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Abstract—This paper presents a design methodology for synthe-
sizing organizations to execute complex missions efficiently. It fo-
cuses on devising mission planning strategies to optimally achieve
mission goals while optimally utilizing organization’s resources.
Effective planning is often the key to successful completion of the
mission, and conversely, mission failure can often be traced back to
poor planning. Details on subsequent phases of the design process
to construct the mission-driven human organizations are discussed
in a companion paper.

Index Terms—Mission decomposition, mission planning, organi-
zational design, resource allocation, scheduling.

I. INTRODUCTION

A. Motivation

CHANGING patterns of today’s world impose new re-
quirements for many modern organizations, ranging from

military establishments to agile manufacturing systems and
commercial enterprises. With the benefit of new technologies
now under development, the competition will be won by an
organization that will best utilize both its resources and its
critical information to achieve its goals. This implies the need
for much greater emphasis on realistic modeling of distributed
organizations in which the human participants are the focus.

In large-scale organizations that involve humans, decision-
making and operational functions are distributed among team
members who coordinate their actions in order to achieve their
common goal. Since the processing capabilities of a human are
limited, the distribution ofinformation, resources, andactivities
among decision-makers (DMs) in an organization must be set
up to guarantee that the decision-making and operational load
of each DM remains below the DM’s capacity thresholds. In
a highly competitive and distributed environment, a proper
balance among information acquisition, decision hierarchy,
and resource allocation, in short,a proper organizational
structure and its processes, is critical to superior organizational
performance.
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Over the years, research in team decision-making has demon-
strated that an organization operates best when its structure and
processes match the corresponding mission environment [43],
[49]–[51]. Consequently, it has been concluded that theopti-
mality of an organizationaldesignultimately depends on the
actual mission structure and on the key attributes of the environ-
ment in which the organization operates [6]. This premise has
led to the application of systems engineering techniques to the
process of designing human organizations [37], [38], [51]. The
systems engineering approach to organizational design is as fol-
lows. First, a quantitative model describing the mission and the
organizational constraints is built. Next, different criteria used
to judge the optimality of an organization are combined into
a (possibly nonscalar) objective function. Finally, an organiza-
tional design is generated to optimize the objective function.

In this paper, we present a methodology formodelingmis-
sions and forsynthesizingthe concomitantoptimal organiza-
tions. We introduce a three-phase iterative optimization process
that derives an optimized organizational design for a given
mission structure and organizational constraints. In the first
(mission-planning) phase of our design process, the optimal al-
location of mission tasks to organization’s platforms (physical
resources) is determined to optimize the mission schedule. In
the second phase, a three-way DM-platform-task allocation is
derived to minimize the coordination and workload overhead
and its impact on the mission schedule. In the third phase,
other dimensions of organizational structure (e.g., information
acquisition and communication structures, decision hierarchy)
are optimized to fulfill the design objectives. Following a de-
scription of our modeling and design methodology, the paper
focuses on the development of algorithms for mission-plan-
ning phase. The algorithms to optimize other dimensions of
organizational design are presented in a companion paper.

B. Related Research

Over the past few years, mathematical and computational
models of organizations have attracted a great deal of interest
in various fields of scientific research (see [43] for review). The
mathematical models have focused on the problem of quanti-
fying the structural (mis)match between organizations and their
tasks. The notion of structural congruence has been generalized
from the problem of optimizing distributed decision-making
in structured decision networks [51] to the multiobjective opti-
mization problem of designing optimal organizational structures
to complete a mission, while minimizing a set of criteria [37],
[38]. As computational models of decision-making in orga-
nizations began to emerge [9], [55], [64], the study of social
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networks (SSN) continued to focus on examining a network
structure and its impact on individual, group, and organiza-
tional behavior [67]. Most models, developed under the SSN,
combined formal and informal structures when representing
organizations as architectures (e.g., see the virtual design team
[42] and ORGAHEAD [9]), and in many empirical studies,
the informal subsumed the formal. In addition, a large number
of measures of structure and of the individual positions within
the structure have been developed [59], [65], [66].

Application of systems engineering techniques to the process
of designing human organizations led to several graph-de-
composition and combinatorial optimization algorithms to
synthesize congruent organizational structures (i.e., struc-
tures that are in some sense “matched” with their mission
task environment) [37], [38], [51] and to several graph-the-
oretic measures of task complexity [36]. Potential benefits
of a structural match predicted by the normative model, as
well as the ability of a proposed design process to find this
match, have been tested empirically in a computer-mediated
team-in-the-loop experiment with human DMs in a distributed
dynamic decision-making (DDD-III) simulator of Joint C
scenarios (see [31] for a description of DDD-III). DDD-III and
other similar simulators allow one to compare the performance
of different organizational designs for a specific mission,
and to test the utility of the design procedure. Findings from
recent experiments on DDD-III simulator gave the empirical
validation of our modeling and design methodology. It clearly
showed the advantages of structural optimization, since the
model-driven nontraditional architectures outperformed their
traditional counterparts. The experimental results showed that
not only were the system engineering methods successful in
constructing the desired architectures, but architecture type
differently affected team processes, as was hypothesized by the
design [18], [26].

C. Organization of the Paper

The paper is organized as follows. Our three-phase organi-
zational design process is outlined in Section II. Section III
defines the organization and mission parameters, providing a
rationale for various mission decomposition techniques and
mission planning strategies. The problem of allocating resources
to tasks (Phase I) is discussed in Section IV. We present a math-
ematical problem formulation and several heuristic methods
to solve this problem, and give performance analyses of these
algorithms. Algorithm performance and simulation results are
given in Section V. The paper concludes with a summary and
future extensions in Section VI.

II. ORGANIZATIONAL DESIGN PROCESS

The notion of optimality is subjective [30]. Moreover, dif-
ferent aspects of organizational performance are deemed impor-
tant when assessing the efficacy of an organization. Hence, the
organizational design problem is inherently multiobjective, and
the correct choice of optimization criteria is critical to gener-
ating the optimal design.

Modern man–machine systems are made exceedingly com-
plex by the many human and technological elements involved.
The sources of this complexity includedimensional complexity

(processes and interactions on many levels),uncertainty, and
computational complexity[12], [41], [44]. Even for a smaller
size organization facing a mission that consists of a small
number of tasks, there can be an enormous number of possible
solutions to the organizational design problem (and optimiza-
tion can yield significant improvements). In general, all the
existing methods of multiobjective combinatorial optimization
problems are NP hard (optimal algorithms take exponential
time [24]).

One way of simplifying the search for the optimal or-
ganizational design is to exploit theconnection between
multidimensionality of organizational structure and the com-
position of a concomitant multivariable objective function. In
general, the objective function combines variables representing
both mission objectives and design parameters (e.g., deci-
sion-making workload, resource utilization, coordination, etc.
[14], [28], [30], [39], [64]). Each dimension of the organiza-
tional structure stipulates a corresponding portion of the design
parameters. For example, DM-platform allocation and mission
schedule define the operational workload of a DM, while
information access structure, allocation of decision variables,
and communication structure stipulate a decision-making
workload of a DM.

The relative weights of the optimization criteria that de-
termine organizational performance can be represented via
weighting coefficients assigned to each component in the
objective function. Therefore, in theory, we can build an orga-
nizational structure byiteratively optimizingdifferent structural
dimensions, beginning with those dimensions that delineate
the heaviest portion of the objective function. For example,
an organizational strategy determines the mission processing
schedule as well as the individual operational workload of
a DM. Consequently, it generally specifies a large portion
of parameters in the multivariable objective function. Each
subsequent dimension is optimized subject to a fixed structure
on those dimensions that have been optimized already. The
iterative application of optimization process allows one to
simultaneously optimize multiple dimensions [37].

Following the above logic, our organizational design method-
ology integrates various algorithms that optimize different
dimensions of an organizational structure. For a given mission
structure, an organization is designed via the following three
phases (see Fig. 1).

Phase I: The first phase of the design process determines the
task-platform allocation and task sequencing that optimize mis-
sion objectives (e.g., mission completion time, accuracy, work-
load, resource utilization, platform coordination, etc.), taking
into account task precedence constraints and synchronization
delays, task resource requirements, resource capabilities, as well
as geographical and other task transition constraints. The gen-
erated task-platform allocation schedule specifies the workload
of each resource. In addition, for every mission task, the first
phase of the algorithm delineates a set of nonredundant resource
packages capable of jointly processing a task. This information
is later used for iterative refinement of the design, and, if neces-
sary, for on-line strategy adjustments.

Phase II: The second phase of the design process combines
platforms into nonintersecting groups, to match the operational
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Fig. 1. Three-phase organizational design process.

expertise and workload threshold constraints on available DMs,
and assigns each group to an individual DM to define the
DM-resource allocation. Thus, the second phase delineates the
DM-platform-task allocation schedule and, consequently, the
individual operational workload of each DM.

Phase III: Finally, Phase III of the design process completes
the design by specifying a communication structure and a de-
cision hierarchy to optimize the responsibility distribution and
inter-DM control coordination, as well as to balance the control
workload among DMs according to their expertise constraints.

Each phase of the algorithm provides, if necessary, a feedback
to the previous stages to iteratively modify the task-resource al-
location and DM-platform-task schedule. Phase I of our design
process essentially performs mission planning, while Phases II
and III construct the organization to match the devised courses
of action.

III. M ISSION PLANNING

A mission analysis that details required courses of action
by specifying a sequence of tasks, defining resource-to-task
allocation, and a time-line for all task activities constitutes
a mission plan. Planning problem is investigated in artificial
intelligence and behavioral science area (see [2]). Planning
models in military human behavior representation have been
extensively studied and several specific planning tools have
been developed, including adaptive combat modeling [22],
commander’s visual reasoning tool [4], dismounted infantry
computer-generated force [27], computer-controlled hostiles for
SUTT (small unit tactical trainer) [53], fixed-wing attack-soar
and soar-intelligent forces [32], [33], man–machine integrated
design and analysis system [3], naval simulation system [61],
automated mission planner [35], to name a few.

A. Mission Structure

A fundamental question underlying a distributed or-
ganizational design—“who should do which part of the
mission?”—implies that the mission must bedecomposable
into a set ofentities. These entities are generally referred to as
tasks.

Definition 1: A Task is an activity that entails the use of
relevant resources (provided by organization’s platforms) and
is carried out by an individual DM or a group of DMs to accom-
plish the mission objectives.

Every task in itself represents a “small mission,” and can
oftentimes be further decomposed into more elementary tasks.

A mission decomposition diagramcan be built to represent
a hierarchical structure among the mission tasks. Different
decomposition techniques (e.g., goal decomposition, functional
decomposition, domain decomposition) represent different
starting points of defining tasks and provide different task types
required to complete the mission. The designer’s choice of
a particular decomposition technique and model granularity
(number of tasks in the mission decomposition) must be con-
tingent on the computational efficiency of the design process
and its supporting algorithms.

Task attributes quantify various properties of the mission
tasks that detail the specifics of task execution. They provide
quantitative characteristics for the mission structure and specify
the implications of commitment to task processing on both
machine and human resources of an organization. In our
model, we characterize every mission taskby specifying the
following basic attributes:

1) estimated processing time( , where is
the number of tasks);

2) geographical constraint vector (e.g., the “location”
in a state space that specifies the concomitant

“distance” to be traveled between tasksand );
3) resource requirement vector , where

is the number of units of resourcerequired for suc-
cessful processing of task ( , where is
the number of resource types).

We illustrate our modeling paradigm and organizational
design process via an example of a joint-task-force scenario
as operationalized in the distributed dynamic decision-making
(DDD-III) team-in-the-loop real-time simulator. A detailed
description of this empirical research tool is provided in [31].

Example: Experiment With DDD-III Simulator:A joint
group of Navy and Marine Forces is assigned to complete a
military mission that includes capturing a seaport and airport
to allow for the introduction of follow-on forces. There are two
suitable landing beaches designated “north” and “south,” with
a road leading from the north beach to the seaport, and another
road leading from the south beach to the airport (a mission
geographic layout is shown in Fig. 2). From intelligence
sources, the approximate concentration of the hostile forces is
known, and counter-strikes are anticipated. The commander
devises a plan for the mission that includes the completion of
tasks shown in Fig. 2. The following eight resource require-
ments/capabilities are modeled:

1) AAW (anti-air warfare);
2) ASUW (anti-surface warfare);
3) ASW (anti-submarine warfare);
4) GASLT (ground assault);
5) FIRE (artillery);
6) ARM (armor);
7) MINE (mine clearing);
8) DES (designation).

A variety of modeling techniques [e.g., object-oriented mod-
eling (OOM); entity relationship (ER) [17]; integrated definition
(IDEF) modeling [70], [71]; relational database design (RDD)]
can be applied to capture the internal structure of a mission.
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Fig. 2. Geographical constraints and mission tasks for an experiment with
DDD-III simulator.

One of the most popular modeling methodologies employs a
graph formalism to describe the mission structure. The graph
formalism is used to construct the dependency among the tasks
of a mission. Examples of different mission decomposition tech-
niques used to design the organizational structure for an exper-
iment with DDD-III simulator (see [39] for details) are shown
in Figs. 3 and 4. Task parameters are shown in Table I.

Definition 2: A Task Graphis a dependency diagram that
details the following interrelationships between tasks:

1) task precedence;
2) inter-task information flow;
3) input–output relationships between tasks.

A directed acyclic task-precedence graph represents the
plan to execute the mission. The examples of task graphs
and inter-task dependencies for an Experiment with DDD-III
simulator [39] are shown in Figs. 5–7.

B. Organizational Constraints and Design Output

In defining an organization, we differentiate between two
classes ofentities: 1) decision-makers (DMs) and 2) resources.
Organization’s resources that represent nonhuman physical
assets are calledplatforms.

Definition 3: A Decision-Maker (DM)is an entity with infor-
mation-processing, decision-making, and operational capabili-
ties that can control the necessary resources to execute mission
tasks, provided that such an execution will not violate the con-
comitant capability thresholds.

A maximal number of available DMs is specified. An ex-
ample of DM responsibilities is shown in Fig. 8.

Definition 4: A Platform is a physical asset of an organiza-
tion that provides resource capabilities and is used to process
tasks. For each platform ( ), we define
its maximal velocity and its resource capability vector

, where specifies the number of units
of resource type available on platform . The platform
parameters are illustrated in Table II.

Definition 5: An Organizationis ateamof human DMs, who
coordinate their information, resources, and activities in order to
achieve their common goal in a complex, dynamic, and uncer-
tain mission environment.

Fig. 3. Example of mission goal decomposition for an experiment with
DDD-III simulator.

Fig. 4. Example of combined functional and domain decomposition for an
experiment with DDD-III simulator.

TABLE I
ILLUSTRATION OF MISSION TASK PARAMETERS

The key attributes in modeling a DM are the individual
DM thresholdswith respect to particular DM activities (e.g.,
information processing and operational load thresholds). These
thresholds quantify human limitations and necessitate the
need for distribution and decentralization within a human
organization.

As a consequence of decentralization in large-scale systems,
each DM only has access to a portion of organization’s re-
sources and possibly to the information available to the team.
The total decision-making and operational load is partitioned
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Fig. 5. Primary mission task graph for an experiment with DDD-III simulator.

Fig. 6. Expanded mission task graph for an experiment with DDD-III
simulator.

Fig. 7. Examples of interrelationships among tasks for an experiment with
DDD-III simulator.

among DMs by decomposing a mission into tasks and assigning
these tasks to individual DMs who are responsible for their
planning and execution. An overlap in task processing (wherein
two or more DMs share responsibility for a given task while
each possesses the capability to individually execute a task)

Fig. 8. Example of DM responsibilities.

TABLE II
ILLUSTRATION OF PLATFORM PARAMETERS FOREXPERIMENT WITH

DDD-III SIMULATOR

gives the team a degree of freedom to adapt to uneven demand
by redistributing the load. The critical issues in teamtask
processingare: what should be done,who should do what,
andwhen. These questions are generally answered bymission
planningthat corresponds to mission-modeling phase followed
by Phase I of our design process outlined in Fig. 1.

In general, DMs are provided with limited resources with
which to accomplish their objectives. The distribution of these
resources among DMs, and the assignment of these resources
to seek information and to process tasks are key elements in an
organization’s design. Team members must dynamically coor-
dinate their resources to process their individual tasks while as-
suring that team performance goals are met. The critical issues
in teamresource allocationare:who should own or transfer a
specific resource,when, andfor how long. These questions are
answered in Phase II of our design process.

In addition to assigning to each DM his share of information,
resources, and activities, the organizational design must expli-
cate a decisionhierarchyamong DMs that designates theircon-
trol responsibilities(through command authority) and that regu-
lates the inter-DMcoordination(by assigning the responsibility
of resolving decision ambiguities among coordinating DMs).
The organizational design can also specify acommunication
structureamong DMs to facilitate coordination and distributed
information processing required for completing the mission. A
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communication structure and a decision hierarchy are devised
in Phase III of our design process.

IV. PHASE I: RESOURCE-TASK ALLOCATION

A. Scheduling in Organizational Design: Motivation and
Problem Definition

A successful scheduling of tasks, obtained from mission
decomposition, to available organizational resources (plat-
forms) under resource requirement and task inter-dependency
constraints is a key determinant of organizational performance.
Low computational complexity of algorithms for solving this
NP-hard problem is a highly desirable feature. In the following
sections, we present polynomial list scheduling algorithms and
local search techniques to obtain an efficient near-optimal plat-
form-task assignment for the Phase I of our design procedure.

Conceptually, the scheduling phase of the organizational
design process is as follows. A set of tasks with specified
processing times, resource requirements, locations, and prece-
dence relations must be executed by a set of platforms with
given resource capabilities, ranges of operation, and velocities.
Tasks are allocated to groups of platforms in such a way that,
for each such platform package to task assignment, the vector
of task’s resource requirements is componentwise less than
or equal to the aggregated resource capability of the platform
group. The task processing can begin only when the processing
of all its predecessors is completed and all platforms from
the group assigned to this task have arrived at the appropriate
location. In our model, we assume that a resource can only
process one task at a time. Platforms are to be routed among
the tasks so that the overallmission completion time(i.e.,
the completion time of the last mission task) is minimized.
An output of the scheduling phase specifies a platform-task
assignment for our organizational design, delineating task start
times, and platform-task routing.

B. Mathematical Formulation of the Scheduling Problem

The scheduling problem associated with the Phase I of our
three-phase organizational design process is defined by the fol-
lowing variables:

Assignmentvariables:

if platform is assigned to task
otherwise.

Traversingvariables:

if platform is assigned to process task
after processing task
otherwise.

Objective function:

mission completion time

(time when the last task is completed)

The following parameters are used:

if task must be completed
before task can start
otherwise.

mission completion time found using a heuristic algo-
rithm (or set to infinity)—the upper bound on mission comple-
tion time.

task that serves as “start–finish” or “depot”) task. It
indicates the initial location of organization’s platforms before
the mission execution is initialized.

The objective is to minimize the mission completion time.
Following [40], the problem assumes the following form:

(1)

This is a mixed-binary (i.e., containing continuous and binary
variables) linear programming (MIP) problem (which is proven
to be NP-hard). Moreover, even relaxing the constraints on the
binary variables and (that is, making them real num-
bers in the [0, 1] range) produces a linear programming problem
(LP) with the number of variables equal to ,
the number of equality constraints equal to , and the
number of inequality constraints equal to

. This makes it hard to find solutions to even average-sized
scheduling problems.

C. Related Research

The scheduling problem arising in organizational design ex-
tends to a large set of well-known problems. When there exists
only one platform, it is related to the traveling salesman problem
(TSP) and its extensions (such as time-dependent TSP, TSP with
precedence relations, etc. (for a review, see [34], and for recent
results, see [20], [23], [48], and [69]). When any platform can
process any task, the problem simplifies to multiple TSP with
precedence relations. If, in addition, the processing of a task can
be separated in time among different platforms, our problem is
related to the vehicle routing problem and its extensions (for
a review, see [25] and [45], for the latest results, see [15] and
[21]). In the case when travel times among task locations are
much smaller than the task processing times (and therefore can
be ignored), our problem reduces to a multiprocessor scheduling
problem with precedence constraints (for a review, see [11] and
[16]; for recent studies see [5], [10] and [63]). For a review of
general scheduling problems, see [16] and [52].
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Other variations of problem formulation are possible. For ex-
ample, there may exist a delay between processing of two tasks
on the same platform (“adjustment” delay). The opposite of this
situation is when the delay occurs only when tasks are processed
on different platforms (communication delays) with no delay
for processing by the same platform. This has relevance in mul-
tiprocessor scheduling with inter-processor communication de-
lays [5]. Another variation is the existence of time windows for
processing each task (that is, the earliest start times, calledre-
lease times, and the latest end-times, calleddeadlines, define
opportunity windows for tasks). In this case, the objective func-
tion involves the minimization of earliness-tardiness penalties
(that is, the penalties resulting from processing tasks outside of
their time-windows). In our problem, we assume that task-pro-
cessing times are fixed. In the real world, situations may arise
when task-processing times depend on the amount of resources
allocated to them. The objective then is to achieve a tradeoff
between processing tasks as fast as possible and using as little
resources as possible. Another complication is that a task can
begin to be processed when the assigned platforms are within a
specified distance of this task (depending on the task and ranges
of platforms). In this case, the problem assumes the form of the
shortest covering path problem [13]. Other realistic constraints,
such as the ability of tasks to move during the mission, and
platforms having expendable resources (such as fuel, firepower,
supplies, etc.) can be included.

Since the static scheduling problem is NP-hard in its general
forms [24], the research in this area has mainly focused on ob-
taining heuristic scheduling algorithms with good performance.
Most of the heuristic scheduling methods can be classified as ei-
ther aclustering algorithmor alist-scheduling algorithm. Local
searchtechniques are used to further improve the quality of the
schedule.

The clustering algorithm divides the task set into clusters to
be assigned to the processing elements. This method can be used
only when there is no resource sharing in task processing (that
is, no multiplatform task processing). A list scheduling method
assigns priorities to tasks. They are executed according to the
priorities and precedence constraints. A local search technique
improves the quality of the schedule by task reassignments and
shifting tasks in the processing sequence or in thecritical path
(CP) (longest processing sequence) [19], [23].

List scheduling algorithm selects areadynode (a node be-
comes ready when all its predecessors are executed) according
to the task priority information. The following typical methods
for deciding task priority coefficients were developed:level as-
signment (LA), critical path (CP),and weighted length (WL)
[60]. This will be explained in more detail in Section IV-D.

When a task is selected, it is to be assigned to platforms for
processing. In our case, task-resource requirement vector re-
sults in multiplatform task processing. As will be shown in Sec-
tion IV-D, this problem can be formulated as a multidimensional
knapsack problem. The one-dimensional knapsack problem was
shown to be NP-hard, but pseudopolynomial algorithms exist
for this problem (see [46] for a review).

D. Multidimensional Dynamic List Scheduling Method

The multidimensional dynamic list scheduling (MDLS) finds
the platform-task allocation and mission schedule by sequen-

tially assigning tasks to platforms until task set is exhausted.
MDLS heuristic has two main steps:

Step 1: Select the task to be processed.
Step 2: Select the group of platforms to be assigned to it for

processing.
Task Selection:In the first step, a ready task is selected (a

task becomesreadywhen all its predecessors have been com-
pleted). The selection is determined by the current assignment
information and precedence structure. The selection is made ac-
cording to the priority coefficients assigned by using one of
the three algorithms:1) critical path (CP); 2) level assignment
(LA); or 3) weighted length (WL)[60]. The complexity of calcu-
lating task priority coefficients is the same for each algorithm,
and it is O( ), where is equal to number of edges in the task
precedence graph.

Critical Path Algorithm (CP): Many of the earlier and clas-
sical task allocation schemes are based on a CP heuristic. The
idea is that tasks on the CP determine the shortest possible exe-
cution time for the mission. Furthermore, tasks on the CP must
be executed in sequence. Therefore, one may identify the length
of the CP for each graph node (task), rank the tasks in the de-
creasing order of CP lengths, and assign them to platforms on
the basis of the priority list scheduling method. CPs and their
lengths are calculated for each task given the task prece-
dence graph and the task processing times (seeExit Pathalgo-
rithm in [60]). In the list-scheduling algorithm, a ready task is
selected with the largest . When ties occur, a task with the
largest number of direct successors is chosen (or ties are broken
arbitrarily).

Level Assignment Algorithms (LA):Levels are defined for
each task based on the task precedence graph in a sequential
manner. All predecessors of a task can be located only on lower
levels (no task can have a direct successor in the same or lower
level) with one immediate predecessor located at the previous
level. The algorithm assigns tasks level by level. At each
level, tasks are assigned in the decreasing order of their pro-
cessing times [60] (this is calledHeavy Node Firstalgorithm)
or in the decreasing order of their CP lengths [1].

Weighted Length Algorithm (WL):A major flaw in the CP
algorithm is that it does not take into account the structure of
subtrees in the node’s neighborhood. The success of sched-
uling depends on the efficiency of balancing the load of task
processing among platforms. It is clear that the more tasks
are ready for processing at the current time, the more effi-
cient the load balancing would be. Therefore, tasks with large
numbers of direct successors (calledcontrol nodes) should
have a higher priority of processing.

The WL algorithm is an extension of the CP method in which
the rank of a node depends on its processing time, a branching
factor, number of direct successors, and their weights. In WL,
tasks are assigned priority coefficients according to [60]

(2)

where is the set of direct successors of taskin the
task precedence graph. Here, the third coefficient is the sum of
WLs of the children of task normalized by the maximum WL
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among them. The WL algorithm selects a ready task with the
largest . If ties occur, a task with the largest is
chosen (or ties are broken arbitrarily).

Another variation of this approach is to assign priorities ac-
cording to weighted CP length

(3)

In list scheduling based on LA, tasks are scheduled level-by-
level. Thus, we can decrease the complexity of selecting the task
to be processed by using a heap implementation (storing tasks
in the same level as heaps according to their priorities).

Platform Group Selection:In the second step, a group of
platforms is chosen for processing a selected task. A task is
assigned to groups of platforms in such a way that the vector
of task’s resource requirements is componentwise less than or
equal to the aggregated resource capability vector of the group
of platforms assigned to it. An assignment is considered when-
ever a task (or a group of tasks) is completed. At that time, all
of the platforms processing the completed task becomefree.

A major question is how to distribute the processing of a task
under resource requirement constraints among available plat-
forms to achieve minimal execution time of the mission. We
obtain a tradeoff between the following objectives:

1) minimization of task’s completion time;
2) minimization of allocated resources assigned to this task

that may be needed to process remaining tasks.
Accordingly, the objective function is mini-
mized subject to resource requirement constraints

(4)

The coefficients of the objective function define thecost
of assigning platform to process task . The group with
minimal aggregated cost is selected. The problem becomes

;
(5)

Reducing and relaxing resource constraints produces a problem
which is NP-hard (equivalent to a single 0–1 knapsack problem)

(6)

The knapsack-structure of the relaxed problem [45] is used in
deriving a heuristic algorithm to find the group of platforms to

be assigned to process a task. Following the ideas ofgreedyal-
gorithms for knapsack problems, the assignment group is found
by selecting platforms in the increasing order of the following
coefficients:

(7)

until the group’s aggregated resource capability vector is
componentwise equal to or more than the resource requirement
vector of a task. Then, the group is pruned making feasible
reductions in the reverse order.

Coefficients determine performance of the algorithm.
Accordingly, four basic platform coefficients are used

(8)

(9)

(10)

(11)

where task is ready for processing, and

When a task is assigned, platform-task related assignment and
scheduling information is updated, as well as the activity coef-
ficients of the platforms. The starting time of the selected task

is found to be

(12)

where is the current time; is the group of platforms as-
signed to task ; and is the last task processed by plat-
form (see [40] for details). The multidimensional dynamic
list scheduling (MDLS) algorithm is given in the Appendix.

E. Pairwise Exchange Improvement

The MDLS algorithm produces sub-optimal solutions. It is
expected that the sequence with which the tasks are assigned
according to MDLS is near-optimal. The pairwise exchange
(PWE) method improves the solution by considering all possible
task assignment sequences obtained by exchanging the task at
the current place in the assignment sequence with some other



354 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 32, NO. 3, MAY 2002

Fig. 9. MDLS results for an experiment usingR platform-task assignment.

task. An exchange of tasks and in the sequence
is feasible if

a)
b)

(where is the set of direct predecessors of taskand
is the set of direct successors of task).

The algorithm is as follows:

for
do

Select such that
the scheduling sequence

is feasible
and the schedule obtained using platform
allocation from MDLS algorithm is the
shortest one.
Then

(permute tasks and in the sched-
uling sequence).

end for

We would like to point out that at each step of the algorithm,
the sequence is fixed (meaning that the scheduling
and allocation for these tasks are fixed), and the search is only
conducted to find the schedule for the remaining tasks.

Example (continued):For our experiment with the DDD-III
simulator, MDLS algorithms based on CP and LA methods
(as well as weighted CP variation of WL) produced the same
optimal-length schedules (see Fig. 9). Breaking the ties by
choosing a schedule with the least multiplatform task pro-
cessing, the PWE procedure outputs the assignment-schedule
shown in Fig. 10. These results are based on the platform-task
assignment obtained by using coefficients .

Fig. 11 shows the results based on platform-task assignment
obtained using coefficients . Although the completion
time of the schedule is not optimal, this platform-task allocation
utilizes resources better (six platforms are left idle during the
mission).

Fig. 10. Pairwise exchange results for an experiment with DDD-III simulator.

Fig. 11. MDLS scheduling results for an experiment usingR platform-task
assignment.

V. SIMULATION RESULTS

As stated earlier, the scheduling problem is NP-hard, which
means that optimal solution takes exponential time in problem
parameters (such as number of tasks, platforms, resources,
and precedence constraints). Fig. 12 ( critical path,

level assignment, weighted ; ,
, pairwise exchange based on

, , and ) shows the box plot of optimality ratio of
heuristic algorithms (ratio of objective function value obtained
by heuristic algorithm to optimal solution) for a case of ten
tasks (based on 1000 Monte-Carlo simulations). The best
performance is obtained by list scheduling methods based on
CP task selection (including weighted CP method).

Average CPU time data (for Pentium 600 MHz processor)
for heuristic algorithms is shown in Figs. 13 (MDLS) and 14
(PWE). CPU times of PWE methods is approximately three
times the processing time of MDLS algorithms.

As was stated earlier, the CPU time of optimal algorithm is
strongly exponential. The data for ten tasks (see Fig. 15) indi-
cate that, although the CPU time of optimal algorithm is mostly
acceptable, in some cases it increases significantly due to the
special structure of generated problems. Our simulations show
that this behavior cannot be controlled.
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Fig. 12. Box plot of optimality ratios of heuristic algorithms. Number of tasks
= 10.

Fig. 13. Box plot of MDLS algorithms CPU times. Number of tasks= 10.

Fig. 14. Box plot of PWE algorithms CPU times. Number of tasks= 10.

Simulation results for up to 90 tasks for heuristic algorithms
only [with coefficient chosen for task selection] are shown
in Fig. 16, Fig. 17, and Table III. This data shows linear relation
between MDLS and PWE execution times. Instead of optimality
ratio, we use scheduling length ratio (SLR) that is computed as
the length of the schedule (algorithm’s objective function value)
normalized by the length of the CP in a task graph. It shows
that improvement obtained by PWE methods is on average 10%
(these results are obtained from 500 Monte Carlo simulations;

Fig. 15. Histogram of CPU time of optimal algorithm. Number of tasks= 10,
number of simulations= 1000.

Fig. 16. Average CPU time of MDLS algorithm. Number of simulations=
500.

number of platforms is seven; each task has no more than four
direct predecessors).

The choice of a particular algorithm depends on the or-
ganization’s objectives and resource constraints, and should
be determined via simulations on a case-by-case basis. As
can be seen from simulation results (see Table III), the best
performance is obtained by MDLS and PWE methods based
on CP task selection.

A platform group selection procedure identifies resource uti-
lization. Specifically, it was found that platform-task allocation
obtained using priorities produces the best resource uti-
lization (but it extends the mission completion time). Simula-
tions show that the use of priorities produces schedules
with the shortest length, while coefficients generate the
best tradeoff between the minimization of mission completion
time and efficient resource utilization.

A platform group selection procedure identifies resource uti-
lization. Specifically, it was found that platform-task allocation
obtained using priorities produces the best resource uti-
lization (but it extends the mission completion time). Simula-
tions show that the use of priorities produces schedules
with the shortest length, while coefficients generate the
best tradeoff between the minimization of mission completion
time and efficient resource utilization.
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Fig. 17. Average CPU time of PWE algorithms. Number of simulations=

500.

TABLE III
OPTIMALITY OF HEURISTIC ALGORITHMS

VI. SUMMARY AND FUTURE RESEARCH

In this paper, we presented guidelines for model-driven
synthesis of optimized organizations for a specific mission. The
primary contributions of this paper include a formal method
for representing missions and human–machine organizations, a
three-phase iterative design procedure to devise an optimized
organizational structure and its mission processing strategy,
and a description of the mission-planning phase (i.e., spec-
ifying mission task structure and defining task processing
schedule and resource utilization scheme). We also presented
an overview of the state-of-the-art in different domains of
organizational design.

The potential of applying systems engineering approach to
designing organizations is enormous, which was clearly shown
by the experiments [18], [26]. This approach to designing

man-machine systems allows for replacement of cumbersome
centralized control with decentralized control and autonomy.
Strict mathematical problem formulations provide the founda-
tion for exploring ways to solve design problems efficiently
and with the required degree of optimality to make best use
of available time and computational resources. The latter is
especially important for designing dynamic algorithms that
help humans to adapt.

However, the field of model-based organizational design is in
its infancy. The researchers lack a detailed classification of the
design objectives and principles in building human–machine
systems, as well as an understanding of the inner workings of a
human organization. Some of these issues, including modeling
a human DM as an integral part of a man–machine system and
a detailed methodology for optimizing DM-resource allocation,
inter-DM communication, and DM decision hierarchy, are
presented in Part II of this paper. These methods, together with
mechanisms for adaptation, including algorithms for on-line
strategy adaptation and structural reconfiguration, form the
basis for our continuing research in this area.

APPENDIX

MDLS ALGORITHM

Initialization

is a direct successor of

is a direct predecessor of

STEP 1. Completion time Update.
(skipped during initialization stage).

Pick

Let be the corresponding group of tasks.

for each
for each

;
if

end if
end for

end for
STEP 2. Assignment Check.

if

GO TO Step 1.
else GO TO Step 3
end if

STEP 3. Task Selection.
if

GO TO Step 1.
end if
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Find the set

Select

STEP 4. Platform Group Selection.
Find the set

do until

end do
STEP 5. Platform Group Pruning.

while

if

end if
end while

STEP 6. Group Assignment.

if

end if
Update finishing platform groups.
GO TO Step 3.
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