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Abstract– A Probabilistic Data Association (PDA)

method is proposed in this paper for multiuser detection

over synchronous Code Division Multiple Access (CDMA)

communication channels. PDA models the undecided user

signals as binary random variables. By approximating the

Inter-User Interference (IUI) as Gaussian noise with an ap-

propriately elevated covariance matrix, the probability as-

sociated with each user signal is iteratively updated. Com-

puter simulations show that the system usually converges

within 3-4 iterations, and the resulting probability of error

is very close to that of the optimal Maximum Likelihood

(ML) detector. Further modifications are also presented to

significantly reduce the computational cost.

I. Introduction

TheMultiuser Detection (MUD) problem in synchronous

Code Division Multi-Access (CDMA) communication sys-

tems has been widely studied in the past decade. Since the

computation of an optimal Maximum Likelihood (ML) de-

tector is exponential in the number of users, sub-optimal

solutions are proposed to provide reliable decisions with

relatively low computational cost. Among them are the

conventional decorrelator [1], the Decision Feedback De-

tector (DFD) [3] [6], the multistage detector [2] and the

group detector [5] [10]. Although DFD is one of the most

efficient methods, in most cases the gap between the proba-

bility of error of the DFD and that of a ML detector is still

large. The DFD can be considered a special case of a group

detector with unity maximum group size, and the perfor-

mance gap becomes narrower as this is increased. How-

ever, despite the improvements described in [10], finding

the optimal group assignment and user ordering remains

expensive, especially when the number of users and max-

imum group size are large. Even when the signal power

is only slowly varying and the group assignment needs to

be updated only occasionally, this computation can still be

unaffordable for online detection.

The Probabilistic Data Association Filter [4] is a highly

successful approach to tracking in the case that measure-

ments are unlabeled and may be spurious. Its key feature

is a repeated conversion of a multimodal Gaussian mixture

probability structure to a single Gaussian with matched

mean and covariance. This is a bold and to some extent

unjustifiable step, but it is difficult to argue with good per-

formance and low complexity. Now, in the CDMA case the

true probability function is also a Gaussian mixture, and

complexity is also the issue. We thus propose to apply

the Gaussian “forcing” idea; whereas in the tracking ap-

plication this forcing occurs once per scan and there is no
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revisit, in CDMA it occurs for each user, and there is itera-

tion. Simulation results show that the PDA detector gives

a probability of error very close to and often indistinguish-

able from that of the optimal ML detector. Simulations

also show that the worst case computational cost of the

PDA method is O(K
3

), where K is the number of users.

The paper is organized as follows. After a brief review

of the system model, section II presents the original form

of multistage PDA detector. Simplifications are then in-

troduced to reduce the overall complexity of the PDA de-

tector. Computer simulation results are shown in section

III and the paper concludes in section IV.

II. The Multistage PDA Detector

A. Problem Formulation

A discrete-time model for the matched-filter outputs at

the receiver of a CDMA channel is given by the K-length

vector [1]

y = RWb+ n (1)

where b 2 f¡1,+1g
K

denotes the K-length vector of bits

transmitted by the K active users; R is the symmetric

normalized signature correlation matrix with unit diagonal

elements; W is a diagonal matrix whose diagonal elements

are the signal amplitudes of the corresponding users. Here

n is a colored Gaussian noise vector with zero mean and

covariance matrix E[nn
T
] = σ

2

R, where σ
2

is the power of

the white noise before the matched filter.

When all the user signals are equally probable, the opti-

mal solution of (1) is the output of a Maximum Likelihood

(ML) detector [1]

φ
ML

:
ˆ
b = arg min

b∈{−1,+1}
K

(
b
T

WRWb¡ 2y
T

Wb

)
(2)

It is known that obtaining the ML solution is generally

NP-hard [1], unless the signature correlation matrix has a

special structure [8] [9].

Multiplying by W
−1

R
−1

on both sides of (1) from the

left, the system model can be reformulated as

ỹ = b+ ñ = biei +

∑

j �=i

bjej + ñ (3)

where ỹ = W
−1

R
−1

y, ñ = W
−1

R
−1

n. The variable bi

represents the ith element of vector b, and ei is a column

vector whose ith component is 1 and all other components

are 0. We call (3) “the decorrelated model”, since ỹ is in

fact a normalized version of the decorrelator output before

the hard decision.
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B. The Basic Algorithm

In the CDMA system model (3), we treat the decision

variables b as binary random variables. For any user i, we

associate a probability Pb(i) with user signal bi to express

the current belief on its value, i.e., Pb(i) is the current es-

timate of the probability that bi = 1, and 1 ¡ Pb(i) is the

corresponding estimates for bi = ¡1. Now, for an arbi-

trary user signal b
i
, treat the other user signals b

j
(j 6= i)

as binary random variables and treat

∑
j �=i

bjej + ñ as

noise. Consequently, p(bi = 1jỹ, fPb(j)gj �=i) and p(bi =

¡1jỹ, fPb(j)gj �=i) can be obtained from (3); they serve as

updated information on user signal bi. Based on the decor-

related model, the basic form of the proposed multistage

PDA detector is as follows.

(1) 8i, initialize the probabilities as Pb(i) = 0.5. Initial-

ize the stage counter k = 1

(2) Initialize the user counter i = 1

(3) Based on the current value of Pb(j) (j 6= i) for user

i, update Pb(i) by

Pb(i) = Pfbi = 1jỹ, fPb(j)gj �=ig (4)

(4) If i < K, let i = i+ 1 and goto step (1)

(5) If 8i, Pb(i) has converged, goto step (6). Otherwise,

let k = k + 1 and return to step (2).

(6) 8i, make a decision on user signal i via

bi =

{
1 Pb(i) ¸ 0.5

¡1 P
b
(i) < 0.5

(5)

In the above procedure, the computational cost of obtain-

ing Pb(i) = Pfbi = 1jỹ,fPb(j)gj �=ig is evidently exponen-

tial in the number of users. Define

Ni =

∑

j �=i

bjej + ñ (6)

from (3). Here is the key: to avoid the computational cost

of Pb(i), the PDA idea from [4] recommends that Ni be

approximated as a Gaussian noise with matched mean and

covariance; that is, we use

E[N
i
] =

∑

j �=i

e
j
(2P

b
(j)¡ 1)

Cov[N
i
] =

∑

j �=i

[
4P

b
(j)(1¡ P

b
(j))e

j
e
T

j

]

+σ
2

(W
T

RW )
−1

(7)

Now, defining

θi =

∑

j �=i

ej(2Pb(j) ¡ 1)¡ ỹ

Ωi =

∑

j �=i

[
4Pb(j)(1¡Pb(j))eje

T

j

]

+σ
2

(W
T

RW )
−1

(8)

we obtain

P
b
(i)

1¡Pb(i)

= exp

{
¡2θ

T

i
Ω

−1

i
e
i

}
(9)

C. Refinements

C.1 Speed-Up: Matrix Arithmetic

Although the computation in step 3 is no longer expo-

nential, direct calculation of Ω
−1

i
for each user is still ex-

pensive. Further simplifications can be made by defining

auxiliary variables

θ =

∑

j

ej(2Pb(j)¡ 1) ¡ ỹ = θi + ei(2Pb(i)¡ 1)

Ω =

∑

j

[
4Pb(j)(1¡ Pb(j))eje

T

j

]
+ σ

2

(W
T

RW )
−1

= Ωi + 4Pb(i)(1¡ Pb(i))eie
T

i
(10)

The Sherman-Morrison-Woodbury formula [11] yields

θi = θ ¡ ei(2Pb(i)¡ 1)

Ω
−1

i
= Ω

−1

+

4Pb(i)(1¡ Pb(i))Ω
−1

eie
T

i
Ω

−1

1¡ 4Pb(i)(1¡ Pb(i))e
T

i
Ω

−1
ei

(11)

θ = θi + ei(2Pb(i)¡ 1)

Ω
−1

= Ω
−1

i
¡

4Pb(i)(1¡ Pb(i))Ω
−1

i
eie

T

i
Ω

−1

i

1 + 4Pb(i)(1¡ Pb(i))e
T

i
Ω

−1

i
ei

(12)

By keeping the updated versions of θ and Ω
−1

, we can

divide step 3 into three sub-steps. In sub-step 1, we calcu-

late θi and Ω
−1

i
using (11). Sub-step 2 obtains the updated

Pb(i) using (9). In sub-step 3, we use the new Pb(i) and up-

date θ and Ω using (12). The overall computation of step

3 is then reduced to O(K
2

), and the overall complexity of

each stage in the PDA detector is now O(K
3

).

C.2 Speed-Up: Successive Cancellation

Since the number of stages in the PDA detector is not

fixed, the overall complexity can be high if one or two

users show a slow convergence. In fact, computer simu-

lation shows that, in most cases, more than
2

3
of users will

converge after the first stage. Thus to simplify further we

introduce successive cancellation among the stages.

After the kth stage, define G to be the group of users

that satisfy

8i 2 G, P
b
(i) 2 [0, ε] [ [1¡ ε,1] (13)

where ε is a small positive number. Denote Ḡ to be the

complement of G. Make decisions that

8i 2 G, bi = sign(Pb(i)¡ 0.5) (14)

Buy cancelling the IUI, the decorrelated system model for

the users in
¯
G can be formulated as

W
−1

¯
G

¯
G

R
−1

¯
G

¯
G

y ¯
G
¡W

−1

¯
G

¯
G

R
−1

¯
G

¯
G

R ¯
GG

WGGbG = b ¯
G
+ ñ ¯

G
(15)

Here R ¯
G

¯
G

denotes the sub-block matrix of R that only

contains the columns and rows corresponding to users

in
¯
G. ñ ¯

G
is the colored Gaussian noise of the sub-

system with zero mean and covariance matrix Cov[ñ ¯
G
] =

σ
2

(W ¯
G

¯
G
R ¯

G
¯
G
W ¯

G
¯
G
)
−1

. Consequently, in the (k+1)th stage,

we apply the PDA detection procedure only on the sub-

system model.
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C.3 Performance: User Ordering

Since we update the associated probabilities sequentially,

the performance of the PDA detector is affected by the or-

der of the users. Although simulation shows that the PDA

detector is less sensitive to user order than other decision

driven multiuser detectors, for example the DFD, we rec-

ommend to use the user ordering algorithm proposed for

the DFD in [6] (specifically theorem 1 of [6]). Interest-

ingly, the computational cost for obtaining the user order

is also O(K
3

). Therefore, when the signal amplitudes are

slowly varying and the user order need to be updated oc-

casionally, even finding the user order online will not sig-

nificantly increase the overall computational cost.

C.4 Performance: Bit-Flipping

In addition to the above refinements, it has been noted

that when optimal and PDA solutions to (2) differ, they

usually disagree in one element only. Thus, as an iniexpen-

sive way to improve the performance of the PDA detector,

we also add a “bit-flip” stage after PDA has converged.

This is actually a one-step coordinate descent [7].

III. Computer Simulation Results

In this section, we use several computer simulation exam-

ples to show the performance and the computational cost

of the PDA detector. Besides the proposed PDA detec-

tor, the Decorrelating Detector [1], the Decision Feedback

Detector [6], the Semi-definite Relaxation method [12]

and the optimal Maximum Likelihood detector [10] are

compared in the examples. In the successive cancellation

part of the PDA detector, we set ε =
10

−4

4SNR
where SNR is

the signal to noise ratio. For the Semidefinite Relaxation

algorithm, the number of randomizations is set to 20. In

all the examples, the user signal amplitudes are randomly

and independently generated by Wii » N(4.5, 4), 8i, and

are limited within the range of [2, 7] (N(.) represents the

Normal distribution).

In the first 13-user example, we use length-15 Hamming

codes as the signature sequences. Figure 1 shows the per-

formance comparison based on 100000 Monte-Carlo runs

with importance sampling.

The second example has 29 users, and we use length-31

Gold codes as the signature sequences. The performance

comparisons are shown in Figure 2. Again, the results are

based on 100000 Monte-Carlo runs with importance sam-

pling.

In both above examples, PDA detector shows a perfor-

mance very close to that of an optimal Maximum Like-

lihood detector. It is also shown that the Semi-definite

Relaxation method proposed in [12] provides a good per-

formance. Therfore, in the third example, we only com-

pare the PDA detector with the Semi-definite Relaxation

algorithm. We fix the SNR to be 12 dB. The signature

sequences are randomly generated and the ratio between

the spreading factor and the number of users is fixed at

1.2. Let the number of users vary from 3 to 60. Figure 3

shows the worst case computational complexity measured

Fig. 1. 13-users, length-15 Hamming codes as signature sequences,

100000 Monte-Carlo runs

Fig. 2. 29-users, length-31 Gold codes as signature sequences, 100000

Monte-Carlo runs

in terms of the number of multiplications plus number of

additions of the PDA detector and of the Semidefinite Re-

laxation method. It is known that the computational cost

of the Semidefinite Relaxation method is O(K
3.5

) [12].

Therefore, we claim that the computational cost for the

PDA detector is significantly less than O(K
3.5

). Simula-

tion results show that the computational cost is in fact

O(K
3

).

IV. Conclusions

A new algorithm based on the idea of Probabilistic Data

Association is proposed for the multiuser detection in syn-

chronous CDMA communications. Simulation results show

that the PDA detector provides near-optimal performance,

with the overall computational cost O(K
3

), where K is the

number of users. We will extend the PDA idea to multi-

user detection over fading channels, as well as multiuser

detection for asynchronous CDMA in our future research.
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