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Abstract—This paper presents a multiobjective structural opti- A. Related Research

mization process of designing an organization to execute a specific . .
mission. We provide mathematical formulations for optimization Over the past 15 years, research interest in teams and team

problems arising in Phases Il and 1l of our organizational design performance has noticeably increased, spanning industrial and
process (Phase | was presented in Part | of this paper [56]) and organizational psychology, operations research, business man-
polynomial algorithms to solve the corresponding problems. Our  ggement, and decision-making in command-and-control. Many

organizational design methodology applies specific optimization \oqe4-chers have studied the interplay among the task environ-

techniques at different phases of the design, efficiently matching h o dth f
the structure of a mission (in particular, the one defined by the MENt, the téam organization, and the team performance.

courses of action obtained from mission planning) to that of an ~ Addressing “the rapid expansion in the dimensions and
organization. It allows an analyst to obtain an acceptable tradeoff complexity of contemporary team missions” [38], different
among multiple mission and design objectives, as well as betweentypes of task environments and the concomitant distributed
computational complexity and solution efficiency (desired degree ,qanizations (e.g., joint task force organizations, flight crew
of suboptimality). : L . ’
of a commercial airline, collaborative software development

teams, medical teams, research and development teams, etc.)
have been studied, defining a variety of task and team vari-
ables relevant to team performance. For example, in studies of
|. INTRODUCTION how emergency medical teams interact to resuscitate trauma
Patients [33], [52], the research found that team domain of
finding both the optimal organizational structure (e.g.trauma patl.ent resusmtatlon.embodles h|gh risk, Severe tlme

gessure, high task complexity, extremely high levels of indi-

decision hierarchy, allocation of resources and functions ) al i d hiahly distributed tise f itiol
humans, communication structure, etc.) and strategy (alfﬂ— ual expertise, and highly distributed expertise from muttiple

cation of tasks to decision-makers (DMs), scheduling taﬁt]%ecialists, including trauma surgeons and anesthesiologists.
execution, detailing decision policies, etc.) that allow the or- € team task also involves very high levels of uncertainty,

ganization to achieve superior performance, while conducti IUd'?g ut,ncert_alnty a:jb_oult Lhetnatutrﬁ and i)_(tent toftthe '?Jtuhry’
a specific mission [27]. Over the years, research in orgaﬁ 1e patients prior meacical history, the working status ot the

zational decision-making has demonstrated that there exis a:ger# nlomtforts (V;'h'Cht ma):j ptLoducellmé)s_II?adl?g trr(]aad;ngs),
strong functional dependency between the specific structJflg efects of treatment, an € avarapiiity of other team

of a mission environment and the concomitant optimal Orgarmember.s. . . . i

zational design. Subsequently, it has been concluded that thec‘tUdX,mg the dimensions anng_ Wh'.Ch team.s can be “dis-
optimality of an organizational design ultimately depends otHbUted . (_g.g., knowl_edge, expertise, information, resources,
the actual mission parameters (and organizational constraint§ _ponS|b|I|ty, authorlty, goals_, etc._) underscored the complex
This premise led to the application of systems engineeriﬁ‘ tur_e of human mterrelatlonshlps and compelleq orga-
techniques to the design of human teams. It advocates the usg ?“0”"?" researchers to extensively study organizational
normative algorithms for optimizing human team performané@eramhIes (gee, .for exgmple, [8], [16], [43])'.“ has been
[24]-[29], [37], [38], [56]. This paper presents formulation?rgue_d that, in hierarchically _structured o_rgamz_auons, goal
and solution approaches for Phases Il and Il of our Orgaml_annmg and strategy formulation occur typically in the upper

zational design process (outlined in Part | of this paper [56 ‘vels [5]. The formal (centralized) organizations have explicit
lerarchical structures, and they are efficient in task assignment

and processing due to specialization of work and differentiation
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structure, thus supporting the claim that informal organizatiogsission on algorithm performance and effects of optimization

will naturally evolve into a hierarchical structure. parameters and objectives on the organizational structure. The
Various mathematical measures of organizational design haaper concludes with a summary and future extensions in

been suggested in the literature to categorize teams (along n@idetion VI.

tiple dimensions) and thus to enable the selection of appro-

priate performance improvement methods. Known measures of  Il. 3-PHASE ORGANIZATIONAL DESIGN PROCESS

organizational design typically focus on either organizational When modeling a complex mission and designing the corre-

structure (providing the information on who communicates W%onding organization, the variety of mission dimensions (e.g.,

V\{?Om’ Orz who dlrhecths/commandts WT]OT) or the task degortn 'national interdependencies, geographical layout, information
sition scheme (who has access to what resources, new data, B essing, etc.), together with the required level of model

has respansibility for what portion/aspect ofatgsk). Kra(_:hha anularity (e.g., mission task and organizational unit decom-
n [5]deve|oped_ several measures of organizational d_eS|gnfr sitions), determines the complexity of the design process.
agraph theoretical perspeptlye e argged . the'.r rglev mission modeling and organizational design methodology
to performance. Mackenzie in [33] defined process indicato ow one to overcome the computational complexity by syn-

to demonstrate that, in certain cases, a high degree of hierarglyg;,ing an organizational structure via an iterative solution

will enhance the effectiveness and efficiency of an organizatio& a sequence of three smaller and well-defined optimization

Many attempts have been made to identify the performangg,iems [25], [56]. The three phases of our design process
anq process measures most appropriate to a specific team Qe three distinct optimization subproblems.
main (see, for example, [6], [14], [15], [20], [21], [48], [S3], phase | (Scheduling Phase)he first phase of our design
[54]). In general, however, there is litle consensus on Whafocess determines the task-platform allocation and task
constitutes organizational performance, and there is no UnivVeEquencing that optimize mission objectives (e.g., mission
sally best set of performance measures. As was shown in [d}mpjetion time, accuracy, workload, resource utilization,
whether an organization is said to perform well depends on tB%tform coordination, etc.), taking into account task prece-
constraints placed on the performance measures and on Oigice constraints and synchronization delays, task resource
nizational objectives. Performance has been viewed from a ygguirements, resource capabilities, as well as geographical and
riety of perspectives, such as productivity [2], profitability [23] gther task transition constraints. The generated task-platform
and reliability [40]. Although these measures may indicate Whafiocation schedule specifies the workload of each resource. In
these organizations are doing, they do not always necessagiition, for every mission task, the first phase of the algorithm
suggest how well they are doing it. Lin [5] gives a systematigg|ineates a set of nonredundant resource packages capable
evaluation of various performance criteria contrasting existing jointly processing a task. This information is later used for
measures of organizational performance against each other ggghtive refinement of the design, and, if necessary, for on-line
conducting simulation experiments to explore various aspegfategy adjustments.
of organizations. The performance characteristics of simulatedppgse || (Clustering Phase)ln this phase, we combine
organizations were shown to be comparable (under certain cpfatforms into nonintersecting groups, to match the operational
ditions) to the performance characteristics observed in the r@gbertise and workload threshold constraints on available
world [31]. DMs, and assign each group to an individual DM to define the

The vast majority of research work addressing the improvpiy-resource allocation. Thus, the second phase delineates the
ment of team performance is heuristic in nature and deals witi\-platform-task allocation schedule and, consequently, the
somewhat isolated aspects of a team (e.g., training, improvigividual operational workload of each DM.
the lay-out of information acquisition systems, team selection, Phase |1l (Structural Optimization PhaseFinally, Phase I
etc. [1], [9], [10], [16], [33]-[36], [42], [43], [45], [49], [30], completes the design by specifying a communication structure
[55]). Much fewer examples (e.g., [30], [38], [40], [41]) areand a decision hierarchy to optimize the responsibility distribu-
known to actually address analytic methods to manage afish and inter-DM control coordination, as well as to balance
improve team performance. In this paper, together with itse control workload among DMs according to their expertise
companion paper [56], we focus on specific organizationgbnstraints.
objectives and constraints, and provide a theoretical frameworkn this paper, we present mathematical formulations of clus-
for their use in model-based organizational design problegering and network-configuration problems (arising in Phases Il
Our optimized team structures exhibit superior performane@d 11l of our organizational design process) and describe poly-

with regard to specified organizational objectives. nomial algorithms to solve these problems. For an overview of
our organizational design process, its mission-planning (sched-
B. Organization of the Paper uling) phase, and related research, see [56].

The paper is organized as follows. Section Il presents an
overview of our 3-phase design process. Section Il defines
the optimization problem arising in Phase Il, and provides The second phase of our design process combines resources
algorithms to solve it. Section IV presents the formulation dfto nonoverlapping groups to match the operational expertise
structural optimization problem (Phase l1ll), and discusses taad workload threshold constraints of available DMs. It assigns
objective functions and the corresponding algorithms usede&ach group to an individual DM to define the DM-resource allo-
optimize organizational hierarchy. Section V provides a disation and a consequent DM-platform-task schedule. The latter

I1l. PHASE Il: DM-R ESOURCEALLOCATION
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also specifies the (dynamic) individual operational workload of We also define:
each DM. - . . - 1, if DM, is allocated to platforn®;

Since the decision-making and operational capabilities of a  xpmj = {0_ otherwise.
human are limited, the distribution @iformation, resources, ’
andactivitiesamong DMs must be set up to achieve timely mis- A platform-task assignment specifies the necessary interac-
sion processing while efficiently utilizing each DM. The totation among platforms when processing a task. This interaction
load is generally partitioned among DMs by decomposingrecessitates coordination among DMs, assigned to these plat-
mission into tasks and assigning these tasks to individual DNMggms as information/decision/action carriers. Specifically, to
who are responsible for their planing and execution. Moreovenodel coordination-related overhead in an organization, we
an overlap in task processing (wherein two or more DMs shadefine two types of coordinatiort) internal and 2) external
responsibility for a given function/task while each possessitgternal coordination accounts for the need to coordinate among
the capability to individually process the task) gives the teampéatforms assigned to the same DM. External coordination is
degree of freedom to adapt to uneven demand by redistributihg inter-DM coordination that results from a multi-DM task
the task processing load. The critical issues in téask pro- assignment.
cessingare: what should be donewho should do what, and  The formal definitions used for internal and external coordi-
when nation are as follows.

In general, DMs are provided with limited resources with Definition 1: A signature vectorof a DM DM,, is a
which to accomplish their objectives. The distribution of thedeM-task assignment vector
resources among DMs and the assignment of these resources
that enables task processing are among key elements defining [m1s -y U]
an organizational design. Team members must dynamica\;\%ere
coordinate their resources to process their individual tasks,
while assuring that team performance goals are met. The critical o { 1, if DMy, is assigned to task;
issues in teanesource allocatiorare:who shouldown which ™10, otherwise
resource,who should use which resource o what and
when

The allocation of information/resources/tasks to DMs is
equivalent to first grouping the corresponding entities and
then assigning each group to a different DM. The basis forln a similar Vein, the Signature vectors are defined for any
such a grouping can be obtained by a cluster analysis of @@up of platforms (not necessarily associated with a DM).
corresponding objects or entities. Objects (e.g., platforms,Definition 2: Theinternal coordinationof a DM, is equal
resources, tasks) that are described by their relationshipt@dhe number of platforms assigned to this DM
other objects can be classified according to their perceived K
similarities. Clustering then can be used to partition the set of I(m) = Z L. (1)

j=1

such thatb‘mj =1, Wij = 1
0, otherwise.

{ 1, ifthere exists a platforn®;

objects into distinct, mutually exclusive subsets (clusters) of

similar objects to achieve the prescribed relationships among _ ) o
cluster groups. Definition 3: A direct DM-DM coordinationbetween two

Specifically, to allocate resources and tasks to DMs, our ordaMs DM, andDM,, is equal to the number of tasks simulta-
nizational design process makes use of the task-platform assigRously processed by these DMs
ment results, obtained in its Phase | (described in [56]), as fol- N N
lows. The platforms are grouped into disjoint clusters according D(m, n) = Z Uil = Z N Uiy Ui ). )
to their task assignments, and these platform clusters are then i1 =1
allopated to different DMS who inherit the corre;:popdmg t?‘s’.k Definition 4: The external coordinatiorof a DM,,, is the
assignments. The objective of platform clustering is to mini-

mize the resultant DM workload—a weighted sum of external " of its direct coordinations with other DMs

DM-DM coordination and internal platform coordination load D

of a DM, formally defined below. E(m)= Y D(m,n). 3)
n=1
n#Em

A. Problem Definition o . )
Definition 5: Coordination Workloadof a DM,, is a

" The fglllowing assignment data from Phase | are used to defipgighted sum of internal and external coordination of this DM
e problem:

_ CW(m) =W" . I(m)+W¥.E(m). (4)
~_ | 1, ifplatform P; is assigned task;
Wi = 0, otherwise Weights for internal ¥'7) and external ¥V ) coordination
K = number of platforms specify their impact on the corresponding aggregated DM
workload.
N = number of tasks Given the data from Phase |, platforms are clustered into

D = number of DMs groups to be assigned to DMs. The objective is to minimize the
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Decision-makers  Platforms to Operate Tasks to Process

maximal DM coordination workload associated with DM-plat- —

form-task assignmt_ant. _ _ DM, || | ®s | P g T, |1, ||T, Ts
Example: Experiment With DDD-III SimulatorFor our )

example from an experiment with the DDD-III simulator

(described in detail in [56]), platform-task allocation obtained DM, ||| Ps| P T, | Ts
in the scheduling phase (Phase I) via pairwise exchange (PWt Y
algorithm is used. For DM-platform assignment in Fig. 1 || DM, |||Ps| Ps | Puo| Pis Ts | Tyl Tys| Tud
(which is optimal for this example), internal coordination is —
I=[1() IG5 =[5 2 4 5 4 DM, || |[P1| P> | Py |Pis| Pig|| || T, || T Ty |Tya| Tig||Tyr |T1s
direct DM—DM coordination is DMg|| || Ps | Po| Pra| Py T, | Tg|| T, Tm

Fig. 1. Optimal DM-platform-task allocation for example with DDD-III
simulator! = W¥ =1,

[D(i, j)] =

_0 O = O
_o oo
o= O OO
—_ o0 = O O
SO R O

C. Mathematical Formulation of the Clustering Problem

A fundamental question underlying a distributed or-
ganizational design—Who should do which part of the
missior?"—implies that the mission must b@éecomposable
into a set ofentities These entities are generally referred to as
tasks

The following additional variables are used to define the
clustering problem associated with the Phase Il of our 3-phase
organizational design process:

External DM coordination is
E=[EQ1),....,E5)]=[2212 3
and DM coordination workload foW! = WE = 1is

CW=[CW(1),....CWO)]=I+E=1[745T771].

B. Related Research e
Ynmi 0, otherwise

Cluster analysis and the corresponding grouping of objectsC . — maximal weighted coordination workload
are generally used to achieve two main objectives. The first ob-

jective is tomaximizethe distance (dissimilarity) between clus-

ters. The second objective isttinimizethe dissimilarity among We note thalnm; = tn; * Umi = Min(Uni, tmg).

the objects in the same cluster (for each respective cluster). Th&ollowing [29], the problem assumes the form of a binary
first objective can be achieved by usisipgle-linkmethods to (0—1) programming problem

find clusters with minimal path lengths among all objects in the

cluster, while the second objective can be achieved by usipg,, ¢,

complete-linkmethods to find clusters with minimum diameter

_ { 1, if DM, andDM,, coordinate over task;

[18], [19]. Other algorithms have been developed for combi-' D
nations of these objectives, such as UPGMA (group average Z Tmj =1, j=1.., K
WPGMA (weighted average), UPGMC (unweighted centroid), m=t
WPGMC (weighted centroid) (see [46]), and Ward's method Yrmi = Wi = Tmi mn=1,..., D
to minimize square-error [51]. The generalization of the abov¢ t=4 » N
methods was presented in [22]. j=1,..., K
In this paper, we deal withagglomerative hierarchical Ynmi 2 Wji * Tnj, m,n=1,...,D
clustering. This procedure starts with disjoint clustering, whicR j = ) ) ]I\; ®)

places each of the objects into an individual cluster. The procegs
is repeated to form a sequence of nested groups in which the s K
number of clusters decreases as the sequence progresses. Hofay = W' - Z Inj
review of clustering algorithms, see [11] and [18]. szl ~
All of the algorithms employed for cluster analysis assume LWE . Z ZU =1 D
that the distance (or dissimilarity) between objects is easily ob s T
tained and updated. In our case, we not only need to considgr
distances between objects, but also must take into account the Tnjs Ynmi € {0, 1}
number of objects in the cluster (humber of platforms in the
cluster constitutes the internal coordination of a DM assignedThis problem is NP-hard [12]. Near-optimal heuristic clus-
operate these platforms). Therefore, existing approaches neeting algorithms exist that are specifically customized for this
be modified to obtain algorithms suited for our problem. problem.

m=1, m#n 1=1
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D. Cluster Merging @@’ O
. - groups
Suppose there exisf clusters (groups of platforms) MEEEE [ - platforms in the group
{Gm,m = 1,..., M} determined by the assignment [] - tasks assigned to
variables z,,; with the corresponding signature vectors @ platforms in the group

[um1, -, umn]. Then, the inter-group direct coordination
and external group coordination can be found as follows:

(3(6)10)(13)

®

N N
. (7)1
D) = 3 it = 3 wintimis ) ©) (B o NEaED
[4][6][][12]16][18]
M @
E(m)= Y D(m,n). 7)
n=1 @@
i BlEEmlH

The size of each groupigm) = Zle Tm;. Whentwo groups ' _ '
r ands are merged together into a new groppthe Signature Fig. 2. Cluster merging for example with DDD-III simulatdr{ =W =1.
vector for the new group is

where

(U1, -y Upn]| = [max(tr1, Us1), ..., max(urn, usn)].

Direct coordination and cluster sizes are updated accordingly
N — [, 1), D4, 2), D(4, 3), 0, D*(4, 6)]
D(m7 (,0) <_D(m/ 7") + D(m/ 3) - Z min(“rh usi) s Umi

i=1

[D(4, 1), ..., D(4, 5)]

+ [D"(5, 1), D(5, 2), DV (5, 3), 0, D5, 6)]
m#r,s

I() —I(r)+ I(s).
Then, the external coordination of the new clusters is
M =0, 0, 1, 0, 1].

>

m=1, m#r, s

old old old old
- [U1,127 Uz 12, U3 12, 0, U6,12]

= [07 07 07 07 1] + [0/ 07 17 07 0] - [0/ 07 07 07 0]

Umy

N
E(p) = Z max(Uy;, Us;) - o
i=1 Internal coordination is updated as

E(m) =E(m) - (D(m, )+ D(m, 5)) + D(m, ¢) I=1[I(1), ..., 1(5)

m?é r,s. (8) - |:Iold(1)7 IOld(Z), Iold(g)7 Iold(4) _|_Iold(5)7 Iold(6)i|
Clusters that are unchanged by the merger have nonincreasing
external coordination, while maintaining the same internal =[5, 2, 4, 342, 4] =[5, 2, 4, 5, 4]
coordination. Therefore, their workload does not increase under

: . and the new external coordination is found via
cluster merging. A rule for selecting the clusters to be merged

influences the cluster workload. In the subsections E and F, 18 18
we exploit this behavior to propose two algorithms for cluster E(p) = Z max(Uri, Us;) - Z Umi
selection. =1 m=1,m#4,5
Example (continued)For a cluster merging depicted in 18

Fig. 2, DM-DM direct coordination matrix is updated as = Z Ui
follows: i€{4,6,11,12,16,17,18} m=1,m#4,5

(A) row 5 and column 5 are deleted; =04+14+1404+0+04+0=2,

(B) row 4 and column 4 are updated according to (6). '

E = [E(1)> SRR E(5)]

For the grouping in Fig. 2, we updatB(i, j)] as follows:

— I:Eold(l)7 Eold(2>7 Eold(:;)7 E((P)7 Eald(G):|

=[2,2,1,2 3]

E. Min-Dissimilarity Clustering

This algorithm employs minimum-dissimilarity clustering

0100 0 1

1 0000 1

000010

0000 11

001100

11010 0
010 0 1 0100 1
100 0 1 100 0 1

Do 000 0l Bolo o o010
0000 1 00101
1 101 0 11010

technique. We specify dissimilarities between clusters (groups
of platforms) according to their coordination (derived from the
corresponding platform assignment and task assignment data)

d(m,n) = W' . (I(m)+1I(n))—W¥.D(m,n). (9)
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Two groupsr ands with minimum dissimilarityd(r, s) are Example (continued)For platform grouping shown in
merged together. Note that the coefficietifs:, ») do not sat- Fig. 2, dissimilarity matrix between clusters forin-dissimi-
isfy distance properties (such as triangle inequality, etc.). Thaity algorithm is
groups of platforms are merged together to obtain a tradeoff 7

— 9 8 7 9
between two objectives: 7 - 6 5 4 6
1) minimizing the new group size; (i, j)]= 9 6 — 7 6 8
2) “removing” the largest direct coordination. DIIT1I8 5 7 - 5 7
This tradeoff is derived from the correlation between the in- 7 4 6 5 — 6
ternal and external coordination weights (see Definition 5). The 9 6 8 7 6 -—
updattta_s needed for the algorithm tal€¢K + N(M — 1)) ~ 1 0 0 0 1 _ 6 9 8 7 8
operations 1 — 0 0 0 1 6 — 6 5 4 5
i — max(w,j, Ts;) {00 — 0 1 o0o]_|9 6 - 7 5 8
ot (i, ) 000 — 1 1 8 5 7 — 4 6
e e s o 0 1 1 — 0 7T 4 5 4 — 6
I(@) —I(r) + I(s) 1 1.0 1 0 8 5 8 6 6 -—
N There are two possibilities: 1) merge groups 2 and 5; or
d(m, @) — W - (I(m)+ I(p)) — WE - Z Ui * Ui 2) merge groups 4 and 5. For 2) (see Fig. 2), the dissimilarity
P matrix [d(, j)] is updated similar t¢D(z, j)]
m#mr, S. - 6 9 8 7 8
_ |4 =
. . . 6 6 5 4 5
We use a heap implementation [maintaining at each step a t 8§ 6 - 7 5 3
of (M —1)(M —2))/2 nodes] for dissimilarity values. At each S 5 7 _ 4
step (merger) of the algorithm, the dissimilarity matrix updat 7 4 5 4 _ 6
can be viewed as\{ — 2) element updates (which correspond 8 5
. . . 5 8 6 6 -—
to the sift-down operations in the heap) aid (- 1) delete op-
erations (including finding and deleting the minimum element). - 6 9 8 38 - 6 9 9 8
Therefore, the process of selecting the minimum element andy 6 — 6 5 5 (B 6 — 6 7 5
updating dissimilarity values via heap takes — 19 6 - 7 8/ —>|9 6 - 10 8
Mo 1/(M — 2 8 5 7 — 6 9 7 10 — 10
O<p.(2M_3)10gp (M)) 8 5 6 — 8 5 8 10
2 where
operations, and the overall complexity of the algorithm is [d(4, 1), ..., d(4, 5)]
N
(K - D) <K+ k- 3>> — [I() +I(4), ..., 1(5) + I(4))
o) - . + D4, 1), ..., D4, 5
K (M —1)(M —2) (2M-3) [D( ) ( )]
+plog, H 9 =[4+45,2+54+5, —,4+5]-10,0,1, —, 1]
M=D+1
. . , =19, 7, 10, —, 10].
wherep is a coefficient equal to the largest number of children of

any node in the heap. We can observe that in order to minimize .
the above concave function, the coefficignhust be chosen to - Best-Merge Clustering
be equal to either three or four. This algorithm finds a merge of two groups of platforms that
Another variation ofmin-dissimilarityclustering algorithm, produces either the largest decrease or the smallest increase in

calledmax-similarity calculates the proximity between clustershe objective function of Phase Il. At each step, the maximum
as workload of the new cluster produced by such a merger is found,

; = and the merge with the lowest maximum workload is selected. If
d(m, n) = W= (I(m) +I(n)) = W= (D(m, n) = Z(m, 1)) wies" oceur, a group with the smallegtr, s) is selected. When

Where (10) clustersr ands are merged, group workload is updated as
N
N E .
CW(m) —CW(m)-W*". min( Uy, Usi) * Ums;
i=1 m#r, s
1Ay = 4 b (A= true CW (o) —CW(r) + CW(s) — WE
0, otherwise.
This algorithm tries to merge clusters having similar signa- MooN

ture vectors. Algorithm complexity and coefficient updates are - | 2D(r, 5) + Z Z min(uyi, wsi) - Umi
similar to min-dissimilarityalgorithm. m=l =1

m#r, s
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For each possible cluster pdin, £} merge, we evaluate Therefore, the matrijfCWmax,,] is shown at the bottom of
. the page (e.gCWmax, 5 = max[CW(1), CW(2), CW(3),
CW.k(m) —CW(m) =W=-A(m, n, k);  m#nk  owu)+ CW(s) - 2D(4, 5), CW(6)] = max[7, 4, 5, 5 +
CW ,.1(@) —CW(n) + CW (k) — WF 4-2-1,7=7).
Hence, there are two possibilities to obtain the least maximal
coordination workload: 1) merge groups 3 and 5; or 2) merge

Z A(m, n, k) groups 4 and 5 (see Fig. 2). The resulting maximal coordination
n;=1k workload obtained by Best-Merge method is seven units.
m#n,
where G. Hierarchical Clustering Algorithm
N Initialization: Begin by assigning each platform to a distinct
A(m, n, k) = min(uni, k) - tmi = Z Uni - Ui - Umi-  cluster with thesignature vectors
=1
Gm = [uml./ ey umN].

The maximal workload is then found as

CWmax,; = max{CW i (p), CW,r(m); m # n, k}.

Step 1. Choose two clusters (under min-

Two clustersy andss, are selected as follows: dissimilarity or Best Workload rule) and
) combine them into a single cluster. Find
(r, s) = arg min(CWmax,s.). the signature vector for the new cluster

ok and update the distance matrix.

When clusters are merged, the following parameters aéep 2 . If number of clusters is equal to
updated: the number of available DMs, STOP. Oth-
erwise, go to Step 1.
Typj — max(T,;, Tsj)
Ui Mmax(Uri, Us;) Example (continued)Platform-task allocation obtained in
D(m, @) — D(m, r) + D(m, s) — A(m, r, s) the scheduling phase (Phase I) via PWE algorithm is used. Fig. 3
shows DM coordination networks (DCNSs) corresponding to
. three DM-platform assignments obtained by various algorithms
Alp, n, k) Z min (tni, ki) - Ugi with internal/external workload weight¥ ! = WF = 1.
= It was found that minimizing the internal workload increases
A(n, @, k) =A(n, k, ) = A(p, n, k) m,n, k#r, s.  DMs external workload, thereby generating dense and heavy
coordination network among DMs.

N

Cluster pair selection requirés((M — 1)(M — 2)?) opera-
tions, and cluster parameter update ne@@& + 2(M — 2) +

N(M — 2)(M — 3)) operations. Therefore, the overall com- IV. PHASEIIl: ORGANIZATIONAL HIERARCHY

plexity is approximately To avoid decision-making confusion associated with the
4 4 3 3 distribution of control, organizations may impose a decision
0 (K - D"+ N(K”-D )) : hierarchy (i.e. superiorsubordinateor supportegsupporting

relationg on their team members. A hierarchy is a partial
order relationship that can be viewed as a tree-type network
among DM nodes (with “root” DM being the team leader).
A(m, n, k) =0, m,n, ke{l,..., 6} Oftentimes, a hierarchy induces a structure for decision cycles

Example (continued)for platform grouping shown in
Fig. 2, we have

— max[9, 5,5,4,7 max[12 ,4, 5,4, 7 max[12, 4,5, 4,7 max[11, 4,5, 5,7 max[12, 4, 5, 5, 4]
- max[7,9,5,4,7 max[7,9,5,4,7 max[7,8,5,5 7 max[7,9,5,5,4]
— max|[7, 4, 10, 4, 7]  max][7, 47 7,5,7 max[7, 4, 12, 5, 4]
- max|[7, 4, 5, 7,7 max[7, 4, 5, 10, 4]
— max|[7, 4, 5, 5, 11]
-9 12 12 11 12
9 9 9 8 9
12 - 10 7 12
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2) a decision hierarchy (a directed tree spanning DM nodes)

v, |5 1Ps [P [P Prs to optimize theresponsibility distributionand inter-DM con-
@ @ trol coordination as well as to balance theontrol workload
Py | Py [Pra|Py7 |~ (P19 [P among DMs according to theixpertise constraintsThe hier-
DM; @ """"" DM, archical structure of the organization (“who reports to whom”)
: is uniguely determined by specifying the root node in the co-
@ ordination tree of DM nodes. Different optimization objectives
: for the prospective organizational design (e.g., maximizing the
DM, @ --------- @ speed of commarty minimizing average decision cycles in the
A o lp o I organization; minimizing thenanagement costssociated with
1 2 7P 15|7 16 3 6 1013

coordination overhead; etc.) prompt different rules for building
a hierarchy and selecting its root. Some of the rules for root
selection are as follows:

1) minimum tree depth;
@Pl P2 |P7 [Pis|Prs 2) DM with minimum workload;
St 3) DM with maximum coordination.

(a) Optimal Solution

In this section, we consider the situation when the coordi-

pll] PlJ -CD PS
DM, T @ A. Problem Definition

L nation between any two DMs in the prospective organization

= requires the participation (e.g., approval) of all DMs involved
@ """ @@ in the corresponding superior—subordinate path spanning two
coordinating DMs (e.g., when passing certain information is
permitted only via hierarchy tree links, when each DM can
communicate exclusively with his immediate superior/subor-
dinate DMs, etc.). Such a spanning path is unique for any two
DMs in a given DM hierarchy. The associatedordination

pS PS P11 pll plS P—1 P9 PH Plg plO

(b) Max-Dissimilarity Algorithm

@Pl 2 ) 6 5 overheadadds the extra load to each DM involved in the
@" decision cycle. We model such an overhead by introducing
Py [Py |- P; |Ps |Py [Py indirect additional coordinationThe external organizational
DM, DM, workloadis then defined as the sum of direct (one-to-one) and
@ @ indirect (through an intermediary) coordination. The impact
of each such coordination can be defined appropriately by
introducing weighting coefficients.
DM} @ --------- @ We use the following definitions to formulate the problem.
ol b lp |p b e b b Definition 6;: DM coordination network (DCN3$ a complete
R L SRl R undirected graph with nodgsD My, ..., DMp} representing
(¢) Max-Similarity Algorithm the DMs and edges with weights,,, between nodes equal to

the amount of necessatljrect coordinatiorbetween DMs (ob-
tained in Phase Il from DM-platform-task assignment)

O - DMs |:| - platforms assigned to DMs N
O - DM-DM coordination Cmn=D(m, n)zz mMin(Umi, Uni); m,n=1, ..., D.
=1

* - communication edge (11)
Definition 7: An organizational hierarchy tree (OHTis a
Fig. 3. Clustering results obtained by various algorithms for an experimedirected single-root tree spanning the nodes of DCN.
with the DDD-IIl simulatori! = W2 = 1. Definition 8: Indirect additional coordinatior(or coordi-
nation overheaplof a DM is the amount of information flow

and information flows associated with inter-DM coordinatiorﬁhroth th's node in the un_dlrected .tree of OHT un.der the
nservation of flow constraint(s). It is found by adding the

in an organization. One of the goals in creating a specific S . L
9 9 9 P ount of coordination between all pairs of coordinating nodes

hierarchy is to match the induced superior-subordinate D th th i ) ths * ina thouah” & DM
relationships with the inter-DM coordination required to com”! € corresponding spanning paths “passing though- a

plete the mission. Different definitions of this matching lead t8f interest

different formulations of the organizational hierarchy-design D D

problem. Am)=>" 3" ¢;-1(m e path fromi to j)
Phase Il of our optimization process completes the organiza- i=1 j=i+1

tional design by specifying: 1) a communication structure; and m=1, ..., D. (12)
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Definition 9: Theexternal organizational workloadf a DM B ifé O - DM-DM coordination
is the sum of its external coordination and indirect additional N s - communication edge
coordination workloads VOMs e (not included)

e m - hierarchy arcs
EW(m) = E(m) 4+ A(m); m=1,...,D. (13) E= H<G)) B
A1 7N /N A0
Definition 10: The internal organizational workloadf a =\ DM, | f \ DM, ) f=5
. s A RN N
DM is equal to its internal coordination W=s W=
IW(m) = I(m); m=1,...,D. (14)
E=2 ||/ Bl

Definition 11: The organizational workloadof a DM is a A=0 ‘/DM\\‘ \'/DM\" A=0

weighted sum of its internal and external workload NG N7

W(m)=W!. IW(m)+W¥ . EW(m);  m=1,...,D

Fig. 4. Organizational hierarchy for optimal DM-platform allocation.

It follows from the definitions that the overall indirect addi-,. I o .

. S L . .. tional indirect coordination. The algorithm [17] constructs Go-

tional coordination (coordination overhead) in the organization . L
mory—Hu tree (also callethe optimal communication tre

's equal to which is proved to be the optimal solution for this problem.
C(OHT) The following definitions are used throughout the algorithm.
o Definition 12: A cliqueis a set of two or more nodes of the
_ Z A(m) original DCN network.
— Definition 13: At any given step, all nodes of the original

b b DCN network are partitioned into a set of cliques and of indi-
vidual nodes, with a tree structufédefined over the elements

Z Z Cij of this set. Such a set is callecpartition.

Definition 14: Residual networls a network consisting of
the elements of a Partition and derived from DCNelxpanding

Example (continued):For the optimal DM-platform alloca- and/orcondensingperations on the nodes of the current ffee
tion and the corresponding DCN network shown in Fig. 3, th&/hen aclique is selected i, a residual network is obtained by
corresponding organizational hierarchy and workload paranf@ndensing the components Bf which stay connected when
ters are shown in Fig. 4. In this case, the coordination overhesglected clique is removed froi, and expanding the selected

i=1 j=i+1
- ({number of edges betweémnd; in OHT} — 1).

is C(OHT) = 1. cligue, as described in definitions 15 and 16.
Definition 15: Expandinga clique is equivalent to trans-
B. Three Objectives forming the original DCN partition by removing this clique and
In the following, we present algorithms for the Phase IlI @Y adding all nodes that constituted the clique as the individual
optimize three different objectives: elements of the partition.

Definition 16: A set of nodes igondensedvhen it is com-
ned into a single node calledigregated nodeéA weight of the
costproblem): edge between this neaggregated nodand any other nod&/

2) minimization of the maximal DM workloadnfin-max in the network is equal to the sum of edge weights in the original
problem): network betweeV and all nodes in this aggregated node. When

3) maximization of the aggregated coordination from the c§%0 cliques are condensed, itis equivalent to condensing the set
ordination links included in the OHT{ax-inproblem). of ongmal network.nodes gontalned in thgse chqges. That is, if
Optimization for each of these objectives produces differef¥° cliquesGi = {i1, ..., ir} andG? = {31’_' - Jm} are to
results. Performance comparisons among the constructed ofifgcondensedhe new node iy = {ir, ..., ik, ji, s jm}
nizations over missions with different structures would validafé'd for any nodeV from the original network, the edge in the
a particular choice of the objective function and the algorithnf€Sidual network is
to satisfy specific operational objectives. k

NG = Z CNi, T+ Z CNjy - (16)

C. Minimum Coordination Cost Problem f— u=1

When mlnlmlzmg the overall additional coordination, we US§he new node is also a C|ique_ The edge We|ght in the residual
the optimal polynomial-time algorithm due to Hu [17]. The ide@etwork between two cliques; andG is

is to minimize the cost of coordination in OHT. We assume

that the cost of a unit of coordination between any two nodes new &

in OHT is equal to the number of nodes on the path between €G1G: = Z Z Civfu a7
them. Therefore, minimization of the overall coordination cost v=lu=l

defined in this fashion is equivalent to minimization of the addiFhe algorithm is based on the following theorem [17].

1) minimization of overall additional coordination imposedb_
by the tree structure in the OHM™M{nimum coordination :
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() -clique

© @
O - node

@ (@) () - information

Theorem: The communication cost of the trgefor a net-
work with a set of communication requiremefts;, 1 < ¢ <
j < D} is equal to the sum of cut capacities of tHe 1) non-
crossing cuts of this network (with cuts obtained from subsets

@) flow
separated by each tree edge).

A tree has one-to-one correspondence with the set of Lo
noncrossing cuts (cuts determined sequentially by removing @ @
an edge of the spanning tree and considering sets of node: o ° e
separated by the spanning tree). Since the sum of cut capacitie @ (©
of the (D — 1) noncrossing cuts represented by the Gomory—Hu

tree is the least among the sums of the cut capacities of any e o &) ° D) °
(D — 1) noncrossing cuts, the theorem proves that Gomory—Hu

tree is the minimum coordination cost tree.

The minimum coordination costninC-cos} algorithm is as

follows.
Initialization: Start with || = 1, a
tree T containing a single cligue  which

consists of all nodes of the DCN.

Step 1. Select a clique G in T (which
consists of more than one node of DCN).
Disconnect this clique in T (remove all
edges incident to this clique in T),
which breaks it into several connected
components. If all cliques of T contain
only single nodes of the original net-
work, STOP.

Step 2 . Create a residual network by con-
densing each connected component into
one clique (node) and expanding the se-
lected clique.

Step 3 .Pick any two nodes 1+ and j (nodes
of DCN) from the selected clique and

find the minimum cut (X, X) in the
residual network, i € X,j € X (X and
X consist of condensed cliques of T and
of nodes of the original network from
cligue G).
Step 4 . Create two new cliques G, Gs in
tree T replacing the selected clique
with them:
Gi=GnX, Gy=GnX.

For each cliqueV € T previously connected t6¢' in 7"

a) if N € X, then create an edge betwe¥nandG,
b) if N € X, then create an edge betwe¥randG;.

The edges are updated via

CNG, «— E E Cuyuv-

ueN veG;

Example (continued)or the optimal DM-platform alloca-
tion and the corresponding DCN network shown in Fig. 3, the minimal coordination workload (

Fig. 5. Organizational hierarchy construction using Gomory—Hu algorithm.

Selected Cliquq‘

O =0
@ Expand clique (2,5), condense (4)

and (3) into the same clique, and

Residual Network: find min-cut between (2) and (5).

X=[(1).2)]
X2=[(5)3(354)]

L

O*@*EOO

Fig. 6. Single iteration) of Fig. 5 in Gomory—Hu algorithm.

New DCN:

D. Max-In Problem

An alternative is to use maximal spanning tree algorithm
to construct the OHT. We obtain a trée that maximizes
>, jyes(T) Cij» WhereE(T') denotes the set of edges of the
treeT". This can be done by applying the modified minimum
spanning tree algorithm. Maximum spanning tree problem
with edge weights:;; transforms into a minimum spanning
tree problem with edge weights; = cpax — ¢, Where
cmax = max{c;; }. Methods for finding the minimal spanning
tree include those due to Kruskal, Jarnik—Prim-Dijkstra, and
Bor'uvka (see [3], [17], and [47]).

The max-inalgorithm is as follows.

Initialization T=0

Step 1. Select an edge with maximum coor-
dination that does not create cycles in
the network.

Step 2 . If ties occur, select the coor-
dination link connected to the DM with

CWwW).

Gomory—Hu algorithm obtains an OHT shown in Fig. 4. Fig. Step 3 . When the number of edges in

shows a step-by-step hierarchy construction process. The detailhe tree is equal to

of iteration ¢) of the algorithm are depicted in Fig. 6.

D (number of DM
nodes), STOP. Otherwise, go to Step 1.
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The idea behind the algorithm is to include the largest coordi- (O - DM-DM coordination

nation links and to make DMs with the largest workload to be at
the lowest level of the hierarchy tree, thus obtaining a tree with
maximal channel utilization.

Example (continued):Since the coordination workload of
DMs is

s - hierarchy arcs

t DM-J ) A0

B s

[CW(1),CW (2),CW (3),CW (4),CW (5)|=17, 4, 5, 7, 7] " @E "
j g E=1
and DCN arc weights are the samel(), arcs are included in f/DMs\J ?:]0
the tree in the following sequence: — w=3

Fig. 7. Organizational hierarchy formin-dissimilarity DM-platform
(2, 1), (2, 5), (3, 4), (4, 5). clustering.

Therefore,max-in algorithm produces the same result as the Following [29], the problem assumes the form of a binary
Gomory—Hu method for the optimal DM-platform assignmer{f—1) programming problem
(Figs. 2 and 3).

E. Min—Max Problem mm'WIEAX
When the objective is to minimize the maximal DM work- Z eij=D—1
load, we impose additional constraints on the information flow. | ;=1
We restrict the indirect coordination to go through only one D D
intermediate DM. If the information can be distorted while in Zei@ =0, Zeﬁ =1, i=1,....,D
transit, and additional intermediate nodes on the information | j—o =0
path would increase the decision delay, it is practical to con- L >+ 1+ (ei; — 1)(D+1), i,j=0,...,D
sider restrictions, such as having a single intermediate DM, to .
(r;aclfn?r;g;:;atmns more responsive and to maximize the speed eij + eji + ;Zw > dy;, ij=1,....D
In the problem formulation, we introduce the dummy node eir + eni + e;k Fen; > 22, i k=1,....D

“0” that would serve as a single-link root node. After the opti-
mization is done, it is deleted from the tree while maintaining
the tree structure.

Waax > WL I(n) + WE

The following variables are used to formulate the problem: | Em)+ ) zijneij |, n=1,...,D
i<j
1, ifthereis adirect link from to j eij, zijr € {0, 1}
eij = { in the tree (18)
0, otherwise
- 1, if 4 andj are connected through After a solution to this problem is found, the*dummy”
k=0, otherwise root node is discarded. Then the node with some specific

property (e.g., minimum hierarchy depth, maximum workload,
maximum coordination) is found and selected to be at the root
of the organizational hierarchy.

Example (continued)Figs. 4, 7, and 8 show organizational

The fact that we would use“direct” links accounts for the neegiructures corresponding to these coordination networks. These
to structure the hierarchy level by level. Then, direct links existructures are obtained by minimizing the maximal DM work-
only from the higher level to the next lower level. The levelbad (min—maxproblem) via the solution of 0-1 binary pro-
structure of the hierarchy would be changed afterwards to pl&@@mming problems. Here, optimizing the other two objectives

;. = level of nodek
Wyax = maximal DM hierarchy workload.

the specifically chosen DM at the root of the tree. (minC-costandmax-inproblems) produces identical results in
The following parameters are used (from the output &@ch case. The organization corresponding to optimal clustering
Phase ) has the least maximal DM workload.

Experiments suggest that strong dependency exists between
g 1, if cpn >0 the density of coordination networks and the performance
mn 0, otherwise. of the corresponding organizational structures. Density of
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—3 M. T 0.11 -
— A=0 O DM-DM coordination o~ -~ — - Min Dissimilarity
7N - hierarch 0.1 S o = Max Similari
( DM, I=4 — ierarchy arcs ~c - Best Morge
‘ ( W=7 0.09 | ~
_ < R
0.08
E=3  E=3 g \
A=0 /O ™\ A=0 500 — \\
=5 \ DM, ) | DM ) = £
=8 AN / \ / W=5 200.06 - A3 \"
g 0.05 \
& . \
0.04 | \
E=] E=2 i T
A=0 /N N A=0 003} T T N
—4 | DM, ) (D™, | = N
I=4 e 1/ I=5 00 )
=5 — W=7 02
0.01 : |
2 3 4 5 6 7

Fig. 8. Organizational hierarchy fanax-similarityDM-platform clustering. Number QH)MS

Fig. 9. Average CPU time of heuristic algorithms. Number of platfoems;

TABLE | number of simulations= 100.

AVERAGE MAXIMAL COORDINATION WORKLOAD (CW') FOR PHASE Il
450

number of] Min Max Best Merge Optimal ”
DMs | Dissimilarit| Similaritv Algorithm

2 51.69 51.76 51.17 50.74 350 -
3 42.2 41.82 41.62 41.1 .
4 33.52 33.06 33.18 32.88 g 0
5 33.1 32.42 31.95 31.87 % 250 -
6 33.7 31.33 30.13 30.13 g" 200
7 24.26 24.26 24.26 24.26 g

150
100
coordination networks is dependent on the choice of workload
weights (internal—external workload tradeoff). The following
section discusses results from an experiment with the DDD-II
simulator obtained by varying workload weight parameters.

50
ot E— .
2 3 4 5 6 7
Number of DMs

Fig. 10. Average CPU time of optimal algorithm. Number of platform3;

V. SIMULATION RESULTS number of simulations= 100.
A. Algorithm Performance: DM-Resource Allocation
5 T T

—— Min Dis similarity
— Max Similarity
Best Merge

Simulation results for the clustering algorithms (based on
the scheduling results obtained by the MDLS method with
critical path task selection) are shown in Table | and Figs. 9-11
(workload weights aréV ! = 10, WF = 1; see Appendix for
information on random problem generation). For a problem
with 30 tasks and seven platforms, Table | shows the av-
erage maximal coordination workload (objective function) of
clustering algorithms. The average CPU times (for Pentium
600 MHz processor) of heuristic algorithms and of the optimal L5k
procedure are presented in Figs. 9 and 10, respectively. Results 1}
are based on 100 Monte Carlo simulations. Fig. 11 shows
similar CPU time behavior for a problem with 30 tasks and 20
platforms for heuristic algorithms only (the optimal algorithm 5 0 Number of DMs is 20
is computationally infeasible for large-size problems).

For heuristic algorithms of Phase Il, the processing tinﬁg. 11. Average CPU time of heuristic clustering algorithms. Number of
of hierarchical clustering procedure increases as the potenplaiforms= 20; number of simulations- 500.
number of DMs (number of clusters) is reduced. The compar-
ison of max-similarityand min-dissimilarityalgorithms shows complexity and can only be used for small-size problems (see
that the min-dissimilarity algorithm has the least processingrig. 10).
time, while max-similaritymethod produces on average better ) L
results. On the other hand, these algorithms are significantly Algorithm Performance: Organization Structure
faster than best-merge procedure, although the latter is closeln this section, we discuss the performance of algorithms
to the optimal solution. The optimal solution has exponenti& obtain DM—DM coordination hierarchy. Each of these algo-

4.5F

w
w v ES
T T T

Processing time. sec
~
SR
T T
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TABLE 1 P
AVERAGE CPU TIMES OF ALGORITHMS FORPHASE IIl (IN SECONDS 50 - m’\(m( ot
i = MinMax
number of Min C-Cost| Max-In Min-Max £ 46
DMs E
2 0.007 0.0001 0.0039 B
3 0.0309 0.0001 0.0089 E 21
4 0.0897 0.0001 0.0344 ERd
5 0.193 0.0004 0.4669 £ |
6 0.351 0.0011 5.222 36
7 0.526 0.0012 105.8115 4

2 . |
2 3 4 5 6 7
Number of DMs

rithms finds an optimal solution to the corresponding problem.
The goal of such simulations is to select the number of DMs fefg. 12. Maximal workload of DM. Number of platforms 7; number of
an organization. We try to achieve a tradeoff between optimiziggulations= 100.

the average and the maximal workloads of DMs in an organiza-

tion. Itwould provide us with a balanced workload among mern

bers of the organization (better resource utilization), as well : MinC-Cos 3
prevent individual DMs from being overloaded. On the othe nf |7 Madn o
hand, having under-loaded DMs provides us with redundancie B —

making the organization more robust to failures.

As indicated earlier, the complexity of Gomory—Hu al-
gorithm (minC-cost problem) and maximum spanning tree
algorithm nax-in problem) is polynomial, whilemin—max
algorithm has exponential complexity (over the number ¢
DMs, tasks, and platforms). This is illustrated by the averac
CPU-time data for each algorithm shown in Table II. Fig. 1:
shows the average maximal DMs workload for each algorithn
Fig. 13 presents the average coordination, for which maximu
spanning tree algorithm is optimal. Fig. 14 illustrates the a\ 8 ; ; : : g
erage coordination overhead. Gomory—Hu algorithm is optim Number of DMs
for this case. As indicated in Fig. 15, Gomory—Hu algorithm
obtains organizations with the best average DM workload. Fig 13, Average direct coordination. Number of platforms7; number of

From simulation results, we conclude that the min—max algsimulations= 100.
rithm obtains a solution with the least maximal DM workload
(when the number of DMs is small) by distributing the work-
load among DMs. However, the complexity of this algorithrr 33 o )
prohibits its use for large-size problems. Furthermore, we na . - = Maxin P
that, as the number of DMs increases, the constraints on coor P [ Minex | ’
nation, placed by min—max problem formulation, make its solt
tion nonoptimal. max spanning tree method produces solutio
with better maximal workload for larger number of DMs at the
expense of increased coordination overhead and average [
workload. It is also significantly faster than Gomory—Hu algo
rithm.

From the maximal and average workload data [see Figs. .
and 15] we conclude that the choice of four or five DMs is thi
best for this problem (workload weights aé! = 10, WF¥ =

1).

Direct Coordination, units

Coordination Overhead, units

Number of DMs

C. Effects of Internal/External Workload Weights on
Organizational Structure Fig. 14. Average external coordination overhead. Number of platfeends
In this section, we explore the behavior of organizationat™Per of simulations= 100.
structures obtained via Gomory—HmifiC-cos}t algorithm.
The results are based on clustering data obtained finomadis- The shape of organizational structures for a 5-node organ-
similarity clustering algorithm. ization with min-depth root selection for our example varies



LEVCHUK et al: NORMATIVE DESIGN OF ORGANIZATIONS—PART |I: ORGANIZATIONAL STRUCTURE 373

- - — - Min Dissimilarity
0.1} SN == Max Similarity
S = = Best Merge
0.09 | ~
s ~
).08 |
9 0.0: N\
i N\
P07 P—
£ A
o0 (.06
£ \
8 005 \
2
£ \
0.04 \
003F T ~\~\-_
0.02 \
0.01 5 5 !
2 3 4 5 6 7
Number of DMs

Fig. 15. Average CPU time of heuristic algorithms. Number of platfogms
7; number of simulations= 100.

5-node Structures:

o M

121 3-level hierarchy @ .
2-level hierarchy

16 18 20

External Workload weight

6 8 10 12 14
Internal Workload weight

Fig. 16. Effects of workload weights on 5-node organizational structure.

6-node Structures:

3-level hierarchy @
0 2 4 6 8 0 12 M 16 18 20
Internal Workload weight

Fig. 17. Effects of workload weights on 6-node organizational structure.

External Workload weight

a pair of internal and external workload weights in this area)
shown on the right-hand side of the figure.

Minimizing the internal DM workload in Phase Il (high
ratio of internal workload weight to external weight) results
in DM-resource allocation with heavy inter-DM coordination.
In our examples, we obtained dense coordination networks
with evenly spread coordination. Optimization of structures for
dense and evenly distributed coordination networks leads to flat
hierarchy structures (low-level hierarchies). This comes from
the fact that a flat hierarchy minimizes the communication cost
C(OHT) (coordination overhead) of OHT for coordination
networks with such properties. On the other hand, optimiza-
tion for sparse coordination networks results in multilayered
organizational hierarchies.

VI. SUMMARY AND FUTURE RESEARCH

Different organizations exhibit differences in their perfor-
mance. Even for small organizations facing missions with a
limited number of tasks, there can be an enormous number of
possible solutions to the organizational design problem. Opti-
mization can yield significant improvements in performance.
In this paper, we presented Phases Il and lll of our 3-phase
process for optimizing the organizational design (outlined in
[56]). We provided mathematical formulations of DM-resource
allocation (Phase IlI) and coordination structure optimization
(Phase Ill) problems, and presented algorithms to solve these
problems. We have also shown the dependence between the
applied optimization criteria and the structural behavior of
organizations obtained via our design process.

Our current efforts are focused on conducting a compar-
ative analysis of various optimization techniquessivlving
specific design problemand on defining criteria for classi-
fying multiobjective optimization problems into groups that
require different optimization strategiesramluce solution com-
plexity for large-scale design problems. We also look to define
measures obrganizational robustnesg.e., the ability of an
organization to maintain the required level of performance de-
spite variations in its mission environment) andadfptability
(i.e., theability of an organization to adapto environmental
changes and functional failures). Developing fast algorithms
for real-time analysis of feasible adaptation options to sug-
gest suitable forms of adaptation and appropriatensition
sequencdor reconfiguration would provide a computational
framework for on-line adaptation in complex C2 systems facing
uncertain and volatile environments.

APPENDIX
RANDOM PROBLEM GENERATION

Resources:Resource length varies uniformly between four
and ten. Elements of requirement/capability vectors vary uni-

between three basic hierarchies according to the internal/éxrmly between one and five units.

ternal workload emphasis (see Fig. 16). Fig. 17 shows similarTasks: Number of tasks is fixed. Task positions are uniform
results for 6-node organizations. Although there are five pos [0, 50] x [0, 50] grid.

sible 6-node architectures, organizational hierarchies obtainedask Precedence GraphNumber of levels is uniformly
using our design process vary among three distinct 3-level straéstributed according to task-to-level ratio. Max and min
tures only. Each shaded area in Figs. 16 and 17 correspondtatk-to-level ratios are, respectively, 0.6 and 0.25. Number
the hierarchy structure (obtained by Gomory—Hu algorithm faf predecessors of each task from upper leveld)(is 2.
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Max number of tasks per level is six tasks. Maximum task{25]
processing time is 50 units.
Platforms: Number of platforms is fixed. Platform velocity

varies between one and three units.
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