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Abstract —

This paper studies the convergence issue in sto-

chastic implementation of standard power control al-

gorithms in wireless communications. It is shown

that, under a set of general assumptions, the stochas-

tic power control algorithm converges to the compo-

nentwise smallest power vector with probability one.

The results are further extended to the joint stochas-

tic power control and receiver optimization problem.

Simulation results are given to illustrate the perfor-

mance of the proposed algorithms in practical sys-

tems.

I. Introduction

Since power is an important and limited resource in wire-
less communication systems, power control algorithms that
minimize the transmission power while ensuring the quality
of service (QoS) have been widely studied in the literature.
Early work on power control viewed the problem as a con-
strained optimization and found the optimal transmit power
for each user by solving the optimization problem directly [1].
Such algorithms are identified as “centralized” since they as-
sume that the optimization problem is solved at a centralized
server using the knowledge of some global parameters such as
the channel gains of all users to all base stations. When the
size of the system increases, computational complexity and
acquiring the knowledge about the global parameters become
a serious issue. Due to these reasons, many distributed power
control algorithms have been developed [2][3]. A framework of
standard power control is developed in [4] where it was shown
that, if the interference function is standard then the distrib-
uted power control algorithm converges to the componentwise
smallest power vector.

The algorithms studied in [4] are deterministic in the sense
that they require the perfect knowledge of the received inter-
ference power. However, in a practical system, the interference
power can only be estimated using noisy observations. Sto-
chastic power control that uses noisy interference estimates
is first considered in [5]. For conventional matched filter re-
ceivers, [5] showed that the stochastic power control converges
to the optimal power vector in the Mean Square Error (MSE)
sense as long as the step size meets certain requirements. The
results are further extended to the case of decision feedback
receivers in [6]. The common feature of [5][6] is that, for both
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cases, the interference is a linear function of the transmit pow-
ers.

In this paper, we consider a general power control prob-
lem where the deterministic interference function is standard
and it satisfies the Lipschitz condition defined later. Start-
ing with the deterministic interference function, we define a
closely related stochastic version. With an additional set of
assumptions on the stochastic interference function, we show
that the standard stochastic power control algorithm converges
to the solution of the deterministic power control problem with
probability one, assuming that the step size is decreasing and
is decreasing faster than a certain rate.

Due to the NP-hard nature of the optimal CDMA multi-
user detection [7], suboptimal detectors that provide reliable
decisions and that ensure polynomial complexity have been
developed. Among the suboptimal detectors, linear detectors,
including the decorrelator and the minimum mean square er-
ror (MMSE) detector, posses attractive features [7]. Joint
power control and receiver optimization problem is consid-
ered in [9]. It is shown that, if the receiver is optimized to
be the MMSE receiver at each step of the power control it-
eration, the resulting interference function is standard, and
the power control is convergent. However, in [9], perfect in-
terference estimates are assumed, and the convergence results
are shown only for the deterministic power control. Since the
MMSE receiver can be implemented in a “blind” manner that
requires only single user information [8], joint stochastic power
control and blind MMSE interference suppression is of special
interest.

In this paper, we formulate and study the stochastic im-
plementation of general standard deterministic power control
problems, the special cases of which where the interference
function is linear in powers have been studied in [5][6]. After
developing the general theory, we then focus on an example
of standard power control where interference function is non-
linear in powers: the joint power control and receiver design
problem. We show that, if we combine the power control and
the blind MMSE multiuser detection in a certain way, the
algorithm converges to the optimal power vector and the cor-
responding MMSE filters with probability one. In addition, a
further extension allows the power control and receiver opti-
mization to be performed in parallel, i.e., the power control
algorithm does not need to wait for the convergence of the
blind MMSE algorithm between consecutive power updates.

II. Standard Power Control

Suppose p is the power vector whose ith component, pi, is
the transmit power of user i. The signal to interference (SIR)
requirements of all users can be expressed as

p ≥ I (p) (1)



where I (p) = [I1(p), . . . , IK(p)]T is the interference function
and K is the number of users. Suppose I (p) is standard as
defined by the following [4].

Definition 1: Interference function I (p) is standard if for
all p ≥ 0 the following properties are satisfied.

• Positivity. I (p) > 0.

• Monotonicity. If p ≥ p ′, then I (p) ≥ I (p ′).

• Scalability. For all β > 1, βI (p) > I (βp).

It is shown in [4] that, the deterministic power control al-
gorithm

p(n + 1) = I (p(n)) (2)

converges to the componentwise smallest power vector p∗

which satisfies p ≥ I (p), and the inequality is indeed sat-
isfied with equality at p∗. Furthermore, since ∀0 < α ≤ 1,
(1 − α)p + αI (p) is also standard, the power control algo-
rithm

p(n + 1) = (1 − α)p(n) + αI (p(n)) (3)

also converges to p∗.
The above algorithm is deterministic in the sense that it re-

quires the perfect knowledge of I (p). In practical systems, we
cannot know I (p) perfectly, but we may have a random esti-
mate of I (p), denoted as Ĩ (p, v). Consider now the following
stochastic power control algorithm

p(n + 1) = (1 − α(n))p(n) + α(n)Ĩ (p(n), v(n)) (4)

where Ĩ (p(n), v(n)) is the noisy estimate of I (p(n)) and α(n)
is the step size at the nth iteration. We define a standard
stochastic interference function as:

Definition 2: Stochastic interference function Ĩ (p, v) is
standard if, given p and p ≥ 0, the following properties are
satisfied.

• Mean condition. Ĩ (p, v) = I (p) and I (p) is a standard
deterministic interference function.

• Lipschitz condition. There exits a constant K1 > 0,
such that,

‖I (p1) − I (p2)‖2 ≤ K1‖p1 − p2‖2 (5)

• Growing condition. There exits a constant K2 > 0, such
that,

E[‖Ĩ (p, v) − I (p)‖2] ≤ K2(1 + ‖p‖2) (6)

Similar to the deterministic power control, when the stochastic
interference function is standard as defined in Definition 2, we
call (4) the standard stochastic power control algorithm. It is
easy to verify that, the stochastic power control algorithms
that have already been studied in [5] and [6] are standard.

III. Convergence of Standard Stochastic
Power Control Algorithms

In this section, we show that the standard stochastic power
control algorithm converges to the optimal power vector with
probability one, under certain conditions on the step size se-
quence.

A. Convergence on the mean Ordinary
Differential Equation (ODE)

Let us first consider the deterministic power control algorithm
in (3). Define a function V (p) by

∇pV (p) = p − I (p)

V (p∗) = 0 (7)

Since I (p) is Lipschitz continuous, from (3), we obtain

V (p(n + 1)) = V (p(n)) − α‖p − I (p)‖2 + O(α2) (8)

Hence, if p(n) �= p∗ and α is small enough, we have
V (p(n + 1)) < V (p(n)). Noting that the power control algo-
rithm (3) converges to p∗ from any initial point, ∀0 < α ≤ 1,
if p(0) �= p∗, we can always find a sequence p(0), . . . , p(n), . . .
such that V (p(0)) > . . . > V (p(n)) and p(n) → p∗ as n → ∞.
Therefore, we have

V (p) > 0 ∀p �= p∗ (9)

This shows that V (p) is a Lyapunov function.
Define the Ordinary Differential Equation (ODE)

dp

dt
= −[p(t) − I (p(t))] (10)

Since (10) minimizes V (p), from the above analysis, we can
see that p(t) → p∗ as t → ∞.

B. Bounding the power vector

Suppose the power control problem is feasible. Given an ar-
bitrary constant Ka > 1, since I (Kap

∗) < Kap
∗ with strict

inequality, we can always find 0 < ε < 1, such that

I (Kap
∗) ≤ Ka(1 − ε)p∗ (11)

Furthermore, ∀β ≥ 1,

I (βKap
∗) ≤ βI (Kap

∗) ≤ βKa(1 − ε)p∗ (12)

Now, define

ξi =
pi

p∗
i

, k = arg max
i

ξi (13)

On one hand, if ξk ≥ Ka,

‖p − I (p)‖2 ≥ (pk − Ik(p))2 ≥ ε2ξ2
kp∗

k
2

(14)

which gives

‖p‖2 ≤ ξ2
k‖p∗‖2

=
‖p∗‖2

ε2 minj{p∗
j}2

ξ2
kε2 min

j
{p∗

j}2

≤ ‖p∗‖2

ε2 minj{p∗
j}2

‖p − I (p)‖2 (15)

On the other hand, if ξk < Ka, we have

‖p‖2 < K2
a‖p∗‖2 (16)

Therefore, combing (15) and (16) gives the following bound.

Bound 1: There exists a constant K3 > 0, such that

1 + ‖p‖2 ≤ K3(1 + ‖p − I (p)‖2) (17)

C. Probability One Convergence



Proposition 1: Suppose the step size satisfies

∞∑
n=0

α(n) = ∞,

∞∑
n=0

α(n)2 < ∞ (18)

Then the power vector of the standard stochastic power con-
trol algorithm (4) converges to p∗ with probability one.

Proof: To simplify the notation, we write I (p(n)) and
Ĩ (p(n)) as I (n) and Ĩ (n), respectively. Since I (p) is Lipschitz
continuous, from (4), we can find a constant K4, such that the
truncated Taylor expansion on V (n + 1) satisfies

V (n + 1) ≤ V (n) − α(n)(p(n) − I (n))T (p(n) − Ĩ (n))

+
α(n)2K4

2
‖p(n) − Ĩ (n)‖2 (19)

Now, defining En[.] as the conditional expectation given p(n),
we have

En[V (n + 1)] ≤ V (n) − α(n)‖p(n) − I (n)‖2

+
α(n)2K4

2
En[‖p(n) − Ĩ (n)‖2]

≤ V (n) − α(n)(1 − α(n)K4

2
)‖p(n) − I (n)‖2

+
α(n)2K2K4

2
(1 + ‖p(n)‖2) (20)

Using (17), we obtain

En[V (n + 1)] ≤ V (n)

−α(n)(1 − α(n)K4(1 + K2K3)

2
)‖p(n) − I (n)‖2

+
α(n)2K2K3K4

2
(21)

Let us define

V̂ (n) = V (n) +
K2K3K4

2

∞∑
i=n

α(i)2 (22)

Then, from (21), we get

En[V̂ (n + 1)] ≤ V̂ (n)

−α(n)(1 − α(n)K4(1 + K2K3)

2
)‖p(n) − I (n)‖2

(23)

Since α(n) → 0 when n → ∞, we can assume that there exists
a constant N , ∀n ≥ N , α(n) ≤ 2

K4(1+K2K3)
. Therefore

En[V̂ (n + 1)] ≤ V̂ (n) ∀n ≥ N (24)

Since V̂ (n) ≥ 0, (24) indicates that V̂ (n) is a supermartingale
sequence [10]. According to martingale convergence theorem
[10], V̂ (n) converges to a random variable V̂∞ with probability
one. This yields

E[V (N)] +
K2K3K4

2

∞∑
i=N

α(i)2

≥ E[V (N)] +
K2K3K4

2

∞∑
i=N

α(i)2 − E[V̂∞]

≥
∞∑

i=N

α(i)(1 − α(i)K4(1 + K2K3)

2
)E[‖p(i) − I (i)‖2]

(25)

Since E[V (0)] < ∞ and N is finite, we have E[V (N)] < ∞.
Together with the assumption that

∑∞
N

α(n)2 < ∞, the left

hand side of (25) is finite. If V̂∞ > 0 has a positive probabil-
ity, then ‖p(n) − I (n)‖2 > 0 has a positive probability. This
and

∑∞
n=0

α(n) = ∞,
∑∞

n=0
α(n)2 < ∞ lead to a contradic-

tion. Therefore, V̂∞ = 0 and p(n) → p∗ when n → ∞, with
probability one. ♦

In the situation when α(n) → 0 but
∑∞

n=0
α(n)2 = ∞, and

the situation when the step size is a constant, i.e., α(n) = α for
all n, probability one convergence is no longer available. Con-
vergence studies under these conditions for general stochastic
approximation algorithms can be found in [11].

IV. Combined Stochastic Power Control and
Receiver Optimization

In this section, we consider the stochastic implementation
of joint power control and receiver optimization. The deter-
ministic version of this problem was studied in [9]. The prob-
lem also serves as an example when the deterministic interfer-
ence function is not linear in powers.

A. System Model

Consider the uplink of a symbol synchronous wireless
CDMA system with a fixed base station assignment of K users
to M base stations. The chip matched filter output at the as-
signed base station of user i can be written as

z i =

K∑
j=1

√
pj

√
hijbjsj + v i (26)

where pj is the transmit power of user j; hij is the channel gain
of user j to the assigned base station of user i; bj and sj are
the transmitted information bit and the normalized signature
sequence of user j, respectively; and v i is a white Gaussian
noise vector with zero mean and E[v iv

T
i ] = σ2I .

Let ci denote the receiver filter for user i at its assigned
base station. The receiver filter output of user i is

yi =

K∑
j=1

√
pj

√
hij(c

T
i sj)bj + cT

i v i (27)

The SIR of user i can be written as

SIRi =
pihii(c

T
i si)

2∑
j �=i

pjhij(cT
i sj)2 + σ2(cT

i ci)
(28)

Suppose that the quality of service requirement for user i is
SIRi ≥ γi. Then the combined power control and receiver
filter design problem can be stated as that of finding compo-
nentwise smallest power vector that yields SIRi ≥ γi [9].

Define

Ii(p, ci) =
γi

hii

∑
j �=i

pjhij(c
T
i sj)

2 + σ2(cT
i ci)

(cT
i si)2

(29)

Then the quality of service requirement becomes

pi ≥ Ii(p, ci) (30)

Since we want to minimize the powers, ci should be chosen to
minimize Ii(p, ci).

Define
Îi(p) = min

ci

Ii(p, ci) (31)



Note that ci that minimizes Ii(p, ci) is the scaled version of
the well-known MMSE filter

c∗
i = kiA

−1
i si (32)

where Ai =
∑

j �=i
pjhijsjs

T
j + σ2I and ki > 0 is an arbitrary

constant. Substituting (32) into (31), we get

Îi(p) =
γi

hii

1

sT
i A−1

i si

(33)

B. Combined Stochastic Power Control and
Receiver Optimization

According to (4), given ci(n), the nth iteration of user i in
the stochastic power control algorithm is

pi(n + 1) = (1 − α(n))pi(n)

+α(n)
γi

hii

[
(ci(n)T z i(n))2 − pi(n)hii

]
(34)

However, since the transmit powers and channel gains of other
users are not available at the receiver of user i, we cannot
compute ci(n) directly using (32). Fortunately, one can obtain
the optimal filter, i.e., the MMSE filter for fixed powers, by
minimizing the mean output energy (MOE) using the blind
adaptive method proposed in [8]. If we require that cT

i si = 1,
we can rewrite ci as

ci = si + x i, xT
i si = 0 (35)

The blind MMSE adaptation rule can be summarized as [8]

ci(l + 1) = ci(l) − µ(l)ci(l)
T z i(l)(z i(l) − sT

i z i(l)si) (36)

where l is the iteration index and µ(l) is the step size for the lth

iteration. It is shown in [12] that, given p(n), if µ(l) satisfies∑∞
l=0

µ(l) = ∞ and
∑∞

l=0
µ(l)2 < ∞, then (36) converges to

ci(n)∗ when l → ∞ with probability one.
However, before performing the nth iteration on the sto-

chastic power control (34), in order to ensure ci(n) = ci(n)∗,
one has to perform infinite number of iterations of (36), which
is infeasible for practical systems. When the number of blind
MMSE iterations is finite, we can write ci(n) as

ci(n) = ci(n)∗ + w i(n) (37)

where according to [8], w i(n)T si = 0. Since
E[‖w i(n)‖2|p(n)] → 0 when µ(l) → 0 [8], we can always
choose the number of iterations such that

E[‖w i(n)‖2|p(n)] ≤ α(n)K5 (38)

is statisfied ∀n, with K5 > 0 being an arbitrary constant.

C. Probability One Convergence

Proposition 2: In the joint stochastic power control and
filter optimization, we apply the blind MMSE method (36) to
obtain ci(n) before performing the nth power control iteration
(34). Suppose we control the iteration numbers in the blind
MMSE such that (38) is satisfied with probability one. We
further assume that the step size satisfies

∞∑
n=0

α(n) = ∞,

∞∑
n=0

α(n)2 < ∞ (39)

Then the joint power control and filter optimization algorithm
converges to p∗ and the corresponding c∗

i , ∀i, with probability
one.

Proof: We only need to show the convergence of the power
vector to p∗ with probability one. Since the interference func-
tion Îi(p) = γi

hii

1

sT
i
A−1

i si

is standard [9], the deterministic

power control

p(n + 1) = (1 − α(n))p(n) + α(n)Î (n) (40)

converges to p∗ [9].
We first show that Î (p) satisfies the Lipschitz condition.

∂Îi

∂pj
= − γi

hii

(sT
i sj)

2

(sT
i A−1

i si)2
(41)

Since

1

sT
i A−1

i si

= min
x i

(si + x i)
TAi(si + x i)

≤ 1

(ĉT
i si)2

ĉT
i Aiĉi (42)

where ĉi is the decorrelating filter [7] (according to [7], the
right hand side of (42) is not a function of p), the right hand
side of (41) is bounded.

Next, define

Ĩi(n) =
γi

hii

[
(ci(n)T z i(n))2 − pi(n)hii

]
(43)

Using (26), (37), (38), it can be easily verified that Ĩ i(n) sat-
isfies the growing condition for all n.

Now, define function V (p) by V (p∗) = 0 and ∇pV (p) =

p− Î (p). Since Î (p) is standard [9], according to the analysis
in section III.A, V (p) is a Lyapunov function.

Taking the expectation on the truncated Taylor expansion,
and noting that Ai(n)ci(n)∗ = si

sT
i
Ai(n)−1si

, we obtain

En[V (n + 1)] ≤ V (n) − α(n)‖p(n) − Î (n)‖2

−2α(n)
∑

i

(pi(n) − Îi(n))(
γi

hii
En

[
w i(n)T si

sT
i Ai(n)−1si

]
)

−α(n)
∑

i

(pi(n) − Îi(n))(
γi

hii
En[w i(n)T Ai(n)w i(n)])

+
α(n)2K4

2
En[‖p(n) − Ĩ (n)‖2] (44)

From (42),∣∣∣∣En

[
w i(n)T si

sT
i Ai(n)−1si

]∣∣∣∣ ≤ ĉT
i Ai(n)ĉi

(ĉT
i si)2

En[‖w i(n)‖] (45)

According to (38) and the growing condition, we can find a
constant K6, such that

2α(n)
∑

i

(pi(n) − Îi(n))

(
γi

hii
En

[
w i(n)T si

sT
i Ai(n)−1si

])

+α(n)
∑

i

(pi(n) − Îi(n))(
γi

hii
En[w i(n)T Ai(n)w i(n)])

≤ α(n)2K6(1 + ‖p(n)‖2) (46)

The rest of the proof follows similar to that of proposition 1.
♦



D. Further Extension

Proposition 2 shows the convergence of the joint stochastic
power control and filter optimization algorithm under the con-
dition that (38) is satisfied by the filter updates between the
power updates. Hence, one may still need to perform a large
number of iterations of the blind MMSE (36) between two
power control updates (34) in order to ensure that (38) holds.
Obviously, when α(n) → 0, the number of steps required on
the blind MMSE iteration grows to infinity. Noting that when
α(n) is small, c∗(n+1) differs from c∗(n) only slightly, we can
initialize the blind MMSE iteration of c(n+1) by c(n). Based
on this basic principle, we propose the extended algorithm as
follows.

Combined stochastic power control and receiver op-
timization:

1. Initialize the iteration counter n = 0. Initialize p(0),
x i(0).

2. Compute ci(n) by

ci(n) = si + x i(n) (47)

3. ∀i, compute Ĩi(n) via

Ĩi(n) =
γi

hii

[
(ci(n)T z i(n))2 − pi(n)hii

]
(48)

4. ∀i, compute x̃ i(n) via

x̃ i(n) = ci(n)T z i(n)(z i(n) − sT
i z i(n)si) (49)

5. ∀i, update pi(n + 1) and x i(n + 1) by

pi(n + 1) = pi(n) − αp(n)(pi(n) − Ĩ(n))

x i(n + 1) = x i(n) − αxi(n)x̃ i(n) (50)

where αp(n), αxi(n) are the step sizes for the power
control and blind MMSE updates, respectively.

6. As in [8], perform

x i(n + 1) = x i(n + 1) − (x i(n + 1)T si)si (51)

to ensure that x i(n + 1)T si = 0 holds.

7. Stop when the power and filter coefficients converge.
Otherwise, let n = n + 1, and go to step 2. ♦

In the above algorithm, we update the power vector and
the filter coefficients in parallel, i.e., the power control algo-
rithm does not wait for the convergence of the blind MMSE.
Furthermore, we use different notations on the step sizes of the
power control and the blind MMSE to indicate that they are
not necessarily the same. However, we should clarify that the
convergence proof in proposition 2 does not ensure the con-
vergence of the extended algorithm. Nevertheless, we show
via computer simulations that, when the step sizes are small
enough, the above algorithm is indeed convergent.

V. Simulation Results

In this section, we present several computer simulations to
illustrate the performance of the proposed algorithm.

Example 1: We choose K = 4 and the 5-length binary
signature sequences are generated randomly as,

[s1, s2, s3, s4] =
1√
5




−1 1 1 −1
1 −1 −1 −1
−1 1 −1 −1
1 1 −1 1
1 −1 −1 1


 (52)

For simplicity, we set all channel gains to hij = 1, ∀i, j. The
SIR targets for the users are chosen arbitrarily at

[γ1, γ3, γ3, γ4] = [5.9, 4.9, 7.6, 6.9] (53)

And σ2 = 0.1. We initialize all user powers at 1, and initialize
the filter coefficients to x i(0) = 0. The step size is chosen as
αp(n) = αxi(n) = 10

10000+n
so that the system has a reasonable

initial convergence and the step size does not decrease to zero
too quickly. Figure 1 shows the convergence of the transmitted
power pi of each user, while Figure 2 shows the convergence
of the filter coefficients x 1 for user 1. The optimal values
of the parameters which are obtained from the deterministic
iterations are also provided as horizontal lines in these figures.

Figure 1: Power convergence, σ2 = 0.1

Figure 2: Filter convergence of user 1, σ2 = 0.1

Example 2: In this example, we consider a general mul-
ticell CDMA system on a rectangular grid. There are 25
base stations with coordinates (1000i + 500, 1000j + 500) for
0 ≤ i, j ≤ 4. We have 400 users, whose positions are randomly
and independently generated. Both x and y coordinates of
each user are uniformly distributed between 0 ∼ 5000 meters.
Figure 3 shows the positions of users and the base stations
with symbols × and o, respectively.



Figure 3: Simulation environments for 400 users. o and
× are base stations and users, respectively.

In this example, each user is assigned to the closest base
station. The channel gain of user j to the assigned base station

of user i is computed as hij =
(

100
dij

)4

, where dij is the distance

between user j and the assigned base station of user i. The
target SIR is set at γ = 4 for all users. All other settings
are the same as that in example 1. Figure 4 compares the
performances in terms of the average power of the joint power
control and blind MMSE and the stochastic power control
with matched filter receivers. In addition to the convergence
of the two algorithms, we can see that, to achieve the same
SIR target, the average power of the MMSE receiver is much
lower than the matched filter receiver. Figure 5 shows the
average mean square error on the filter coefficients of the joint
power control and blind MMSE receiver optimization.

Figure 4: Performance comparison in terms of average
power.

VI. Conclusions
The convergence issue of both standard stochastic power con-
trol and joint stochastic power and blind MMSE interference
suppression is studied. It is shown that, under certain condi-
tions, both algorithms converge to the optimal solutions with
probability one. The joint power control and reiver optimiza-
tion is further extended and simulation results are given to
illustrate its performance.

Figure 5: Average mean square error on filter coefficients
of the joint power control and blind MMSE interference
suppression
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