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Abstract

This paper presents a classification of the optimization
problems arising in the normative design of organizations to
execute specific missions. The use of specific optimization
algorithms for different phases of the design process leads
to an efficient matching between the mission structure and
that of an organization and its resources/constraints. It
allows an analyst to obtain an acceptable trade-off among
multiple objectives and constraints, as well as between
computational complexity and solution efficiency (desired
degree of sub-optimality).

1. Introduction
1.1 Motivation

The optimal organizational design problem is one of finding
both the optimal organizational structure (e.g., decision
hierarchy, allocation of resources and functions to decision-
makers (DMs), communication structure, etc.) and strategy
(allocation of tasks to DMs, sequence of task execution,
etc.) that allow the organization to achieve superior
performance while conducting a specific mission [7]. Over
the years, research in organizational decision-making has
demonstrated that there exists a strong functional
dependency between the specific structure of a mission
environment and the concomitant optimal organizational
design.  Subsequently, it has been concluded that the
optimality of an organizational design ultimately depends
on the actual mission parameters (and organizational
constraints). This premise led to the application of systems
engineering techniques to the design of human teams. This
approach advocates the use of normative algorithms for
optimizing human team performance (see [4]-[11]).

1.2 Related Research

When modeling a complex mission and designing the
corresponding organization, the variety of mission
dimensions (e.g., functional, geographical, terrain), together
with the required depth of model granularity, determine the

complexity of the design process. Qur mission modeling
and organizational design methodology allow one to
overcome the computational complexity by synthesizing an
organizational structure via an iterative solution of a
sequence of smaller and well-defined optimization problems
[5]. The above methodology was used to specify an
organizational design software environment, outlined in [8],
to assist a user in representing complex missions and
synthesizing the organizations. The component structure of
our software environment allows an analyst to mix and
match different optimization algorithms at different stages
of the design process. Our mission modeling and a three-
phase iterative organizational design process, first proposed
in [5] and later enhanced in [6], is graphically represented
in Figure 1.

Figure 1. The 3-phase Organizational Design Process

The three phases of our design process solve three distinct
optimization sub-problems:

Phase I. Scheduling Phase.

In this phase, an optimal task-resource allocation is
established. It is defined in terms of a platform-to-task
assignment matrix. The objective function (mission
completion time or a combined objective function
assembled from individual mission objectives such as the
completion time, accuracy, workload, expended resources,
external coordination, etc) is minimized subject to
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assignment, resource availability, platform velocity and
graph-related (such as precedence and synchronization)
constraints.

Phase II. Clustering Phase.

In this phase, an optimal DM-resource allocation is
determined. It is referred to as DM-platform assignment
matrix. The objective function (weighted sum of the
maximum internal and external workloads or a combined
objective function constructed from individual mission
objectives such as the number of decision-makers, their
expertise, available platforms and their resident resources,
etc.) is minimized subject to assignment and DM workload
constraints.

Phase I1I. Structural Optimization Phase.

In this phase, an optimal organizational hierarchy is found.
It is represented in the form of a directed tree with directed
arcs specifying supported-supporting relations. The
objective function (maximal hierarchy workload induced by
direct (one-to-one) and indirect coordination or a combined
objective function gleaned from the identified mission
objectives such as the number of communication links
available to each DM, depth of organizational hierarchy,
information flow, etc.) is minimized subject to the graph-
related (information access and hierarchy structure)
constraints.

2. Scheduling
2.1 Problem Definition

The scheduling phase of the organizational design process
can be generally described as follows. A set of tasks with
specified processing times, resource requirements, locations
and precedence relations among them need to be executed
by a given set of platforms with specified resource
capabilities, ranges of operation and velocities. Resource
requirements and resource capabilities are represented via
vectors of the same length with each entry corresponding to
a particular resource type. Tasks are assigned to groups of
platforms in such a way that, for each such assignment, the
vector of task’s resource requirements is component-wise
less than or equal to the aggregated resource capability of
the group of platforms assigned to it. The task can begin to
be processed only when all its predecessors are completed
and all platforms from the group assigned to it arrive at its
location. A resource can process only one task at a time.
Platforms are to be routed among the tasks so that the
overall completion time (called -Mission Completion Time —
the completion time of the last task) is minimized.

2.2 Mathematical Formulation of the Scheduling
Problem

The scheduling problem associated with the phase I of our
3-phase organizational design process is defined by the
following parameters and variables:

N = number of tasks to be processed.

K = number of available platforms.

S = number of resource requirement/capability types.

t,= processing time of task .

v.. = velocity of platform m.

» { 0, if task i/ must be completed before task j can start
L

1, otherwise

r. = resource capability of type / on platform m.

R, = resource requirement of type / for task i.

T = mission completion time found using a heuristic
algorithm (or set to infinity).

0 = task that serves as “start-finish” (or “depot”) task.

Assignment variables:
{ 1, if platform m is assigned to task i

™| 0, otherwise

Traversing variables: .

1, if platform m is assigned to process task j
after processing taski

0, otherwise

ijm
s, = start time of task i.
Y = mission completion time (time when the last task is

completed).

The problem is formulated as follows [9]:

min ¥
N
> KW =0, i=0,.,N;m=1,K;
j=0
N
> X =W, =0, =0, N;m=1.K;
Jj=0

d.
T 55, +xy.m(;'i+a,.j . Tj <a,M-t;i,j=1,.,Nym=1.,K,

m

.4
Zrm,~mm 2R, i=L.Ml=1.S;
m=1

s;—Y<~t, i=1.N,
0<Y<T;s, 20;x,,w, € {01}

ijm> Wi

This is a mixed-binary (i.e., containing continuous and
binary variables) linear programming (MIP) problem
(which is proven to be NP-hard). Moreover, even relaxing
the constraints on the binary variables w,, x;. (that is,
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making them real numbers in the [0,1] range) produces a
linear programming problem (LP) with the number of
variables equal to K(N +1)> + N +1, the number of equality

constraints equal to 2K (N +1) and the number of inequality
constraints equal to KN(N—1)+ S(N +1). This makes it

hard to find solutions to even average-sized scheduling
problems.

2.3 Sub-optimal  Algoerithm:
Scheduling Method

Dynamic  List

The dynamic list scheduling (DLS) heuristic has three main
steps:

Step 1. Select the task to be processed.

Step 2. Select the group of platforms to be assigned to it
for processing. )

Step 3. Assign the group of platforms to selected task.
Update assignment and sequencing information.

In the first step, the task is selected from the group of tasks
that can be processed at the current time. The selection is
determined by the current assignment information and
precedence structure. This is done according to the
preference coefficients assigned by using one of the three
algorithms: critical path, level assignment or weighted
length [12]. In the weighted-length algorithm, the task
preference coefficients are found as

2,CPU)

A = CP(i CP( )+ =0Tt ,

PLO = PO igg) PO max CP()
Jje i

where CP(i) is the critical path value for task i, QUT(i) is
the set of direct successors of task i in the task precedence
graph. At each time, the task with the largest preference and
one that can be processed on the currently available
platforms is chosen.

In the second step, a group of platforms is chosen for
processing a selected task. An assignhment is considered
whenever a task (or a group of tasks) is completed. At that
time, all the platforms processing the completed task
become free. The selection is done by assigning the
platforms in the increasing order of their activity
coefficients. The goal is to assign a platform which has the
most common resources with the currently considered task,
the least common resources (“involvement”) with the
remaining tasks to be processed, and can arrive the fastest to
the task location. The following coefficients were used to
determine the platform preference:

BR(m)—B(m,i)
B(m,i)

dy;
Vi(m) =( Sigm) +tigm) + I:")" ]

m

d I(m),i

V,(m)= Sitm) Tliimy T

vln

dy .
V,(m) =( St )+ )B(m, i)» Where
vV,

m

B(m,i)= ZS: min(R,, r,,), BR(m) = ﬁ: B(m,i)

When the task is assigned, platform-task related assignment
information is updated, as well as the activity coefficients of
the platforms. The starting time of the selected task i is

d I(m),i
v, ’

where f is the current time, G(i) is the group of platforms
assigned to task i/ and I(k) is the last task processed by
platform & (see [9] for details).

found via s; = max| f, Lrglgég){s,(m) )t

2.4 Pair-wise Exchange Improvement

The DLS algorithm of subsection 2.3 produces sub-optimal
solutions. It is expected that the sequence with which the
tasks are assigned according to DLS is near-optimal. The
pair-wise exchange method improves the solution by
considering all possible task assignment sequences obtained
by exchanging the task at the current place in the
assignment sequence with some other task. An exchange of
tasks i, and i, (n<m) in the sequence {j,,...,i,} is feasible if

a)  IN(i,) C iy, )
b)  QUT(,) < {iyypyr in}

(where IN(i) is a set of direct predecessors of task i).

2.5 Algorithm Performance

#of
tasks cP LA WL

v, V2 Vy vy A4 A A V; Vs
10 1.623 1.543 1.653 1.657 1.551 1.671 1.629 1.543 1.629
20 1.666 1.547 1.868 1.663 1.567 1.892 1.666 1.557 1.889
30 1.740 1.598 2.258 1973 1.637 2.283 1.739 1.591 2.241
40 1.791 1.646 2.593 1.802 1.674 2.632 1.785 1647 { 2.583
50 1.757 1.617 2.745 1.779 1.635 2.763 1,756 1.618 | 2.751
#of RWE_CP RWE_LA RWE_WL
tasks [V, Vs v Vi A A A v, |V,
10 1.130 L1l 1.139 1.089 L.106 1.137 1.108 1.129 1.144
20 1.113 1.07 1.142 1.091 1.077 1115 1.106 1.068 1.142
30 1.092 1.0635 1.125 1.084 1.064 1.116 1.095 1.081 1.118
40 1.081 1.05 1117 1.079 1.046 1.115 1.088 1.052 1.117
50 1.085 1.043 1121 1.085 1.043 119 1.072 1.047 1.106

Figure 2. Performance of scheduling algorithms.
CP=critical path, LA=level assignment, WL=weighted
length; PWE_CP, PWE_LA, PWE_WL=pair-wise
exchange based on CP,LA, and WL.

The results in Fig. 2 are obtained using Monte-Carlo runs
for randomly generated input task graphs (for more
information, see [9]). The performance ratio is found as the
ratio of the mission completion time of the specific
algorithm to the best-obtained mission completion time. We
can see that performance of the list scheduling methods
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(critical path, level assignment, and weighted length) tend to
deteriorate when number of tasks increases. Improvement
obtained by pair-wise exchange to the list scheduling
solution is on average 20 to 30%.

3. DM-Resource Allocation (Clustering)

Given the data from phase I, platforms are clustered into
groups to be assigned to DMs. The objective is to minimize
the DM coordination workload associated with DM-
platform-task assignment. The workload is defined as a
weighted sum of the internal and direct one-to-one external
coordination, as well as the task workload. For a review of
clustering algorithms, see [3].

3.1 Problem Formulation

DM internal workload is defined as the number of platforms
assigned to a DM.

DM-to-DM direct external coordination is equal to the
number of tasks jointly processed by two DMs.

DM direct external workload is equal to the sum of DM’s
direct external one-to-one coordination with other DMs.

The following parameters are used to formulate the
problem.

D = number of available DMs

B’ =bound on internal coordination workload allowed

BE =bound on external coordination workload allowed.

B” = bound on number of tasks that can be assigned to a
DM .

W' = weight on the internal workload

W = weight on the external workload

The following variables are used:

1, if DM nis assigned platform m
P, = .
0, otherwise

ddt = { 1, if DMs nand m coordinate over task i
" 0, otherwise
dt = { 1, if DM nisassigned to process task i
" 0, otherwise

Cw= maximal weighted coordination workload

This results in a binary linear programming problem [9]:

min C,

dt, 2w, -dp,., m=1,,Kin=1.,D;i=1,,N
ddt,>dt,+dt ;~1, m=1.K;n=1.D;i=1.N

N
Sdt, <B, n=1..D
i=l

X
Ydp,, <B', n=1.,D
m=1

D N

> >.ddt,,<B*, n=1.,D

z=l,z#n i=1

C,zw'- idpm+W‘€- ZD‘ iddtw., n=1.D
m=1

z=l2%n i=1

dtm’ > dp nm?> ddtnzi € {0 71}
(where win are platform-task assignment variables obtained
in phase I).

3.2 Sub-optimal
Clustering

Algorithm: Hierarchical

~ For each group of platforms {n,,...,n,} an assignment

signature vector is defined as Q =[U,I,,..,1,],where

nl> >SN

I.=max w, - When two platform groups {n,,..,n,} and
M DM "

{m,...,m,} are joined together, the signature vector of the
new group is 0 = [U+ V7max(1mrlm1 ))""max(InN’ImN)] .

An external coordination between two DMs n and m is
found from signature vectors corresponding to their

platform assignments {n,..,n,} and {m,..,m,} as

N
’ Z mm(lnr’lmi)'
i

The distance between two platform groups {,,...,n,} and
{m,,...,m,} is defined as
d(C,,C,)=d(U, 1, I LV L s L)) =

N
=w'U+V)-w*Y min{l,.7,}

i=l

The following hierarchal clustering algorithm was used to
find the DM-resource allocation:

Step 1. Begin by assigning each platform to a distinct
cluster with assignment signature vectors
0, = LWy sees Wy ]+

Step 2. Choose two clusters with minimum distance
between them and combine them into a single
cluster. Find the signature vector for a new cluster
and update the distance matrix.

Step 3. Terminate the algorithm when number of clusters
is equal to number of available DMs.
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4. Organizational 'Hierarchy

In phase II, allocation of DMs to resources (platforms) is
obtained. An external DM-DM coordination is determined
based on joint task processing. DMs with their inter-DM
coordination represent a network, where nodes are the DMs
and edges denote coordination induced by joint task
processing. Edge weights are equal to the required amount
of coordination.

Hierarchical organizations eliminate decision-making
confusion by imposing superior-subordinate (supported-
supporting) relations. The hierarchy consists of links
through which the organization is permitted to
communicate. These links form a tree in the network of DM
nodes. The goal is to match the organizational hierarchy to
the coordination network that is necessary for completing
the mission. Different definitions of matching create
different formulations of the hierarchy construction
problem. When the necessary communication link between
two DMs is not in the hierarchy, the information required
for their coordination is passed through nodes on the path
between them in the hierarchy. Such a path is unique for
tree-structured systems. The communication value between
these DMs is then added to each DM on the path between
them as an additional workload. It is called indirect
coordination. The external coordination workload is then
the sum of direct (one-to-one) and indirect (through an
intermediary) coordination.

In this paper, we present algorithms which optimize two
different objectives: minimization of the additional
coordination imposed by the hierarchy tree on the
organization, and maximization of the aggregated
coordination from the coordination links included in the
hierarchy.

4.1 Optimal Coordination Tree

When the objective is one of minimizing the additional
coordination (indirect) introduced by the hierarchy, the
optimal algorithm (called optimal coordination tree
algorithm [2]) is used to construct the organizational
hierarchy. The overall external coordination for any
hierarchy tree T is

D D
C(T) =3 Y ¢, (1+#of edgesbetween iand jin the tree T)

i=l j=i+l

where ¢;; is a required coordination between DMs i and ,
N
Com = detmni ’
P

A tree T that minimizes the function C(7) is called Gomory-
Hu tree (also called optimal coordination tree). The
following algorithm computes the Gomory-Hu tree [2].

Initialization. Start with /7/=1, a tree T containing a single
cliqgue which consists of all nodes of the original network
from Phase I1.

Step 1. Select a clique G in T which consists of more than
one node of the original network. Disconnecting
this clique in T (remove all edges incident to this
clique in T) breaks it into several connected
components. If all cliques of T contain only single
nodes of the original network, STOP. '

Step 2. Create a residual network by condensing each
connected component into one clique (node) and

‘ expanding selected clique.

Step 3. Pick any two nodes / and j (original nodes) from
the selected clique and find minimum cut (X, X) in
the residual network, je X,je X (X and X
consist of condensed cliques of T and of nodes of
the original network from clique G).

Step 4. Create two new cliques G;, G, in the tree T
replacing selected clique with them:

G, ={ieGlie x}G, ={je Glje )—('}

For each clique NeT-connected to G in T:
a) if Ne X, then create an edge between N and G,
b) if Ne X, then create an edge between N and G,

The edges are updated: cy; = Z ch
ue N veG;

_The complexity of the algorithm is polynomial in the

number of nodes of the original network (number of DMs).
In step 3, a min-cut algorithm (min cut=max flow) is used.
Algorithms for min-cut problems include Ford-Fulkerson
Algorithm (which can be exponential in the worst case but
performs good in practice), Dinic-Malhotra-Pramodh
Kumar-Maheswari (DMKM) Algorithm, and other more
sophisticated algorithms with polynomial complexity [1].

4.2 Maximal Spanning Tree Algorithm

An alternative is to use maximal spanning tree algorithm to
construct the organizational hierarchy tree. We obtain the

tree T that maximizes ZCU , where E(T) denotes the set
(,/)eE(T)

of edges of the tree T. This can be done by applying the
minimum spanning tree algorithm for a graph with edge
weights @;=Cma-cy, Where Cmm=max{c;}. The goal is to
include the largest coordination links and to make DMs with
largest workload to be at the lowest level of the hierarchy
tree. Methods for finding the minimal spanning tree include
Kruskal, Jarnik-Prim-Dijkstra, and Bor’uvka (see [1], [2]).
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4.3 Effects of the internal/external werkload
weights on the organizational structure

The shape of organizational structure for a S-node
organization with min-depth root selection varies between
three basic hierarchies according to the internal/external
workload emphasis. The ranges are shown in Fig. 3.

3-level hierarchy

External Workload weight

2-level hierarchy

Internal' Workload weight

Figure 3. Effects of workload weights on organizational
hierarchy. )

Dense coordination networks obtained from phase 2 imply
evenly-spread coordination, therefore requiring flat
hierarchy structure. On the other hand, sparse coordination
networks produce multi-layered organizational hierarchies.

5. Summary and Future Research

In this paper, we have presented the formulations and
algorithms for three distinct phases of our organizational
design process. Strict mathematical problem formulations
provide the foundation for exploring ways to solve- these
problems with a required degree of optimality and choosing
the specific algorithmic approaches according to available
computational resources. Discussed problems are NP-hard,
but their formulations allow one to introduce near-optimal
polynomial algorithms.

Linear mixed-binary programming formulations allow one
to construct approximation algorithms such as Lagrangian
relaxation. technique (creating a new problem by relaxing
the constraints which are difficult to handle; for example,
the resources constraints and precedence constraints in the
scheduling problem formulation) and decomposition
algorithms (decoupling the problem and solving simplified
sub-problems, thereby reducing the size and computational
complexity) (see [9] for details). These methods, together
with mechanisms for adaptation, form the basis for our
continuing research in this area.
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