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Abstract’

Binary Quadratic Programming (BQP) problems
arise frequently in digital communication systems
where online solutions are required. The Multiuser
Detection (MUD) problem in Code Division Multiple
Access (CDMA) communications, studied in this
paper, is one such example. Due to the NP-hard
nature of the BQP problem arising in MUD, only
sub-optimal methods with polynomial complexities
can be realistically considered. In this paper, a sub-
optimal algorithm based on the idea of Probabilistic
Data Association (PDA) is proposed. By treating the
detection parameters as binary random variables, and
by approximating the multi-modal Gaussian mixture
by a single Gaussian noise, the PDA method provides
near-optimal  solution with a computational
complexity of O(M), where N is the problem size.
Several other algorithms for the MUD problem are
also considered and compared in terms of
computational efficiency and the degree of sub-
optimality. Although all of the problems studied in
this paper come from the domain of MUD in CDMA,
we are testing the PDA method on general BQP
problems. Further results will be reported in our
future research work.

1 Introduction

Multiuser  Detection (MUD), aimed -at
suppressing the Multiple Access Interference (MAI)
in Code Division Multiple Access communications,

. has been widely discussed in the literature for over a
decade [9]. When user signals assume only binary
values, solving the MUD problem corresponds to a
Binary Quadratic Programming (BQP) problem.
Generally, the BQP problem is NP-hard and
exponentially complex in the problem size [1] (the
number of users in the context of MUD). Therefore,
only sub-optimal algorithms with polynomial
complexities are considered in practice.

! This work is supported by University of
Connecticut Research Foundation #444636, the
Office of Naval Research under contract #N00014-
98-1-0465, #00014-00-1-0101, and NUWC under
contract N66604-01-1-1125.

0-7803-7087-2/01/$10.00 © 2001 IEEE

3140

The linear detectors, including the decorrelator
[1], the Minimum Mean Square Error (MMSE)
detector [3], were proposed in mid 1980’s. When the
number of users is N, the overall computational load
for a linear detector is O(N?). The decision-driven
multivser detectors, including the multistage detector
[4], the decision feedback detector (DED) [5]{10],
and the group detector [7][16], were proposed in the
early 1990’s. Unlike the linear detectors, decision-
driven multiuser detectors make decisions
sequentially with weak users utilizing the decisions
on strong user signals to mitigate the MAIL The
performance of the class of decision-driven multiuser
detectors is significantly better than the linear
detectors. However, it is well known that the
performances of decision-driven detectors are
affected by the order of the users [9]. Fortunately, the
optimal user ordering for DFD and GDFD are
reported and can be found offline [10)[16].
Therefore, the online-computational-load for
decision-driven multiuser detectors remains O(N?).

In addition to linear and decision-driven
multiuser detectors, many other algorithms have also
been developed for the MUD problem during the past
several years. Among them are the multistage
detector using a genetic algofithm [14], an adaptive
Bayesian detector using Gibbs sampling [13], and
semi-definite relaxation [17]. These methods solve
the BQP problem from different points of view. The
performance of these methods is generally good.
Neverthless, their computational costs, although still
polynomial, are higher than the linear and decision-
driven detectors. The semi-definite relaxation method
provides a near-optimal performance with a
complexity of O(N*?) [17]. Since the key issue in
MUD is to solve a positive definite BQP problem,
general optimization technmiques, such as the
coordinate descent search [15], the tabu search [11],
the simulated annealing method [12], the Lagrangian
relaxation method [12], the roll-out method [18], and
the Boltzmann machine [8] can be applied. Related
work is reported in [20] and the corresponding
performance comparisons are given. Further more, as
shown in this paper, exploring the multiuser detection
algorithms also provides alternative sub-optimal
approaches for the general BQP problem.



The Probabilistic Data Association (PDA) is one
of the most successful methods in target tracking [6].
The key feature of PDA is to represent the unknown
binary parameters as binary random variables,
together with a repeated approximation of a
multimodal Gaussian mixture as a single Gaussian
with a matched mean and covariance. Although this
is an unjustifiable step to some extent, it is difficult to
argue with its good performance and low complexity.
In CDMA multiuser detection, similar idea can be
applied. Simulations show that the PDA method
provides performance that is indistinguishable from
optimal with a computational complexity of O(N?).

Portions of the results shown in this paper will
also appear in [19].

2 System Model and Its Relation to General
BQP

A discrete-time equivalent model for the
matched-filter outputs at the receiver of a
synchronous CDMA channel is given by the N-length
vector [10]

y=Hb+v )
where be {—1,+1}N denotes the N-length vector of
bits transmitted by the N active users.

H=W %RW% is a nonnegative definite signature
waveform correlation matrix; R is the symmetric
normalized correlation matrix with unit diagonal
elements; W is a diagonal matrix whose &-th diagonal
component, wy is the received signal energy per bit of
the k-th user; and v is a colored Gaussian noise with
zero mean and a covariance matrix of o2 H , Where

o2 is the covariance of the white Gaussian noise

before the matched filter [10].

When all the user signals are equally probable,
the optimal solution for (1) is the output of a
Maximum Likelihood (ML) detector

@, :b= argmin(p” Hb-2y"b)

bef~1,+1}"
which corresponds to a BQP problem and minimizes
the probability that not all users’ decisions are
correct. Generally, the BQP problem in (2) is NP-
hard [1]. Therefore, previous research has focused on
developing easily implementable and effective
multiuser detectors.

Before presenting the proposed algorithm, the
following proposition shows that all BQP problems
can be equivalently written as (2).

Proposition 1:

(a) Any binary quadratic programming problem
can be equivalently converted to a binary quadratic

@
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{—1,+1} programming problem. In other words, the
following two minimization problems are equivalent:

@, b =argmin(grf15—zir5) (i=1,A,N)
Eie{ai)ﬂi}

@, :b= argmin(b” Hb—2)7)
be{-1,+1}

and the following two maximization problems are
also equivalent:
@b =:1rgmax(‘va1;Vl;—2§T5) (i=1,A,N)
belo, B}
o, b= argmax(bTHb—ZyTb)
bef-1,+1}"
Here b; denotes the ith component of column vector

b ,and @; < f§; Vi are arbitrary real numbers.

(b) Any binary quadratic maximization problem
can be converted to a binary quadratic minimization
problem, i.e., the following two protlems are

equivalent:
O, b= argmax(gTI}Z—2;T5)
bef-1,+1}"
@, :b= argmin(p” Hb-2)"b)
bef-1,+1}¥

(d) Any binary quadratic minimization problem
@, can be converted to a positive definite binary
quadratic minimization problem &,

@, b= argmin(gTﬁI;—2yT5) (i=1,A ,N)
be{-1,+1}"
@, :b= argmin(b” Hb—~2y7b)
bef-1,+1}"
where H is an arbitrary symmetric matrix, while A
is a symmetric positive definite matrix.
Proof: The problem in part (a) of proposition 1
can be easily proved by assigning

b = 251 —(@; +8;) 3)
Bi—a

H=(B-A)H(B-A) ©)

y=Hla+p)+B-A)y ®)

where A and B are diagonal matrices whose ith
diagonal elements are ¢; and B, respectively.

Part (b) can be proved by assigning

H=-H O]

y=-3y )

In order to prove part (c), we use the fact that
57h =N to obtain

BTHE -2y"b =bT(H-M)b-2yTE + AN (8)
Here I is an NxN identity matrix. By selecting A
to be a number less than the minimum eigeavalue of



H , and assigning H = H-A , we can see that part
(c) of proposition 1 holds.

3 A Sub-optimal Algorithm Using Probabilistic
Data Association

A. The Basic Algorithm

PDA considers undecided binary parameters as
binary random variables. By approximating a
multimodal Gaussian mixture by a single Gaussian
noise with matched mean and covariance, the
probability masses of the binary variables are updated
with each successive new observation so that they
converge to ones with smaller variances. The
converged mass functions are used in making
decisions on the binary parameters. In the binary
quadratic minimization problem in (2), we can also
use a similar idea. Rewrite the original system model
(1) as

Jy=H7ly=b+¥ 10)
where v = H™'v is Gaussian with zero mean and
covariance, 02 H ™. We call (10) the “decorrelated
model” since } is in fact a normalized version of the
decorrelator output before the hard decisions. For any
user i, we associate a probability P, (l) with user
signal &; to express the current belief on its value,
ie., P,(i) is the current estimate of the probability
that b;=1, and 1-P,(i) is the corresponding

estimate for b, =—1. Now, for an arbitrary user

signal b, , treat other user signals {b J'I J#i } as binary

random variables and treat Zb i€ +v as the
J#
“effective” noise, where ¢ is a column vector whose

Jth component is 1 and whose other components are
0.  Consequently, P(  =17,{P,{ ) | ﬂ.) and

Plb, ==17,{P, ()} ;) can be obtained from (10).

This provides a way to update iteratively the

probabilities associated with the user signals. Based

on the decorrelated system model, the basic form of

the proposed multistage PDA detector proceeds as

follows:

@) Sort users according to the user-ordering

) criterion proposed for the decision feedback

detector in [10] (specifically Theorem 1 of
[10]).

@) Initialize the probabilities as P, (i)=0.5,Vi.
Initialize the stage counter k=1.

3) Initialize the user counter i=1.

(4) . Based on ‘the current values of P,(;)
(j#1), update P, (i) via
Pb(i):P(bi =1y (j)}j;ti) (1n
(5) If i<N,let i=i+1 and goto step (4).

6) If Vi, P,(i) has converged, goto step (7).
Otherwise, let k=k+1 and return to step
3).
7 Vi, make a decision on user signal i via
1 P i)=05
b = »(1)2 a2
-1 P,(i)<0.5

In the above procedure, the computation of (11)
is evidently exponential in the number of users. In
order to avoid the expensive computation, we use the
Gaussian approximation recommended by PDA.
Define

v,.=ijej+$ (13)

Approximate v; by a single Gaussian random
variable with matched mean and covariance matrix;

that is,
= e, 25()-1) (14)
j#i
COV[vi ]= Z [4Pb (1)(1 - P, (j))]ejejT
e (15)
+olH™
Now, define
8= ;2R (j)-1)-¥ (16)
i
Q=Y [4B()1-B(ee +o’H (7)
j=l
We obtain
Pb (1) _ T -1
hp e e 9

B. Refinements
B.1 Speed-Up: Matrix Arithmetic

In addition to the Gaussian approximation idea,
further simplifications on the computational load can
be obtained by applying the Sherman-Morrison-
Woodbury formula [2] on the calculation of Q,—"].

Define auxiliary variables

e=Ze.2p,, ()-1)-5 (19)

Q= Z[4P,,

Using Sherman-Mornson—Woodbury formula, we
have

6,=6-¢,(2P,()-1) @1

(1=P,(ese;,” +a*HT (20)



4P, () (1-P,()QeeTQ

Q=0 22
"B, 00-B Ok a0

and ‘
0=9,+e;(2P,(i)-1) (23)
Q= Q.‘—l _ 4F, (i )(1 - Pb(i )) Qi_leieiTQi_l (24

1+45,(i)(1- B ()" Q e,

By keeping the updated versions of 8 and Q7' we
can divide step 3 into three sub-steps. In sub-step 1,

we calculate §; and Q,”" using (21) and (22). Sub-
step 2 obtains the updated P, (i) using (18). In sub-

step 3, we use the new P, (i) and update 8 and Q!

using (23) and (24). The overall computational
complexity for one stage of the PDA method is then
reduced to O(N 3 )
B.2 Speed-Up: Successive Cancellation

In the basic form of the PDA method, the overall
complexity can be high if one or two users show a
slow convergence. In our computer simulations, in
most of the cases, more than 70% of the users will
converge in the first stage. Thus to avoid the high
computational load caused by a small number of
slowly converging users, we introduce the idea of
successive cancellation among the stages.

After the kth stage, define G to be the group of
“converged” users that satisfy

Vie G, B,(i)e [0,e]ull-&,1] 25)
where € is a small positive number. Make decisions
on the users in G via

Vie G, b; =sign(P,(i)-0.5) (26)
Denote G to be the complement of G, i.e., the group
of “non-converged” users. By canceling the MAI, the

decorrelated system model for the users in G can be
reformulated as

(Haz ' g —Hgzsbs )=bz +75 @7
Here Hgz denotes the sub-block matrix of H that
only contains the columns and rows corresponding to

. users in G . Vj is the colored Gaussian noise of the
sub-system with zero mean and covariance matrix

o? (H bered )_1 . Consequently, in the (k+1)st stage, we

apply the PDA detection procedure only on the sub-
system model.
B.3 Performance: Bit-Flipping

In computer simulations, we note that when
optimal and PDA solutions to (2) differ, they usually
disagree in one element only. Thus, as an inexpensive
way to improve the PDA detector, we add a “bit-flip”
stage after PDA has converged. This corresponds to a
one-step coordinate descent [15].
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4  Computer Simulations

In this section, we use several computer
simulations to show the performance and
computational cost of the PDA method. The ML
detector, the Decorrelator [1], the Decorrelator-based
DFD [12], and the Semi-definite relaxaticn method
[17] are compared. In the successive cancellation part

-2

of the PDA method, we set € = 10 where SNR is
4SNR

the signal to noise ratio. For the Semi-definite
Relaxation algorithm, the number of randornization is
set to 20.

The first example is a typical CDMA MUD
problem over band-efficient channel. Assume we
have 29 users. The signature sequences are randomly
chosen from length-31 Gold codes [9]. The signal
amplitudes are randomly and independently
generated by w; ~N(4.5,4) Vi, and are limited
within a range of [2,7] ( N{) represents the Normal
distribution). The H matrix in (1) is generated via

H= W%RW% . The performance comparison of
different algorithms is shown in Figure 1.
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Figure 1. 29-users, length-31 Gold codes as signature
sequences, 100000 Monte-Carlo runs

In the second example, we fix the SNR to be
12dB. The signature sequences are randomly
generated and the ratio between the spreading factor
(the length of the signature sequence) and the number
of users is fixed at 1.2. Let the number of users vary
from 3 to 60. Figure 2 shows the worst case
computational complexity measured in terms of the
number of multiplications plus number of additions
of the PDA detector and of the Semi-definite
Relaxation method. The online complexity of the

Decorrelator and the DFD are known to be O(N 2)
and the complexity of the ML detector is exponential



in the number of users. For comparison purposes, we
do not show the computational costs of these
methods in Figure 2. It is known that the
computational cost of the Semi-definite Relaxation
method is 0(N3'5). Therefore, we claim that the
computational cost for the PDA method is

significantly less than O{N** ). Simulations show the
complexity is in fact O(N 3 )
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Figure 2. Comparison of worst-case computational
costs. Random signature sequences, spreading
factor=1.2N, SNR=12dB are assumed for PDA and
Semi-definite Relaxation.

In the third example, we apply the above
multiuser detection algorithms to general binary
quadratic programming problems. We fix the
problem size at 15. The symmetric matrix H is
generated randomly with all the elements uniformly
distributed between [—2,+2]. The y vector is also
randomly generated with components uniformly
distributed in {-8,+8]. We use a randomly generated
tlag f ={—l,+1} to determine whether it is a binary
quadratic maximization problem or it is a binary
quadratic  minimization  problem  (maximize
(minimize) (b7 Hb—2y7b) when f=-+1 (f=-1)).
In order to convert a general binary quadratic
minimization problem to a positive definite binary
quadratic minimization problem, we apply the
method shown in the proof of proposition 1. In (9),

we choose A= 71\,—11'(1?)— l’l}—lﬁtr(f[)l 1, where

IIAH1 denotes the 1-norm of matrix 4, #(4) denotes

the trace of matrix 4, and /is NXN identity matrix.
Other settings are identical to that in example 1.
However, for the PDA method, there is an additional
problem. As opposed to the CDMA MUD problem,
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the parameters SNR and o2 in the MUD system
model are not available in general BQP problems. In

our computer simulation, we select SNR and o2
using the following procedure.

First convert a general BQP problem to a
positive definite binary quadratic minimization

problem (as described above), and write the
minimization problem as
@ :5 = argmin (57 Hb—2y7b) @7

bef-1,+1}
Estimate the average signal power by averaging the
absolute values of the diagonal elements of H, i.e.,

1 &
P =F§lhﬂl

Suppose L'L=H is the Cholesky decomposition of
H. Randomly generate a decision vector b, calculate
the white noise vector (assume that the system yields

(28)

the MUD system model) by
=) y-1p 29)
Estimate o> by
N
16N 21 (30)

P
The SNR is computed by SNR = Sz .
o
For the purpose of a fair comparison, we add a
final bit-flip stage to all the compared methods. The

simulation result is obtained from 10000 Mont-Carlo

“runs. Figure 3 shows the box plot of the normahzed

error, which is defined as
Jo)-r *)
fb¥)
where f() represents the cost function, b* is the
optimal solution and b is the solution given by the
sub-optimal algorithm. Table 1 shows, for different
algorithms, the percentage of problems where
optimal solution was found, and the percentage of
problems where the normalized error is less than 5%.
In most of the cases, the normalized error for the
PDA method is very small, and it rarely exceeds 20% -
in 10000 Monte-Carlo runs.

In addition, recall that the user ordering needs to
be done offline for the DFD algorithm. For general
BQP problem, however, the computational cost for
the user ordering must be taken into consideration.
Therefore, the overall computational cost for DFD is
0(N?) instead of O(N?).

Normalized Error = (31

5 Conclusions

A new method based on the idea of Probabilistic
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Figure 3. Box plot of the normalized error

DFD PDA Semi-Definite
Optimum Solution Found | 59.08% | 76.61% 49.60%
Normalized Error < 5% | 82.54% | 94.39% 71.24%

Table 1. Comparison of Optimality

Data Association is proposed for multiuser detection
in synchronous CDMA communications. Computer
simulation shows that the PDA method provides near
optimal performance with an overall computational
complexity of O(N 3 ) It is also shown that any BQP
problem can be equivalently written in the form of a
CDMA multiuser detection problem. Therefore, all
the multiuser detection algorithms can be used to
solve the general BQP problems. The PDA method as
well as other sub-optimal multiuser detectors will be
tested on a variety of large-scale binary quadratic
programming problems in our future research.
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