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ABSTRACT

Conventional Blind Signal Separation algorithms do not
adopt any asymmetric information of the input sources,
thus the convergence point of a single output is always
unpredictable. In this paper, a new Principal Independent
Component Analysis concept is proposed, we try to
extract the objective Independent Component directly
without separating all the signals. A cumulant-based
globally convergent algorithm is presented and the
simulation results show a hopeful prospect of the
Principal Independent Component Analysis in
applications.

1. INTRODUCTION

During the past several years, Independent Component
Analysis (ICA)[1][2] has begun to find a wide applicability
in many diverse fields. Among them are signal detection,
channel equalization and feature extraction[3]. Blind
Signal Separation (BSS), which can be regarded as one of
the classical applications of the ICA model, focuses on
extracting all the Independent Components (ICs) from
their linear combinations. Usually, BSS methods assume
the IC sources and the mixing matrix are totally blind to
the ICA network. Without introducing any prior
information, the exact convergence point of a single
output is theoretically undeterminable[4][5]. However, in
some applications such as signal detection and noise
cancellation, we may only be interested in one or two of
the ICs. And picking out the desired signal from the
separation results shows we do have some prior
information of the IC sources, they are in fact not totally
blind to us. In this paper, we try to develop a Principal
Independent Component Analysis (PICA) approach that
can extract such kind of useful information and get the
objective signal without separating all the ICs.

2. PROBLEM DESCRIPTION AND PRINCIPAL
INDEPENDENT COMPONENT ANALYSIS

The PICA network structure can be described by figure 1.
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Figure 1. PICA network structure

[ ]T
nsss ,,, 21 �=s  is the source vector, the n complex-

valued stationary non-gaussian ICs are assumed to be
statistically independent from each other. A is a mn×
complex-valued mixing matrix of full column rank.

[ ]T
mxxx ,,, 21 �=x  is the sampling vector,

[ ]T
mwww ,,, 21 �=w  is the weight vector of the neural

network and y is the output. As we have mentioned,
without any prior information, conventional BSS methods
can not give a globally convergent algorithm and the
convergence point of the output is unpredictable. Here we
will continue assuming that the exact value of the IC
sources and the mixing matrix are blind to us. However,
suppose we can get a set of reference signals

vrrr �21
, which can also be expressed as linear

combinations of the ICs.
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Notice in figure 1, the references are not generated
directly from IC sources, hence the original "blind"
assumption remains true to some extend. Now we would
like to give some definitions to the useful functions that
will appear in this paper.



Suppose the network output can be denoted by
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The second order cumulant and fourth order cumulant of
y are defined respectively by[6]
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The fourth order cross cumulant between y, 
ir  is defined

by
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According to [6], we have
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Then, we define the "cross-non-gaussianity" between y
and 

ir  as[7]
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and the non-gaussian energy of 
is  in 

jr  is defined by
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Now if we define a multi-variable linear function
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and design the object function of the network as
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Here, ϕ  is a sign variable, 1=ϕ  or 1−=ϕ . We will see

the following conclusion will hold
Remark 1 Without losing the generality, if the IC
sources can be arranged and satisfy
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then maximizing object function (12), the output of the
network can finally be denoted by

11sgy = (14)

and ( ) 12: =yCum  will be satisfied.

Proof We can prove that on the final convergence point,

1g  will be the only none-zero component in vector g. In

fact, if there exists a 1≠i , and 0≠ig , do a perturbation

with 0>σ , let
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and the result shows (14) will be satisfied.

Meanwhile, if we have 
11sgy =  and

( ) ( ) 12:2: 1

2

1 ≠= sCumgyCum , do perturbation with

02 >> σ , let
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We get
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thus ( ) 12: ≠yCum  can not be a maxima of the network.

Proof completed.
The discrete gradient-based learning algorithm can be

expressed by
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Here µ  is the learning step, and 
4321 δδδδ  are the

steps used for the online estimation of the high order
moments respectively.



3. SIMULATION RESULTS

A base-band CDMA emulation system is shown in figure
2. The 3 IC source 

321 sss  are assumed to be sub-

gaussian 223344 ×××  QAM signals respectively.

The received signal rec is denoted by

332211 sasasarec ++= (25)

And suppose after the demodulation for each user
respectively, the final sampling signals yield
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Here we use 
321 nnn  to simulate the additive noise,

and use 1>λ  to simulate the attenuation of
demodulation. Set 1−=ϕ , and the reference signals are

chosen as 
11 xr = , 

22 xr =  and 
33 xr = .

In such an emulation system, we find out that the
following equations can be satisfied.
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Then if we set the object function as
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According to remark 1, we will get 
11 sy →  by

maximizing (28). Similarly, choosing the object functions
of 
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Maximizing these object functions, we can also get

22 sy → , 
33 sy →  respectively. In our computer

simulation, the SNR is set to 26db. Other variables are
chosen as 61 =a , 12 =a , 13 =a  and 5=λ . In order to

improve the convergence, we add a pre-whitening
network after the sampling process. Similar to the pre-
whitening network in [8], the outputs after pre-whitening
will satisfy ( )3,2,1       1* == ipp ii

 and

( )jijipp ji ≠==  ;3,2,1,      0* . Meanwhile, we define a set

of normalized correlation functions
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Obviously, if 
ji sy →  can be satisfied, the correlation

functions will yield 1→ijθ  and 0→ikθ  ( )jk ≠ . Thus

the convergence of the network can partly be expressed
by the convergence of these variables. Figure 3 (a) (c) (e)
give the final results of the three outputs after 2100
iterations, and figure 3 (b) (d) (f) show the convergence
process of the outputs respectively.

We should mention that, the only requirement here is
0321 ≠aaa . Since 

3212 2.02.1 sssx ++= , we can see the

multi-user interference 
1s  is even stronger than the user

signal 
2s . And though face such a hard situation, the

PICA network can extract the object signal efficiently.
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Figure 2. Base-band CDMA emulation system
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Figure 3. Simulation result of CDMA system
(SNR=26db)

4. CONCLUSION

A globally convergent multi-reference PICA algorithm is
proposed. Unlike conventional BSS methods, PICA
network focuses its scope on extracting prior information
and tracing the object signal directly. Compare with the
multi-output BSS algorithms, the single-output PICA
network is much simpler in computation complexity.
Simulation result is given to show some outstanding
feature of the PCIA idea in applications. Further research
work is needed to improve the performance of the

network.
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