on level

K ¡ k + 1 (k = 1, ...,K), only k + 1 additions and 1 multiplication is needed. In

addition, the computation for finding the first feasible solution (also the optimal

solution in the noise-free case) requires K(K+3)
2

multiplications and K(K + 1)

additions.

Proposition 1: The first feasible solution obtained from the above depth-

first search is the solution of D-DFD method.
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Proof: From step 3), when we branch, we first go to the node with a smaller

lower bound value. In the above Branch-and-Bound method, suppose (b1, ..., bk−1)

has already been fixed by the branch, the choice of bk for the branch and bound

method can be described by

b̃ = arg min
bk ∈ {−1,+1}

bk+1, ..., bK ∈ (−∞,∞)

(b ¡H
−1

Wy)TH(b¡H
−1

Wy)

bk = b̃k (126)

Notice that in (126), (b1, ..., bk−1) is fixed and we only have a binary constraint

on bk. The choice of bk for D-DF method, however, is given by

b̃ = arg min
bk ,...,bK∈(−∞,∞)

(b¡H
−1

Wy)TH(b¡H
−1

Wy)

bk = sign(b̃k) (127)

Figure 18 shows the difference between the above two choices. The ellipses

here represent the level curves of the objective function. For the D-DFD method,

the decision on bk is made by comparing the lengths jAOj and jBOj. While for

the proposed branch-and-bound method, the decision on bk is made by comparing

the lengths jCOj and jDOj. Since the triangles AOC and BOD are similar, (126)

and (127) are equivalent.
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Figure 18: Comparison of D-DF detector and Branch-Bound decisions on bk

Example 1 - continued : In the above example, on node 1, the user expur-

gated channel for the D-DF method is represented by

w22y2

w33y3


¡



0.85

0.57


 =



3.0 1.6

1.6 2.0





b2

b3


+



w22n2

w33n3


 (128)

According to (127), the decision on b2 for D-DFD is made by

b̃ =



3.0 1.6

1.6 2.0



−1




1.38

0.75


¡



0.85

0.57




 =




0.22

¡0.09




b2 = sign(b̃2) = 1 (129)

which is consistent with the depth-first direction of branch-and-bound algorithm.

However, as shown in the example, D-DF method failed to find the optimal

solution.

Recall that in the branch-and-bound algorithm, the computational cost re-

quired to obtain the first feasible solution (also the solution of D-DF detector)
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is much less than the computational cost of a conventional linear detector. Ev-

idently, any further computations will result in better accuracy than the D-DF

detector (unless the D-DF solution is already optimal).

4.2 “Any-Time” Suboptimal Algorithm

Although the average computational cost may not be very high, the compu-

tation for the worst case is still exponential in the number of users since the ML

solution is generally NP hard. Hence the optimal algorithm is not implementable

when the number of users is large. When a strict limitation on computational

cost exists, the “current-best” solution in the above branch and bound method

can serve as a sub-optimal alternative to the NP hard optimal solution.

Define the sub-opimal detector that explores the sub-tree under and including

level K ¡ k + 1 to be ΦBB−k (k = 1, ...,K). From the above analysis of the

computational cost, the worst-case computation for ΦBB−k is given by

Multiplications · K(K + 3)

2
+ 3 ¤ 2k−1 ¡ k ¡ 2

Additions · K(K + 1) + 5 ¤ 2k

¡(k + 3)(k + 4)

2
(130)

To derive the SE measure for ΦBB−k, define P (ij1, ..., i ¡ 1) to be the event

that the decision on user i is correct (i = 1, ...,K ¡ k), given all the decisions

on users j < i are correct. Consider the ML solution (122). Substitute (10) into
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(122), denote the true source signal by b0, to obtain

ΦML : b̂ = arg min
b∈{−1,+1}K

∥∥∥L̃b¡ ỹ
∥∥∥

= arg min
b∈{−1,+1}K

∥∥∥L̃(b¡ b0)¡ ñ
∥∥∥ (131)

Since ñ can be viewed as K independent zero mean Gaussian noise variables

with covariance matrix σ2I. Assuming that the decisions on (b1, ..., bi−1) are

correct, the lower bound ξi can be expressed as

ξi =
i∑

j=1

(Dj ¡ ỹj)
2 =

i−1∑
j=1

ñ2
j + [l̃ii(bi ¡ b0i)¡ ñi]

2 (132)

and P (ij1, ..., i¡ 1) is given by

P (ij1, ..., i¡ 1) = Q(
jl̃iij
σ

) (133)

Also, similar to (27), define the minimum distance among usersK¡k+1, ...,K

by

dmin−k =
√√√√√√√√√√

min

e 2 f¡1, 0, 1gK ¡ f0g

e1, ..., eK−k = 0

feTHeg (134)

Given that the decisions on users 1, ...,K ¡ k are correct, the group detection

error of ΦBB−k can be approximated by

P (K ¡ k + 1, ...Kj1, ...,K ¡ k) ¼ Q

(
dmin−k

σ

)
(135)

Therefore, the overall group decision error of ΦBB−k can be expressed as

PΦBB−k
(e) ¼ 1 ¡ f

K−k∏
j=1

[1¡Q

( jl̃jj j
σ

)
]g[1 ¡Q

(
dmin−k

σ

)
] (136)
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The SE is then given by

E(ΦBB−k) = min
i=1,...,K−k

(l̃2ii, d
2
min−k) (137)

Furthermore, from the definitions of (134) and (27), we have

d2min−k ¸ d2min = E(ΦML) ¸ E(ΦBB−k) (138)

E(ΦBB−k) can then be denoted by

E(ΦBB−k) = min(d2min, min
i=1,...,K−k

l̃2ii) (139)

Evidently, the performance and even the average computational cost of the

above sub-optimal method are also affected by the detection order of the users.

For the D-DF method, a user ordering algorithm is proposed in [Va99] as follows,

Order Algorithm: Order users as follows: select the first user in the new

order (denote this user’s index as i1) as

i1 = arg min
j=1,...,K

[H−1]jj (140)

For k = 2, ...,K, form a new matrix Ĥ to be part of H that only contains the

components fhijg (i, j 2 ff1, ...,Kg ¡ fi1, ..., ik−1gg). Find

îk = arg min
j=1,...,K−k+1

[Ĥ
−1
]jj (141)

and let ik equal to the user corresponding to îk.

Proposition 2: When ordering users by the order algorithm, the SE E(ΦBB−k)

of all k = 1, ...,K are maximized simultaneously.

We ignore the proof here since it is actually a special case to the GDF detector

with jGjmax = 1.
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4.3 Simulation Results

According to (130), the computational complexity for the sub-optimal detec-

tor ΦBB−k is exponential in k. However, since we assume H to be known, the

SE of the proposed “current-best” sub-optimal solutions can be found offline by

(139). The following simulation results show that, in some cases, a small amount

of extra computation can significantly improve the performance of the system,

when compared with the ΦD−DF (which is the same as ΦBB−1).

Example 1 - continued: In the previous example, since users 2 and 3 are

strongly correlated, we expect that E(φBB−2) will be a significant improvement

over E(φD−DF ). The SE for different detectors can be obtained via (26) (139),

E(φML) = 1.8, E(φBB−2) = 1.8, E(φD−DF ) = 1.69. The simulation result is

given in Figure 19, which is consistent with the theoretical analysis.

Example 2: Now suppose we have 50 users. We use binary signature se-

quences of length 55. The signature sequences are generated such that 5 ¡ 10

users are correlated with each other (The maximum correlation among users is

set to be around 0.85). The energy of each user is generated randomly between

[1, 4.5]. In these cases, the proposed sub-optimal algorithm outperforms the D-

DFD method significantly. In the situations when only a small number of users

are correlated, the sub-optimal algorithms can even reach the performance bound

of the optimal detector with marginal increase in computational cost over the D-

DFD method. Figure 20 shows the simulation results of one of these examples.
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Figure 19: Performance of various methods (3 users, 10000 Monte-Carlo runs)

The comparison of the computational cost for the group detection of different

algorithms is given in Table 3.

φD φD−DF φBB−5

SNR £ + £ + £ + £ +
(db) Average Maximum
17 2500 2450 1325 2550 1329.1 2568.5 1366 2674
18.5 2500 2450 1325 2550 1329 2568.1 1366 2674
19.5 2500 2450 1325 2550 1329 2568 1366 2674
21.1 2500 2450 1325 2550 1329 2568 1366 2674
21.8 2500 2450 1325 2550 1329 2568 1366 2674

Table 3: Comparison of Computational Cost (50 users, spreading factor 55, 10000
Monte-Carlo runs, £ = number of multiplications, + = number of additions)
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Figure 20: Performance of various methods (50 users, spreading factor 55, 10000
Monte-Carlo runs)

Example 3: In another 8 user example, the H matrix is randomly generated

as

H =




3.0 ¡0.4 1.4 ¡0.5 0.4 ¡0.3 0.3 ¡0.6

¡0.4 1.9 ¡0.8 0.0 0.7 0.6 ¡0.5 0.2

1.4 ¡0.8 2.8 ¡1.8 0.8 ¡0.0 0.0 ¡0.3

¡0.5 0.0 ¡1.8 2.6 ¡1.6 ¡0.6 ¡0.6 ¡0.3

0.4 0.7 0.8 ¡1.6 2.2 1.2 ¡0.0 0.2

¡0.3 0.6 ¡0.0 ¡0.6 1.2 1.4 ¡0.0 0.2

0.3 ¡0.5 0.0 ¡0.6 ¡0.0 ¡0.0 1.2 ¡0.2

¡0.6 0.2 ¡0.3 ¡0.3 0.2 0.2 ¡0.2 1.0




(142)
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The users have already been ordered by the order algorithm. The Symmetric

Energy for the ML detector is

E(φML) = d2min = 1.0 (143)

The SE for various sub-optimal detectors are (for E(φBB−1) through E(φBB−7))

f0.87, 0.87, 0.87, 0.87,0.87, 0.89, 1.0g (144)

In this example, the computational cost for improving the performance from D-

DFD is high. In addition, even the SE of the ML detector does not differ much

from that of D-DFD. Hence, D-DFD is an efficient detector in this case. Figure

21 shows the probability of error for group detection.

Figure 21: Performance of various methods (8 users, 10000 Monte-Carlo runs)
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4.4 Conclusions

The proposed branch-and-bound algorithm shows that, in addition to the

D-DF method, there exists a class of sub-optimal methods that provides “any-

time” sub-optimal solutions to the user signals. Given a CDMA system, the

performance (measured by the SE), the computational bound and even the dis-

tribution of computational cost for the proposed sub-optimal algorithms can be

estimated offline via (130) and (139). In addition, the detection sequence pro-

vided by the ordering algorithm is proved to be optimal for all the sub-optimal

algorithms. The proposed algorithm can be easily extended to finite-alphabet

signals instead of binary ones.



Chapter 5

Multiuser Detection Using Probabilistic Data

Association (PDA)

Although DF is one of the most efficient methods, in many cases the gap be-

tween the probability of error of the DF detector and that of a ML detector is still

large. Due to advances in hardware computational capabilities, finding multiuser

detection algorithms that achieve close-to-optimal performance, while maintain-

ing outstanding computational efficiency, has been attractive to researchers as

well as to industry. Many advanced detection algorithms have already been pro-

posed in the past several years. However, not all of them have been successful.

As described in Chapter 1, multiuser detection is a problem that combines both

the features of binary programming and the features of statistical estimation. It

is not a pure estimation problem since the binary nature of the signals must be

considered and the probability of detection error must be low enough to satisfy

91
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the quality of service requirements of practical communication systems. It is not

a pure optimization problem either since the observation vector in the cost func-

tion stems from a statistical model. Therefore, ignoring any of these features will

reduce the efficiency of the multiuser detection.

Probabilistic Data Association (PDA) [BT75] [BL95] is a highly successful

approach to target tracking in the case that measurements are unlabeled and may

be spurious. Its key feature is a repeated conversion of a multimodal Gaussian

mixture probability structure to a single Gaussian with matched mean and co-

variance. This is a bold and to some extent unjustifiable step, but it is difficult

to argue with good performance and low complexity. Now, in the CDMA case

the true probability function is also a Gaussian mixture, and complexity is also

the issue. It is natural to extend PDA and apply the Gaussian “forcing” idea to

multiuser detection; whereas in the tracking application this forcing occurs once

per scan and there is no revisit, in CDMA it occurs for each user, and there is

iteration. Instead of fixing the binary signal variables at §1, PDA employs a soft

MAI cancellation by increasing the covariance of the effective noise based on the

uncertainty in the other user signals. When the binary variables converge to the

true value, the covariance approaches that of the original noise.

Actually, the PDA multiuser detection turns out to be very successful. In

both synchronous and asynchronous CDMA, PDA detector achieves near-optimal

performance with O(K3) computations. The soft-decision feature makes it very

flexible and easy to extend to more realistic environments.
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The chapter is organized as follows. The PDA detector for synchronous

CDMA is proposed and analyzed in section 5.1. The synchronous overloaded

system is discussed in section 5.2. The PDA method is slightly modified to avoid

taking the inverse of a singular matrix. By considering the asynchronous sys-

tem as a (very big) synchronous system, the PDA detector is directly extended

to asynchronous CDMA in section 5.3. It is then modified to a sliding window

precessing to reduce the detection delay on the output. Unlike the methods

introduced in chapter 2, the theoretical performance analysis for the PDA detec-

tor is currently unavailable. However, analysis on computational complexity is

given and simulation results on a range of situations are presented to show the

outstanding performance and the computational efficiency of the PDA detector.

5.1 PDA multiuser detector for Synchronous non-overloaded system

The matched-filter output of the synchronous CDMA system can be repre-

sented by [Vd98]

y = RWb + n (145)

Multiplying by W−1R−1 on both sides of (145) from the left, the system model

can be reformulated as

ÿ = b+ n̈ = bkek +
∑
j �=k

bjej + n̈ (146)

where ÿ = W−1R−1y, n̈ = W−1R−1n, and ek is a column vector whose kth com-

ponent is 1 and whose other components are 0. We call (146) “the decorrelated
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model”, since ÿ is in fact a normalized version of the decorrelator output before

the hard decision.

5.1.1 The Basic Algorithm

In the CDMA system model (146), we treat the decision variables b as binary

random variables. For any user k, we associate a probability Pb(k) with user signal

bk to express the current belief on its value; i.e., Pb(k) is the current estimate

of the probability that bk = 1, and 1 ¡ Pb(k) is the corresponding estimate for

bk = ¡1. Now, for an arbitrary user signal bk, treat the other user signals bj

(j 6= k) as binary random variables and treat
∑

j �=k bjej + n̈ as the effective

noise. Consequently, p(bk = 1jÿ, fPb(j)gj �=k) and p(bk = ¡1jÿ, fPb(j)gj �=k) can

be obtained from (146); they serve as updated information on user signal bk.

Based on the decorrelated model, the basic form of the proposed multistage PDA

detector is as follows.

(1) Sort users according to the user ordering criterion proposed for the decision

feedback detector in [Va99] (specifically Theorem 1 of [Va99]).

(2) 8k, initialize the probabilities as Pb(k) = 0.5. Initialize the stage counter

i = 1.

(3) Initialize the user counter k = 1

(4) Based on the current values of Pb(j) (j 6= k) for user k, update Pb(k) by

Pb(k) = Pfbk = 1jÿ, fPb(j)gj �=kg (147)
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(5) If k < K, let k = k + 1 and goto step (4)

(6) If 8k, Pb(k) has converged, goto step (7). Otherwise, let i = i + 1 and

return to step (3).

(7) 8k, make a decision on user signal k via

bk =




1 Pb(k) ¸ 0.5

¡1 Pb(k) < 0.5

(148)

In the above procedure, the computational cost of obtaining Pb(k) = Pfbk =

1jÿ, fPb(j)gj �=kg is evidently exponential in the number of users. Define

Nk =
∑
j �=k

bjej + n̈ (149)

from (146). Here is the key: to avoid the computational cost of Pb(k), the PDA

idea from [BL95] recommends that Nk be approximated as a Gaussian noise

with matched mean and covariance; that is, we use

E[Nk] =
∑
j �=k

ej(2Pb(j)¡ 1)

Cov[Nk] =
∑
j �=k

[
4Pb(j)(1 ¡ Pb(j))eje

T
j

]

+σ2(WTRW)−1 (150)

Now, defining

θk =
∑
j �=k

ej(2Pb(j)¡ 1)¡ ÿ

Ωk =
∑
j �=k

[
4Pb(j)(1¡ Pb(j))eje

T
j

]

+σ2(WTRW)−1 (151)
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we obtain

Pb(k)

1 ¡ Pb(k)
= exp

{
¡2θTk Ω

−1
k ek

}
(152)

5.1.2 Refinements

5.1.2.1 Speed-Up: Matrix Arithmetic

Although the computation in step 3 is no longer exponential, direct calculation

of Ω−1
k for each user is still expensive. Further simplifications can be made by

defining auxiliary variables

θ =
∑
j

ej(2Pb(j)¡ 1)¡ ÿ = θk + ek(2Pb(k)¡ 1)

Ω =
∑
j

[
4Pb(j)(1¡ Pb(j))eje

T
j

]
+ σ2(WTRW)−1

= Ωk + 4Pb(k)(1 ¡ Pb(k))eke
T
k (153)

The Sherman-Morrison-Woodbury formula [Hg89] yields

θk = θ ¡ ek(2Pb(k)¡ 1)

Ω−1
k = Ω−1 +

4Pb(k)(1 ¡ Pb(k))Ω−1eke
T
kΩ

−1

1¡ 4Pb(k)(1 ¡ Pb(k))eTkΩ
−1ek

(154)

θ = θk + ek(2Pb(k)¡ 1)

Ω−1 = Ω−1
k ¡ 4Pb(k)(1¡ Pb(k))Ω

−1
k eke

T
kΩ

−1
k

1 + 4Pb(k)(1 ¡ Pb(k))eTkΩ
−1
k ek

(155)

By keeping the updated versions of θ and Ω−1, we can divide step 3 into three

sub-steps. In sub-step 1, we calculate θk and Ω−1
k using (154). Sub-step 2 obtains

the updated Pb(k) using (152). In sub-step 3, we use the new Pb(i) and update θ
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and Ω using (155). The overall computation of step 3 is then reduced to O(K2),

and the overall complexity of each stage in the PDA detector is now O(K3).

5.1.2.2 Speed-Up: Successive Cancellation

Since the number of stages in the PDA detector is not fixed, the overall

complexity can be high if one or two users show a slow convergence. In fact,

computer simulation experience has shown that, in most cases, more than 2
3
of

users will converge during the first stage. Thus, to simplify further, we introduce

successive cancellation among the stages.

After the ith stage, define G to be the group of users that satisfy

8j 2 G, Pb(j) 2 [0, ε] [ [1¡ ε, 1] (156)

where ε is a small positive number. Denote Ḡ to be the complement of G. Make

decisions that

8j 2 G, bj = sign(Pb(j)¡ 0.5) (157)

Buy canceling the MAI, the decorrelated system model for the users in Ḡ can be

formulated as

W
−1
ḠḠ

R
−1
ḠḠ

yḠ ¡W
−1
ḠḠ

R
−1
ḠḠ

RḠGWGGbG = bḠ + n̈Ḡ (158)

Here RḠḠ denotes the sub-block matrix of R that only contains the columns

and rows corresponding to users in Ḡ. n̈Ḡ is the colored Gaussian noise of the
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sub-system with zero mean and covariance matrix σ2(WḠḠRḠḠWḠḠ)
−1. Conse-

quently, in the (i + 1)st stage, we apply the PDA detection procedure only on

the sub-system model.

5.1.2.3 Performance: Coordinate Descent

It has been noted that when optimal and PDA solutions to (121) differ, they

usually disagree in one element only. Thus, as an inexpensive way to improve the

PDA detector, we add a coordinate descent search (“bit flip”) [LLPW00] after

PDA has converged.

5.1.3 Computer Simulation Results

In this section, we use several computer simulation examples to show the per-

formance and the computational cost of the PDA detector. Besides the proposed

PDA detector, the Decorrelating Detector [LV89], the Decision Feedback Detec-

tor [Va99], the Semi-definite Relaxation method [MDWLC00] and the optimal

Maximum Likelihood detector [LPWL00] are compared in the examples. In the

successive cancellation part of the PDA detector, we set ε = 10−2

4SNR
where SNR is

the signal to noise ratio. For the Semidefinite Relaxation algorithm, the number

of randomizations is set to 20.

In the first 29-user example, we use length-31 Gold codes as the signature

sequences. The user signal amplitudes are randomly and independently generated

by wkk » N(4.5, 4), 8k, and are limited within the range of [2,7] (N(.) represents



99

the Normal distribution). Figure 22 shows the performance comparison based on

100000 Monte-Carlo runs with importance sampling.

Figure 22: 29-users, length-31 Gold codes as signature sequences, 100000 Monte-
Carlo runs

In the second example, we fix the SNR to be 12 dB. The signature sequences

are randomly generated and the ratio between the spreading factor and the num-

ber of users is fixed at 1.2. Let the number of users vary from 3 to 60. Figure

23 shows the worst case computational complexity measured in terms of the

number of multiplications plus number of additions of the PDA detector and of

the Semidefinite Relaxation method. It is known that the computational cost

of the Semidefinite Relaxation method is O(K3.5) [MDWLC00]. Therefore, we

claim that the computational cost for the PDA detector is significantly less than
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O(K3.5). Simulation results show that the computational cost is in fact O(K3).

Figure 23: Comparison on the worst case computational costs, random signature
sequences, spreading factor=1.2K, SNR=12 dB

5.1.4 Conclusions

A new algorithm based on the idea of Probabilistic Data Association is pro-

posed for the multiuser detection in synchronous CDMA communications. Sim-

ulation results show that the PDA detector provides near-optimal performance,

with the overall computational cost O(K3), where K is the number of users.
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5.2 PDA detector for Synchronous Overloaded System

In synchronous CDMA, having more users than the signature length results in

a singular correlation matrix. However, with a careful design of the correlations

and with the help of the binary feature of user signals, good performance in a

slightly-overloaded system can still be achieved [SVM00] [VMS00]. However,

the singularity of the correlation matrix does make the direct implementation of

many multiuser detectors impossible.

Define the length of the signature sequence as N , which is also known as the

spreading factor [Vd98]. When the system is overloaded (K > N ), R becomes

singular. The optimal solution of (121) may not be unique even when the noise is

not present. This evidently results in an unavoidably high probability of error in

multiuser detection. Nevertheless, with a careful design of the signature sequences

and the correlations, [SVM00] [VMS00] show that it is possible to avoid multi-

solutions and still achieve good performance in slightly overloaded systems.

We first consider the optimal solution. Suppose the chip matched-filter is

available at the receiver side, the system model of the chip matched-filer output

can be represented by

x = SWb+ z (159)

where S is a N £K matrix whose kth column, sk, is the normalized signature of

the k-th user. Since the symbol matched-filter output satisfies

y = S
T
x (160)
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We obtain

R = S
T
S

n = S
T
z (161)

Assume that the chip matched-filter output is given. Then the optimal decision

for system model (159) is given by

ΦML : b̂ = arg min
b∈{−1,+1}K

(
b
T
WS

T
SWb¡ 2xT

SWb
)

= arg min
b∈{−1,+1}K

(
b
T
WRWb¡ 2yT

Wb
)

(162)

which is exactly the same as (121).

Furthermore, since b2k = 1, 8k, the ML detector can also be equivalently

written as,

ΦML : b̂ = arg min
b∈{−1,+1}K

[
bTW(R+ Λ)Wb¡ 2yTWb

]
(163)

where Λ is an arbitrary diagonal matrix with positive diagonal components. Evi-

dently,R+Λ is positive definite. Therefore, the branch-and-bound-based optimal

algorithm proposed in [LPWL00] can be applied with minor modifications.

5.2.1 Modifying the PDA method

For PDA detector, two issues need to be addressed. The first one is the user

ordering in (step 1). Since L−1 does not exist, the original white noise model

is no longer valid. However, since PDA works with soft MAI cancellations, the

performance is less sensitive to user ordering than the DF detector. Therefore, as
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a small modification, we use R+σ2I instead of R in the user ordering algorithm.

Although the actual values of the elements in R+σ2I may not be reliable when σ2

is small, the resulting user order is good enough for PDA to achieve near-optimal

performance. The other issue is the probability update in (step 4). Again, since

R does not exist, the decorrelator model is no longer valid. Therefore, the original

PDA method must be modified to avoid taking the inverse of a singular matrix.

Similar to the analysis of the ML detector, assume that the chip matched-filter

outputs are available. Rewrite (159) as

x = skwkkbk +
∑
j �=k

sjwjjbj + z (164)

Define the effective noise to user k as

Nk =
∑
j �=k

sjwjjbj + z (165)

The mean and covariance matrix of Nk are

E[Nk] =
∑
j �=k

sjwjj(2Pbj ¡ 1)

Cov[Nk] =
∑
j �=k

4Pbj(1 ¡ Pbj)w
2
jjsjs

T
j + σ2

I (166)

Similarly, define

θk =
∑
j �=k

sjwjj(2Pbj ¡ 1)¡ x

Ωk =
∑
j �=k

4Pbj(1¡ Pbj)w
2
jjsjs

T
j + σ2

I (167)

The updated probability Pb(k) is given by

Pbk

1¡ Pbk

= expf¡2θTk Ω
−1
k skwkkg (168)
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Now, define auxiliary variables

µ = [w11(2Pb1 ¡ 1), . . . , wKK(2PbK ¡ 1)]T

Σ = diag(4Pb1(1 ¡ Pb1)w
2
11, . . . , 4PbK(1 ¡ PbK)w

2
KK)

θ = Sµ¡ x

Ω = SΣST + σ2I (169)

Define G to be the group of users such that 8j 2 G, Pbj(1 ¡ Pbj) 6= 0. Also

assume user k 2 G. Define

Gk = G n fuser kg (170)

Since for any j /2 G, Pbj(1¡ Pbj) = 0, we have

Ωk = SGk
DGkGk

S
T
Gk

+ σ2
I (171)

Here SGk
denotes the S matrix that only contains the columns corresponding to

users in Gk; and ΣGkGk
represents the Σ matrix that only contains the columns

and rows corresponding to users in Gk. Using the matrix inverse lemma, we have

Ω−1
k =

1

σ2
I¡ 1

σ4
SGk

(
1

σ2
ST
Gk

SGk
+ Σ−1

GkGk

)−1

ST
Gk

(172)

It is easy to see from (161) that

ST
Gk

SGk
= RGkGk

θTk sk = rT{k}Gk
µGk

¡ yk

θTk SGk
= µT

Gk
RGkGk

¡ yT
Gk

ST
Gk

sk = r{k}Gk
(173)
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Therefore,

θTk Ω
−1
k sk =

1

σ2
(rT{k}Gk

µGk
¡ yk)

¡ 1

σ4
rT{k}Gk

(
1

σ2
RGkGk

+ Σ−1
GkGk

)−1

(RGkGk
µGk

¡ yGk
)

(174)

Similar to the optimal detector case, chip matched-filter outputs do not appear

in the final result. Therefore, only the symbol matched-filters are required.

Furthermore, as shown in [LPWF01] for the original PDA detector, the com-

plexity of computing (174) can also be reduced to O(K2) per user. Define,

ΞGG =
1

σ2
RGG + Σ−1

GG (175)

Since user k 2 G, we have

Ξ−1
GG =




Ξ−1
GkGk

1
σ2 rGk{k}

1
σ2 r

T
Gk{k}

1
σ2 + Σ−1

kk



−1

=



(ΞGkGk

¡ 1
σ4 rGk{k}r

T
Gk{k}

)−1 ¡Ξ−1
GkGk

rGk{k}∆
−1

¡∆−1rTGk{k}
Ξ−1
GkGk

∆−1




(176)

where

∆ =
1

σ2
+ Σ−1

kk ¡ 1

σ4
rTGk{k}

Ξ−1
GkGk

rGk{k} (177)

is the Schur complement of ΞGkGk
.

Evidently, if we always keep the updated version of Ξ−1
GG, (174) as well as

Pbk can be obtained with O(jGj2) computations, where jGj denotes the number
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of users in G. If the updated Pbk satisfies Pbk(1 ¡ Pbk) 6= 0, we can update

Ξ−1
GG using Sherman-Morrison formula. If Pbk(1 ¡ Pbk) = 0, we can invoke the

successive cancellation idea, make decision on bk immediately. Consequently, only

Ξ−1
GkGk

, which can also be obtained from Ξ−1
GG in O(jGj2) computations, is needed

in further updates. Although successive cancellation is not necessary for non-

overloaded systems and is introduced to reduce the computational complexity

[LPWF01], it is required for overloaded system to avoid numerical error.

The PDA detector for overloaded system can be summarized as follows:

(1) Sort users according to the user ordering criterion proposed for the decision

feedback detector in [Va99] (substitute R by R+ σ2I).

(2) 8k, initialize the probabilities as Pb(k) = 0.5; initialize G to be the set of

all K users; and initialize threshold γ with a small positive number.

(3) Initialize

Ξ−1
GG = [

1

σ2
RGG + Σ−1

GG]
−1 (178)

(4) Initialize k = 1

(5) If user k 2 G, obtain rTGk{k}
Ξ−1
GkGk

from (176). Obtain θTkΩ
−1
k sk from (174),

and then obtain the updated probability P̂b(k) by

P̂b(k) =
exp(¡2θTkΩ

−1
k skwkk)

1 + exp(¡2θTk Ω
−1
k skwkk)

(179)

If user k /2 G, goto step (8).
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(6) If P̂b(k)(1 ¡ P̂b(k)) > γ, update Ξ−1
GG by

Ξ−1
GG = Ξ−1

GG ¡ δkw
2
kk[Ξ

−1
GG]k[Ξ

−1
GG]

T
k

1 + δkw2
kk[Ξ

−1
GG]kk

(180)

where δk = 4P̂bk(1¡ P̂bk)¡ 4Pbk(1¡ Pbk). And set Pb(k) = P̂b(k)

(7) If P̂b(k)(1 ¡ P̂b(k)) · γ, make decision on user k via

bk =




1 P̂b(k) ¸ 0.5

¡1 P̂b(k) < 0.5

(181)

Subtract the interference of user k from the matched-filter output by up-

dating

y = y¡ rkbkwkk (182)

From (176), define A = [Ξ−1
GG]GkGk

, let G = Gk and update

Ξ−1
GG = A¡ Ar{k}Gr

T
{k}GA

σ4 + rT{k}GAr{k}G
(183)

(8) k = k+1. If k · K, goto step (5). Otherwise, perform a coordinate descent

search as proposed in [LPWF01], output final decisions and stop.

5.2.2 Simulation Results

In this section, we compare the performances of the PDA detector, the MMSE

detector, the MMSE-based DF detector [Va99] and the optimal detector. The

Decorrelator and the Decorrelator-based DF detector are not included since they

require R−1, which does not exist for a overloaded system.



108

The first example is similar to example 1 in [SVM00] but of a smaller size.

Suppose we have 5 users and the signature length is 4. The first 4 users use

orthogonal signature sequences generated from Walsh-Hadamard codes. The 5th

user is a TDMA user, whose signature sequence is s5 = [1, 0, 0,0, 0]T . The user

signal powers are set to 4. Noting that the user signature sequences are normal-

ized to have unit two-norm, the correlation matrix is then given by

R =




1 0 0 0 0.5

0 1 0 0 0.5

0 0 1 0 0.5

0 0 0 1 0.5

0.5 0.5 0.5 0.5 1




(184)

Figure 24 gives the performance comparisons of different multiuser detectors.

The curve labeled “iterative detector” refers to the performance of the iterative

detection method proposed in [SVM00]. We can see that the performance of

PDA method is close to that of the optimal algorithm and is also significantly

better than other methods.

In the second example, we have 7 users with a signature length of 5. The

signatures are Welch Bound Equality (WBE) sequences generated from the iter-

ative procedure introduced in [UY01]. The user signal powers are again set to

4. The performance comparisons are given in Figure 25.

Although PDA achieves near optimal performance in most of the cases, in

this example, the performance of the PDA detector is significantly worse than
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Figure 24: Performance comparison, 5 users, spreading factor=4, 200000 Monte-
Carlo runs

the optimal detector. However, it is still better than the MMSE detector and the

MMSE-based DF detector. The WBE sequences are shown to be the optimal sig-

nature set that maximizes the theoretical sum capacity [RM84], and is therefore

important to the synchronous overloaded CDMA system. Further improvment

of the PDA performance with WBE signature sequences, however, is an open

research topic and will be addressed in our future research.
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Figure 25: Performance comparison, 7 users, length-5 WBE signature sequences,
200000 Monte-Carlo runs

5.2.3 Conclusions

PDA detector has been extended to synchronous overloaded system. With the

help of successive cancellation, taking inverse of a singular matrix is avoided. Sim-

ulation results show that PDA outperforms the MMSE detector and the MMSE-

based DF detector, the performance is also close to optimal in many situations.

5.3 PDA Detector for Asynchronous CDMA

The asynchronous CDMA system can be described in the z domain by [Vd98]

y(z) = R(z)Wb(z) + n(z) (185)
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Here R(z) is the correlation matrix, which can be factored as

R(z) = (F[0]T + F[1]T z)(F[0] + F[1]z−1) (186)

Applying the anticausal feed-forward filter (F[0]T + F[1]T z)−1 to both sides of

(185), we obtain the white noise model [Dh95]

ỹ(z) = (F[0] + F[1]z−1)Wb(z) + ñ(z) (187)

The corresponding time-domain representation of the white noise model is

ỹ(i) = F[0]Wb(i) + F[1]Wb(i¡ 1) + ñ(i) (188)

Suppose there are overall M time frames in the transmission. We can view

the asynchronous system as an MK-user synchronous system and rewrite (188)

as

Ỹ = L̃W̃b̃ + Ñ (189)

Here

Ỹ = [ỹ(0)T , ỹ(1)T , . . . , ỹ(M ¡ 1)T ]T

b̃ = [b(0)T ,b(1)T , . . . ,b(M ¡ 1)T ]T

Ñ = [ñ(0)T , ñ(1)T , . . . , ñ(M ¡ 1)T ]T

W̃ =




W 0 . . .

0 . . . 0

. . . 0 W




(190)
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and

L̃ =




F[0] 0 . . . . . .

F[1] F[0] 0 . . .

0 . . . . . . . . .

. . . 0 F[1] F[0]




(191)

is the Cholesky decomposition matrix of the equivalent synchronous system.

5.3.1 Direct Extension

Apparently, the computational cost of directly applying the PDA method to

the equivalentMK-user system is Of(MK)3g, which can be very high ifM is not

small. Fortunately, due to the special structure of the Cholesky decomposition

matrix L̃, the probability update in the PDA method can be simplified.

Consider updating the probability associated with user k in time frame i.

From (188), we have

Pbk(i) = P
{
bk(i) = 1

∣∣∣Ỹ, fPbj(i)gj �=k, fPbl(m)gm �=i

}

= P


bk(i) = 1

∣∣∣∣∣∣∣∣∣
ỹ(i), ỹ(i+ 1)

fPbj(i)gj �=k, fPbl(m)gm=i−1,i+1




(192)

Therefore, to update the probability Pbk(i), only observation vectors, ỹ(i) and

ỹ(i+ 1), are required. The corresponding observation model from (188) is




ỹ(i)

ỹ(i+ 1)


 =




F[0]

F[1]


Wb(i) +




F[1]Wb(i¡ 1)

F[0]Wb(i+ 1)



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+




ñ(i)

ñ(i+ 1)


 (193)

For user signal bk(i), define the effective noise as

Nk(i) =
∑
j �=k




fj[0]

fj[1]


wjjbj(i) +




F[1]Wb(i¡ 1)

F[0]Wb(i+ 1)




+




ñ(i)

ñ(i+ 1)


 (194)

where fj [0] and fj[1] denote the jth columns of F[0] and F[1], respectively. Con-

sequently, we have

E[Nk(i)] =
∑
j �=k




fj[0]

fj[1]


wjj(2Pbj(i)¡ 1)

+
K∑
j=1




fj [1]wjj(2Pbj(i¡ 1)¡ 1)

fj[0]wjj(2Pbj(i+ 1)¡ 1)




Cov[Nk(i)] = σ2
I

+
∑
j �=k

4Pbj(i)(1¡ Pbj(i))w
2
jj




fj [0]

fj [1]






fj [0]

fj [1]



T

+
K∑
j=1

4Pbj(i¡ 1)(1 ¡ Pbj(i¡ 1))w2
jj




fj[1]fj[1]
T 0

0 0




+
K∑
j=1

4Pbj(i+ 1)(1 ¡ Pbj(i+ 1))w2
jj



0 0

0 fj[0]fj[0]T




(195)
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Approximating Nk(j) by a Gaussian noise with matched mean and covariance, it

is easy to see that the computational load for updating Pbk(i) is O(K2). There-

fore, the overall computational cost of the PDA detector is O(MK3), i.e., O(K3)

per time frame. This is the same as in the case of synchronous CDMA.

5.3.2 PDA with Sliding Processing Window

Since PDA updates the associated probabilities iteratively, in the above batch

method, PDA can do iterations and make decisions on user signals only when the

entire transmitted data has been received. This can consequently cause significant

delays at the receiver.

Suppose we are only interested in decisions on user signal vector b(i). Consider

a truncated processing window that contains user signal vectors b(m), (i¡ h ·

m · i+h), i.e., the width of the processing window is 2h+1. Due to the limited

error propagation in practical systems, it is reasonable to assume that, if h is

large enough, the effects of values of user signals outside the processing window

on the decisions of b(i) are negligible. Therefore, when making decisions on b(i),

one can apply the PDA method and perform iterations only within the truncated

processing window.

Notice that the processing windows of user signals in successive time frames

differ only slightly. Hence, we can use the probabilities from a processing window

as the initial conditions of the PDA method for the next processing window to
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further simplify the iterative updates. This modifies the truncated-window PDA

to a sliding-window PDA. The detailed procedure is described below:

(1) Sort users according to the user ordering and time labeling criterion pro-

posed for decision feedback detector in [LPWF01].

(2) 8k and 8i, initialize the probabilities as Pbk(i) = 0.5. Initialize the window

counter m = 1.

(3) Initialize the time frame counter i = maxf1,m¡ hg.

(4) Initialize the user counter k = 1.

(5) Based on the current values of the associated probabilities, update Pbk(i)

according to (192).

(6) If k < K, let k = k + 1 and goto step (5).

(7) If i < minfM,m+ hg, let i = i+ 1 and goto step (4).

(8) If i > h, 8i, make a decision on user signal bk(m¡ h) via

bk(m¡ h) =




1 Pbk(m¡ h) ¸ 0.5

¡1 Pbk(m¡ h) < 0.5

(196)

(9) If i < M + h, let i = i+ 1 and goto step (3). Otherwise, stop.

The relations between the indices k, i and m in the above procedure are

further illustrated in Figure 26.

Apparently, the computational complexity of the above PDA detector is

O((2h+ 1)K3) per time frame.



116

Figure 26: Illustration of the sliding-window PDA

5.3.3 Simulation Results

In this section, we compare the performances of the Decorrelator, the DF

detector and the PDA detector in various situations. The optimal user ordering

and time labeling rule proposed in [LPWF01] is applied to both the DF and the

PDA detectors. By clairvoyantly plugging the true values of b(i¡1) and b(i+1)

into (193) and applying the ML detection for synchronous CDMA, a performance

bound is also provided.

Example 1: In the first 3-user example, the correlation matrices R[0], R[1]

and the square roots of user signal powers W are randomly chosen as

R[0] =




1.0 ¡0.27 ¡0.49

¡0.27 1.0 0.55

¡0.49 0.55 1.0



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R[1] =




0 0 0

¡0.06 0 0

0.16 ¡0.01 0




W = diag(4.48, 4.36, 4.1) (197)

The width of the processing window for the PDA detector is chosen to be

3. Figure 27 shows the performance comparison of different algorithms obtained

from a simulation of 1000000 Monte-Carlo runs. Similar to the synchronous

case [LPW01], the probability of error of the PDA detector is very close to the

performance lower bound.

Figure 27: Performance comparison, 3-users, 1000000 Monte-Carlo runs.

Example 2: The second example is an overloaded system with 30 users and

15-length Gold codes as signature sequences. Although the number of users
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is increased to 30, the width of the processing window for the PDA detector

remains at 3. The time delays of the user signals are random and uniformly-

distributed within a symbol duration and we use the system model introduced

in [Ps77] to generate the signature correlation matrix. The square roots of user

signal powers are generated randomly by wkk » N(4.5, 4) (N(.) represents the

Gaussian distribution) and are limited within the range of [3,6]. Figure 28 shows

the performance comparison of different detectors. The performance of the PDA

detector is significantly better than the decorrelator and the DF detector. It is

also close to the performance lower bound (notice that the performance lower

bound is not necessarily reachable even by the optimal ML detector).

Figure 28: Performance comparison, 30-users, 15-length Gold codes as signature
sequences, 1000000 Monte-Carlo runs.
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5.3.4 Conclusions

The PDA method proposed in [LPW01] has been extended to the multiuser

detection over asynchronous CDMA communication channels. With a sliding

window of width 2h + 1, the computational complexity of the proposed PDA

detector is shown to be O((2h + 1)K3) per time frame where K is the number

of users. Simulation results show that the performance of the PDA detector,

in terms of the probability of group detection error, is significantly better than

the decorrelator and the DF detector; and is also close to the performance lower

bound in both regular and overloaded systems.



Chapter 6

Summary and Future Research Directions

6.1 Summary

The performances of Decision Feedback (DF) related multiuser detector are

improved. The optimal user partitioning and ordering for the Group Decision

Feedback (GDF) detector in synchronous CDMA is found. A fast optimal algo-

rithm based on user ordering and Branch-and-Bound search is proposed. Com-

pared with the optimal algorithm in the literature, the average computational

cost is significantly reduced. The time labeling issue is solved for DF detector in

asynchronous CDMA. The optimal time labeling and user ordering is derived.

In addition, a new multiuser detection algorithm based on the idea of Proba-

bilistic Data Association (PDA) is proposed. It is shown that the PDA detector

achieves near-optimal performance in most of the cases in both synchronous and

asynchronous systems with O(K3) complexity where K is the number of users.

120
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The soft-output feature of the PDA method makes it extremely flexible and easy

to extend to multiuser detection problems in more realistic communication set-

tings.

6.2 Future Research Directions

In this section, we present several ideas to extend the proposed methods in

our future research. The delayed multiuser detection in synchronous CDMA is

proposed in section 6.2.1. PDA multiuser detection over a flat Rayleigh fading

channel is studied in section 6.2.2. The combination of multiuser detection and

channel coding is briefly introduced in section 6.2.3.

6.2.1 Delayed Multiuser Detection

Linear detectors and some of the decision-driven detectors have fixed numbers

of steps to obtain the detection results. Consequently, the computational com-

plexities and the detection performances of these algorithms are relatively easy

to analyze. However, most advanced detection algorithms, especially those stem-

ming from an optimization viewpoint, involve iterations and global search, which

makes the actual computational costs dynamic and observation-dependent. The

fast optimal and suboptimal “Any-time” algorithms based on Branch-and-Bound

search proposed in chapter 3 is one such example. The average computational

costs of the proposed algorithms are significantly less than the worst case ones;

they also decrease when SNR increases.
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The synchronous CDMA system model is given by

y = RWb + n (198)

where n N(0, σ2R) is the colored Gaussian noise. Denote the probability of error

and the computational cost of a multiuser detector Φ for a specific time frame

as PeΦ(σ) and CΦ(y), respectively. Assume that the actual probability of error

(that takes computational resources into account) per time frame is P̄ eΦ(σ) and

the hardware computational capacity per time frame is H. Since a conventional

model of multiuser detection problem assumes that the decisions in one time

frame must be made before obtaining the matched filter outputs of the next

time frame, H ¸ maxyCΦ(y) must be satisfied in order to avoid computational

overflow.

For linear detectors, CΦ(y) = CΦ = constant. Therefore, the actual probabil-

ity of error of the system satisfies

P̄ eΦ(σ) =




PeΦ(σ) H ¸ CΦ

1 H < CΦ

(199)

However, for detector with a dynamic computational cost, CΦ(y) becomes a ran-

dom variable since y is random. Thus, a detection error can be caused either by a

decision error of the algorithm when CΦ(y) · H, or by a computational overflow

when CΦ(y) > H. Therefore, the actual probability of error (assume that the

detector reports an decision error in case of computational overflow) becomes

P̄ eΦ(σ) = PeΦ(σ)[1¡ P (CΦ(y) > H)] + P (CΦ(y) > H) (200)
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where P (CΦ(y) > H) denotes the probability that CΦ(y) > H.

Nevertheless, a computational overflow does not necessarily mean a detection

error if we do not have the constraint that the detection must be made before

obtaining the matched filter outputs of the next time frame. For example, if

there is no constraint on the delay of the output, the problem becomes an offline

detection problem and P̄ eΦ(σ) = PeΦ(σ) since no computational overflow will

occur. Evidently, the actual probability of error in the range [PeΦ, PeΦ(σ) ¤ [1¡

P (CΦ(y) > H)]+P (CΦ(y) > H)] is expected if a certain amount of delay on the

output is allowed. This is the main idea of the delayed multiuser detection.

Now, suppose we allow a delay of m time frames on the output. The relation-

ship between the input, the output and the actual computational cost for each

time frame is illustrated in Figure 29.

Figure 29: Illustration of the delayed multiuser detection

Define C(i)
Φ (y) to be the computational cost of the detection of i successive

time frames. There will be no computational overflow if C
(i)
Φ (y) · (i + m)H is

satisfied 8i. Consider the fast optimal algorithm proposed in chapter 3, where
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C
(i)
Φ (y) is a function of σ and decreases to i[minyC

(1)
Φ (y)] when σ ! 0. Therefore,

asymptotically, the probability of computational overflow can be represented by

P (m)(Overflow) =
∞∑
i=1

P (C(i)
Φ (y) · (i+m)H) (201)

Assume that, when a computational overflow event occurs, we terminate the

computation and report an error on detection of m + 1 successive time frames.

The overall probability of error is given by

P̄ eΦ(σ) = PeΦ(σ) ¤ [1 ¡ P (m)(Overflow)] + (m+ 1)P (m)(Overflow) (202)

Assume the actual detection error is dominated, asymptotically, by the over-

flow so that

lim
σ→0

PeΦ(σ)

P (m)(Overflow)
= 0 (203)

The delayed multiuser detection improves P̄ eΦ(σ) asymptotically when

lim
σ→0

P (m)(Overflow)

P (0)(Overflow)
= 0 (204)

is satisfied.

6.2.2 Multiuser Detection Over Flat Rayleigh Fading Channels

In wireless communications, the multipath effect is caused by signal reflec-

tion from objects located between or around the transmitter and the receiver.

In addition, the moving of the mobile receiver or transmitter causes Doppler

shift. These make the received power of the signals random and time varying, a
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phenomenon called channel fading. Channel fading is a critical issue in wireless

communications, and has been widely studied for decades.

When the reflectors are located around the receiver and there is no line-of-sight

from the transmitter and the mobile receiver, the received signal amplitudes yield

the Rayleigh distribution, and thus this is a Rayleigh fading channel. Commonly

used models that simulate the Rayleigh fading channel are the second order AR

model [Lb93], the Jakes model [Jk74] and the modified Jakes model [DBC93].

Assuming that the received signal amplitudes are slowly time-varying and are

non-frequency selective, [Lb93] shows that the signal amplitudes can be estimated

by a Kalman filter using a second order AR model. In [Wx96], a method that

combines the DF detector with a Kalman filter is proposed for the multiuser

detection over flat Rayleigh fading channels.

Define w(i) to be the K £ 1 vector whose kth element wk(i) is the received

signal amplitude for user k in time frame i. Define B(i) to be a diagonal matrix

whose diagonal components are corresponding binary user signals in time frame

i. The synchronous CDMA model can be alternatively written as

y(i) = RB(i)w(i) + n(i) (205)

From the second AR model of the Rayleigh fading channel, we have [Wx96]




w(i+ 1)

w(i)


 =




A1 A2

I 0






w(i)

w(i¡ 1)


+




I

0


v(i) (206)
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Here A1, A2 are diagonal matrices whose diagonal elements A1k, A2k are defined

by

A1k = ¡2rdcos(2πf
′
dT ), A2k = r2d (207)

where f ′
d is the spectral peak frequency, and rd is the pole radius which corre-

sponds to the steepness of the peaks of the power spectrum. v(i) is the driven

noise vector whose kth element is zero mean Gaussian with a variance of

σ2
vk(i)

=
[(1 + r2d)

2 ¡ 4r2dcos
2(2πf ′

dT )](1¡ r2d)

1 + r2d
(208)

Assume B(j), 8j · i are known. A Kalman filter can be formed using (206)

as the state equation and (205) as the observation equation. With the Kalman

filter, a prediction on w(i+ 1) can be obtained as

w(i+ 1) » N(ŵ(i+ 1),Σ(i+ 1)) (209)

Then, multiuser detection on b(i + 1) can be applied given (209) and y(i + 1).

The decision, b̂(i+1), is then fedback to the Kalman filter for propagating to the

next time frame assuming no detection error. The multiuser detection scheme is

illustrated in Figure 30

In the multiuser detection part of the above procedure, the ML detection

becomes

ΦML : b̂(i+ 1) = arg max
b(i+1)∈{−1,1}K

fy(y(i+ 1)jb(i+ 1)) (210)
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Figure 30: Multiuser Detection over Fading Channels

and the key step is to obtain, given (209),

f(y(i+1)jb(i+1)) =
∫
w(i+1)

fy(y(i+1)jb(i+1),w(i+1))fw(w(i+1))dw(i+1)

(211)

Unfortunately, no closed-form solution is available unless Σ(i+ 1) is diagonal.

A similar problem is studied in [VV96], where it is proposed to consider

w(i+1) » N(ŵ(i+1), Σ̃(i+1)) in multiuser detection. Here Σ̃(i+1) is a diagonal

matrix whose diagonal elements are equal to those of Σ(i+1). Consequently, (211)

becomes

f(y(i+ 1)jb(i+ 1)) = N(B(i+ 1)ŵ(i+ 1), σ2(
Σ̃(i+ 1)

σ2
+R

−1)) (212)

which is equivalent to a non-fading system with ŵ(i+1) as the signal amplitudes

and ( Σ̃(i+1)
σ2 +R−1)) as the correlation matrix.

In asynchronous CDMA, we start from the white noise model. The observa-

tion equation for the Kalman filter is changed to

ỹ(i) = F[0]B(i)w(i) + F[1]B(i¡ 1)w(i¡ 1) + ñ(i) (213)
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Similar to (212), by considering diagonal correlation on ŵ(i + 1) and ŵ(i), we

obtain

f(y(i+ 1)jb(i+ 1),b(i)) = N(F[0]B(i+ 1)ŵ(i+ 1) + F[1]B(i)ŵ(i),Ξ(i+ 1))

Ξ(i+ 1) = σ2(
F[0]Σ̃(i+ 1)F[0]T + F[1]Σ̃(i)F[1]T

σ2
+ I) (214)

Therefore, the system is equivalent to a non-fading one with modified parameters.

In synchronous CDMA, the extension of the proposed PDA detector to multi-

user detection over Rayleigh fading channel, using the above methods, is straight-

forward. However, since asynchronous PDA involves sliding window processing,

further study is required to combine PDA with the Kalman filter idea.

6.2.3 Combined Multiuser Detection with Channel Coding

Although the multiuser detection problem is already NP hard, it has been

shown that combining the multiuser detection with channel coding will signifi-

cantly improve the overall system performance. In the current literature, related

research has been reported in [Mh98] [RSAA98] [WP99]. However, the com-

putational costs for these methods are usually very high.

As shown in chapter 4, the proposed PDA algorithm achieves close to optimal

performance in most cases with a relatively low complexity. It is natural to

combine the proposed PDA method with “Turbo-coding” [BGT93] since both of

them work in probability space and give “soft-outputs”, and both are reported

to achieve near optimal performance. An illustration of the combination is given

in Figure 31.
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Figure 31: Combining PDA multiuser detection with Turbo coding

In this procedure, the probability updates are iterated between the PDA

multiuser detector and the Turbo-decoder. Decisions are made according to the

probabilities after convergence. An outstanding performance with relatively low

computational complexity is expected.
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