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Abstract—This paper presents a design methodology for synthe-  Over the years, research in team decision-making has demon-
sizing organizations to execute complex missions efficiently. It fo- strated that an organization operates best when its structure and
cuses on devising mission planning strategies to optimally aCh'eveprocesses match the corresponding mission environment [43],

mission goals while optimally utilizing organization’s resources. . .
Effective planning is often the key to successful completion of the [49]-[51]. Consequently, it has been concluded thatdape-

mission, and conversely, mission failure can often be traced back to Mality Of. an 0rganizati0nadesignuItimateIY depends on th.e
poor planning. Details on subsequent phases of the design processactual mission structure and on the key attributes of the environ-

to construct the mission-driven human organizations are discussed ment in which the organization operates [6]. This premise has

in & companion paper. led to the application of systems engineering techniques to the
Index Terms—Mission decomposition, mission planning, organi- process of designing human organizations [37], [38], [51]. The
zational design, resource allocation, scheduling. systems engineering approach to organizational design is as fol-

lows. First, a quantitative model describing the mission and the
organizational constraints is built. Next, different criteria used
to judge the optimality of an organization are combined into
A. Motivation a (possibly nonscalar) objective function. Finally, an organiza-

HANGING patterns of today’s world impose new retional design is generated to optimize the objective function.
C quirements for many modern organizations, ranging from In this paper, we present a methodology foodelingmis-
military establishments to agile manufacturing systems aftPns and forsynthesizinghe concomitanbptimal organiza-
commercial enterprises. With the benefit of new technologiégns. We introduce a three-phase iterative optimization process
now under development, the competition will be won by afiat derives an optimized organizational design for a given
organization that will best utilize both its resources and if§ission structure and organizational constraints. In the first
critical information to achieve its goals. This implies the neednission-planning) phase of our design process, the optimal al-
for much greater emphasis on realistic modeling of distributé@cation of mission tasks to organization’s platforms (physical
organizations in which the human participants are the focugsources) is determined to optimize the mission schedule. In

In large-scale organizations that involve humans, decisiotfie second phase, a three-way DM-platform-task allocation is
making and operational functions are distributed among te&ﬂrived to minimize the coordination and workload overhead
members who coordinate their actions in order to achieve thatd its impact on the mission schedule. In the third phase,
common goal. Since the processing capabilities of a human gfger dimensions of organizational structure (e.g., information
limited, the distribution ofnformation resourcesandactivities ~acquisition and communication structures, decision hierarchy)
among decision-makers (DMs) in an organization must be gé¢ optimized to fulfill the design objectives. Following a de-
up to guarantee that the decision-making and operational Ig¥diption of our modeling and design methodology, the paper
of each DM remains below the DM’s capacity thresholds. [fpcuses on the development of algorithms for mission-plan-
a highly competitive and distributed environment, a prop&ing phase. The algorithms to optimize other dimensions of
balance among information acquisition, decision hierarch§fganizational design are presented in a companion paper.
and resource allocation, in shor, proper organizational
structure and its processsis critical to superior organizational B- Related Research
performance. Over the past few years, mathematical and computational

models of organizations have attracted a great deal of interest
in various fields of scientific research (see [43] for review). The
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networks (SSN) continued to focus on examining a netwofkrocesses and interactions on many levelggertainty and
structure and its impact on individual, group, and organizaemputational complexitjl2], [41], [44]. Even for a smaller
tional behavior [67]. Most models, developed under the SSBize organization facing a mission that consists of a small
combined formal and informal structures when representimymber of tasks, there can be an enormous number of possible
organizations as architectures (e.g., see the virtual design tesoiutions to the organizational design problem (and optimiza-
[42] and ORGAHEAD [9]), and in many empirical studiesfion can yield significant improvements). In general, all the
the informal subsumed the formal. In addition, a large numbexisting methods of multiobjective combinatorial optimization
of measures of structure and of the individual positions withisroblems are NP hard (optimal algorithms take exponential
the structure have been developed [59], [65], [66]. time [24]).

Application of systems engineering techniques to the procesone way of simplifying the search for the optimal or-
of designing human organizations led to several graph-dganizational design is to exploit theonnection between
composition and combinatorial optimization algorithms tenultidimensionality of organizational structure and the com-
synthesize congruent organizational structures (i.e., Strigsition of a concomitant multivariable objective function. In
tures that are in some sense “matched” with their missigneral, the objective function combines variables representing
task environment) [37], [38], [51] and to several graph-theyoth mission objectives and design parameters (e.g., deci-
oretic measures of task complexity [36]. Potential benefitfon-making workload, resource utilization, coordination, etc.
of a structural match predicted by the normative model, #84], [28], [30], [39], [64]). Each dimension of the organiza-
well as the ability of a proposed design process to find thigynal structure stipulates a corresponding portion of the design
match, have been tested empirically in a computer-mediatggrameters. For example, DM-platform allocation and mission
team-in-the-loop experiment with human DMs in a distributegchedule define the operational workload of a DM, while
dynamic decision-making (DDD-IIl) simulator of Joint’C information access structure, allocation of decision variables,
scenarios (see [31] for a description of DDD-Il). DDD-lll andang  communication structure stipulate a decision-making
other similar simulators allow one to compare the performanggyrkioad of a DM.
of different organizational designs for a specific mission, 1o rejative weights of the optimization criteria that de-

and to test the utility of the design procedure. Findings froRyine organizational performance can be represented via
recent experiments on DDD-III simulator gave the empiric‘%eighting coefficients assigned to each component in the
validation of our modeling and design metho_dolt_)gy. It_clearl bjective function. Therefore, in theory, we can build an orga-
showed the advantages of structural optimization, since Zational structure biteratively optimizinglifferent structural
imensions, beginning with those dimensions that delineate
1e heaviest portion of the objective function. For example,
aly organizational strategy determines the mission processing
Yofhedule as well as the individual operational workload of
yg‘ Bwm. Consequently, it generally specifies a large portion
of parameters in the multivariable objective function. Each
subsequent dimension is optimized subject to a fixed structure

on those dimensions that have been optimized already. The

The paper is organized as follows. Our three-phase orgagliative application of optimization process allows one to
zational design process is outlined in Section Il. Section 'Qimultaneously optimize multiple dimensions [37].

defines the organization and mission parameters, providing & jo\ing the above logic, our organizational design method-
ra_“o'f‘a'e for various mission decomposition tec_hnlques aBﬂ)gy integrates various algorithms that optimize different
mission planning strategies. The problem of allocating resour tensions of an organizational structure. For a given mission

to tas_ks (Phase l)is dlscuss.,ed in Section IV. We presentam ucture, an organization is designed via the following three
ematical problem formulation and several heuristic metho fases (see Fig. 1)

to so!ve this prob_lem, and give performance an.alyses of th S$hase I: The first phase of the design process determines the
algorithms. Algorithm performance and simulation results arg

: in Section V. Th lud ith ﬂfk-platform allocation and task sequencing that optimize mis-
given in Section V. The paper concludes with a summary aig, , objectives (e.g., mission completion time, accuracy, work-
future extensions in Section VI.

load, resource utilization, platform coordination, etc.), taking
into account task precedence constraints and synchronization
delays, task resource requirements, resource capabilities, as well
The notion of optimality is subjective [30]. Moreover, dif-as geographical and other task transition constraints. The gen-
ferent aspects of organizational performance are deemed impated task-platform allocation schedule specifies the workload
tant when assessing the efficacy of an organization. Hence, tieeach resource. In addition, for every mission task, the first
organizational design problem is inherently multiobjective, anghase of the algorithm delineates a set of nonredundant resource
the correct choice of optimization criteria is critical to genempackages capable of jointly processing a task. This information
ating the optimal design. is later used for iterative refinement of the design, and, if neces-
Modern man—-machine systems are made exceedingly casary, for on-line strategy adjustments.
plex by the many human and technological elements involved.Phase II: The second phase of the design process combines
The sources of this complexity includémensional complexity platforms into nonintersecting groups, to match the operational

constructing the desired architectures, but architecture t
differently affected team processes, as was hypothesized b
design [18], [26].

C. Organization of the Paper

Il. ORGANIZATIONAL DESIGN PROCESS
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A mission decomposition diagralen be built to represent

vodsling Pme,l %59”1 P a hierarchical structure among the mission tasks. Different

B8e olrﬁmi;ative Task- Platform ou decompos!t!on technlqges (e.q., goal.(ljecomposmon, functlonal
$31)| choctrs Sz’fe‘;mg = éf;gt:jr'% = Hierarchy decomposition, domain decomposition) represent different
I i 1 1 starting points of defining tasks and provide different task types

Tk ‘ Task- VL Platiorm Coordnation & required to complete the mission. The designer's choice of

o H Acsigmenk H Alocation Siuctures a particular decomposition technique and model granularity

(number of tasks in the mission decomposition) must be con-
tingent on the computational efficiency of the design process
Fig. 1. Three-phase organizational design process. and its supporting algorithms.

Task attributes quantify various properties of the mission
expertise and workload threshold constraints on available DM&SKS that detail the specifics of task execution. They provide
and assigns each group to an individual DM to define tHantitative characteristics for the mission structure and specify

DM-resource allocation. Thus, the second phase delineates e implications of commitment to task processing on both
DM-platform-task allocation schedule and, consequently, techine and human resources of an organization. In our

individual operational workload of each DM. model_, we ch_aractgrize every mission td3ky specifying the
Phase III: Finally, Phase 1l of the design process complet§llowing basic attributes:
the design by specifying a communication structure and a de-1) estimated processing timg(i = 1, ..., N, whereN is

cision hierarchy to optimize the responsibility distribution and the number of tasks);

inter-DM control coordination, as well as to balance the control 2) geographical constraint vector (e.g., the “location”

workload among DMs according to their expertise constraints. (z;, y;) in a state space that specifies the concomitant
Each phase of the algorithm provides, if necessary, a feedback “distance”d;; to be traveled between tasksandT});

to the previous stages to iteratively modify the task-resource al-3) resource requirement vec{d®;,, Ris, ..., R;z], where
location and DM-platform-task schedule. Phase | of our design R, is the number of units of resouréeequired for suc-
process essentially performs mission planning, while Phases Il gg5sfyl processing of task (I = 1, ..., L, whereL is

and Il construct the organization to match the devised courses

k the number of resource types).
of action. ) _ ) o
We illustrate our modeling paradigm and organizational

design process via an example of a joint-task-force scenario
as operationalized in the distributed dynamic decision-making
A mission analysis that details required courses of actigRDD-IIl) team-in-the-loop real-time simulator. A detailed
by specifying a sequence of tasks, defining resource-to-tagscription of this empirical research tool is provided in [31].
allocation, and a time-line for all task activities constitutes Example: Experiment With DDD-III SimulatorA joint
a mission plan Planning problem is investigated in artificialgroup of Navy and Marine Forces is assigned to complete a
intelligence and behavioral science area (see [2]). Plannifitary mission that includes capturing a seaport and airport
models in military human behavior representation have betsnallow for the introduction of follow-on forces. There are two
extensively studied and several specific planning tools hassitable landing beaches designated “north” and “south,” with
been developed, including adaptive combat modeling [22] road leading from the north beach to the seaport, and another
commander’s visual reasoning tool [4], dismounted infantfpad leading from the south beach to the airport (a mission
computer-generated force [27], computer-controlled hostiles fgographic layout is shown in Fig. 2). From intelligence
SUTT (small unit tactical trainer) [53], fixed-wing attack-soagources, the approximate concentration of the hostile forces is
and soar-intelligent forces [32], [33], man—machine integratégiown, and counter-strikes are anticipated. The commander
design and analysis system [3], naval simulation system [6@EVises a plan for the mission that includes the completion of

I1l. M ISSION PLANNING

automated mission planner [35], to name a few. tasks shown in Fig. 2. The following eight resource require-
ments/capabilities are modeled:
A. Mission Structure 1) AAW (anti-air warfare);

A fundamental question underlying a distributed or- 2) ASUW (anti-surface warfare);
ganizational design—who should do which part of the 3) ASW (anti-submarine warfare);
mission?—implies that the mission must béecomposable ~ 4) GASLT (ground assault);
into a set ofentities These entities are generally referred to as ) FIRE (artillery);
tasks. 6) ARM (armor);
Definition 1: A Taskis an activity that entails the use of /) MINE (mine clearing);
relevant resources (provided by organization’s platforms) and8) DES (designation).
is carried out by an individual DM or a group of DMs to accom- A variety of modeling technigues [e.g., object-oriented mod-
plish the mission objectives. eling (OOM); entity relationship (ER) [17]; integrated definition
Every task in itself represents a “small mission,” and cafiDEF) modeling [70], [71]; relational database design (RDD)]
oftentimes be further decomposed into more elementary taskan be applied to capture the internal structure of a mission.
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Fig. 2. Geographical constraints and mission tasks for an experiment with

DDD-Ill simulator. Fig. 3. Example of mission goal decomposition for an experiment with
DDD-III simulator.

One of the most popular modeling methodologies employs a

graph formalism to describe the mission structure. The gra|
formalism is used to construct the dependency among the ta: ] -
of amission. Examples of different mission decomposition tecl ATTACK [ DEFEND heos |

I Eliminate

nigues used to design the organizational structure for an exp
iment with DDD-III simulator (see [39] for details) are shown ——
in Figs. 3 and 4. Task parameters are shown in Table I. Atilery

Definition 2: A Task Graphis a dependency diagram that stk |
details the following interrelationships between tasks:

1) task precedence;
2) inter-task information flow;
3) input—output relationships between tasks.

A directed acyclic task-precedence graph represents t
plan to execute the mission. The examples of task grap @
and inter-task dependencies for an Experiment with DDD-Il.
simulator [39] are shown in Figs. 5-7.
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Fig. 4. Example of combined functional and domain decomposition for an
experiment with DDD-IIl simulator.

B. Organizational Constraints and Design Output

In defining an organization, we differentiate between two TABLE |
.o . ILLUSTRATION OF MISSION TASK PARAMETERS
classes oéntities 1) decision-makers (DMs) and 2) resources.
Organization’s resources that represent nonhuman physi

Resource Requirements:

assets are callgulatforms TD [Task Name AAW [ASUW [ASW [GASLT [FIRE [ARM [MINE [DES | [Locations | [Time
ey . P H H H 1|Take HILL 0 0 0 10| 14 12 0 0 24| 60 10|
Dgflnltlon 3 A Demsu_)n_—Maker (DM)s an entity ywth infor- e s oo =3
mation-processing, decision-making, and operational capab| 3|Take . Beach o of of 1o 14 12l of of] 28 &[] 10
. . 4|Defend N. Zone 5 0 0 0 0 5 0 0 28| 73 10)
ties that can control the necessary resources to execute miss s|pefend s. zone 5.0 o o o 5 o o] 28 &l 1
tasks, provided that such an execution will not violate the colFiasmes rag—s——s—s——o—s—o—a—o-—=—sa
i ili 8|Take SEAPORT 0 0 0 20 10 4 Q 0 25| 45 15|
comitant _capablhty thresholdg. _ 3 Siake SEAPOR O B e s
A maximal number of available DMs is specified. An ex-[7[Elow BRIDGE o 0 o 8| 8 o 4 70| 5 60| 29|

ample of DM responsibilities is shown in Fig. 8.

Definition 4: A Platformis a physical asset of an organiza-
tion that provides resource capabilities and is used to proces3he key attributesin modeling a DM are the individual
tasks. For each platforn®,, (m = 1, ..., K), we define DM thresholdswith respect to particular DM activities (e.g.,
its maximal velocitywv,, and its resource capability vectorinformation processing and operational load thresholds). These
[Pm1s Tm2, - -+, rmr], Wherer,,; specifies the number of unitsthresholds quantify human limitations and necessitate the
of resource typd available on platformP,,. The platform need for distribution and decentralization within a human
parameters are illustrated in Table II. organization.

Definition 5: An Organizationis ateamof human DMs, who  As a consequence of decentralization in large-scale systems,
coordinate their information, resources, and activities in orderéach DM only has access to a portion of organization's re-
achieve their common goal in a complex, dynamic, and uncewurces and possibly to the information available to the team.
tain mission environment. The total decision-making and operational load is partitioned
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Fig. 8. Example of DM responsibilities.

Fig.5. Primary mission task graph for an experiment with DDD-III simulator.

D = aggregated defend task, showing possible
subtasks

(O) = aggregated encounters task. with possible
subtasks

= mission tasks (that must be done);

TABLE I
ILLUSTRATION OF PLATFORM PARAMETERS FOREXPERIMENT WITH
DDD-IIl SIMULATOR

Resource Capabilities:

known in advance and offence tasks ID [Platform Name| |AAW [ASUW [ASW [GASLT |FIRE [ARM [MINE [DES Velocity
1|DDG 10 10 1 0 9 5 0 0 2|
2|FFG 1 4 10 0 4 3| 0 Q 2]
3|CG 10 10 1 0 9 5| 0 0 2|
4[ENG 0 0 0| 2 Q 0 5 Q 4
Secourters on 5[INFA 1 0 o 0] 2] 2 1 0 1.35|
6|SD 5 0 o] 0 Q 0| 0 0 4
7(AHI 3 4 0 0 6 10| 1 0 4
535.:?73’3 8|CAS1 1 3| 0| 0] 10 8| 1 0 4
9|CAS2 1 3 0| 0] 10 8| 1 0 4
10|CAS3 1 3 0 0 10 8 1 0 4
T[VF1 6 1 0 o 1] 1 o o 45|
12|VF2 6 1 0| 0 1 1 0 0 4.5
13|VF3 6 1 0| o] 1 1 0 Q 4.5
* indicates that these must be distinguished 14[SMC 0 0 0 0 0 0 10 0 2
from neutral (or decoy) counterparts 15| TARP 0 0 0 0 0 0| 0 6 a
16|SAT 0 0 0| 0 0 0| 0 6 7
17[SOF 0 0 0| 6 6 0 1 10 25j
18| INF(AAAV-1) 1 0 0 10 2 2| 1 0 1.35)
Fig. 6. Expanded mission task graph for an experiment with DDD-III 19[INF(AAAV-2) 1 o o 100 2] 2 1 0 1.3§
simulator. 20[INF(MV22-1) 1 0 0 10 2 il 1 0 1.35
4 Task precedence : ) gives the team a degree of freedom to adapt to uneven demand
CLEAR ake S i, . .
SAMs SEAPORT by redistributing the load. The critical issues in tedaask
- >® processingare: what should be donewho should do what,
! 8 andwhen These questions are generally answereanission

(While advancing to SEAPORT)

that dominates NORTH BEACH

/ Inter-task information flow \
Clear Defend
GROUND MINES ) , TANKs
Msg ‘Mine(s) cleared R s
\ Msg ‘Tank eliminated’ /
/ Input-output relationships \
Take Talke out enemy artillery Take
HILL NORTH BEACH

J

planningthat corresponds to mission-modeling phase followed
by Phase | of our design process outlined in Fig. 1.

In general, DMs are provided with limited resources with
which to accomplish their objectives. The distribution of these
resources among DMs, and the assignment of these resources
to seek information and to process tasks are key elements in an
organization’s design. Team members must dynamically coor-
dinate their resources to process their individual tasks while as-
suring that team performance goals are met. The critical issues
in teamresource allocatiorare:who should own or transfer a
specific resourceyhen andfor how long These questions are
answered in Phase Il of our design process.

In addition to assigning to each DM his share of information,

Fig. 7. Examples of interrelationships among tasks for an experiment wkgSOUrces, and activities, the organizational design must expli-

DDD-III simulator.

cate a decisiohierarchyamong DMs that designates thean-
trol responsibilitiegthrough command authority) and that regu-

among DMs by decomposing a mission into tasks and assigniates the inter-DMoordination(by assigning the responsibility
these tasks to individual DMs who are responsible for theif resolving decision ambiguities among coordinating DMs).
planning and execution. An overlap in task processing (wheréfhe organizational design can also specifgammunication
two or more DMs share responsibility for a given task whilstructureamong DMs to facilitate coordination and distributed
each possesses the capability to individually execute a tasKprmation processing required for completing the mission. A
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communication structure and a decision hierarchy are devised” = mission completion time found using a heuristic algo-

in Phase Il of our design process. rithm (or set to infinity)—the upper bound on mission comple-
tion time.
IV. PHASE |: RESOURCETASK ALLOCATION To, = task that serves as “start—finish” or “depot”) task. It

indicates the initial location of organization’s platforms before
the mission execution is initialized.
The objective is to minimize the mission completion time.
A successful scheduling of tasks, obtained from missiqtp|iowing [40], the problem assumes the following form:
decomposition, to available organizational resources (plat-
forms) under resource requirement and task inter-dependengy, Y
constraints is a key determinant of organizational performancef N
Low computational complexity of algorithms for solving this Zmijm — Wi =0, i=1,..., Nym=1, ..., K;
NP-hard problem is a highly desirable feature. In the following| =0
sections, we present polynomial list scheduling algorithms and ~
local search techniques to obtain an efficient near-optimal plat Zxﬁm — Wi, =0, i=1,.... Nym=1,..., K;
form-task assignment for the Phase | of our design procedure.| j=o0
Conceptually, the scheduling phase of the organizational N
design process is as follows. A set of tasks _W|th specified mem - Zl’o]'m =1,
processing times, resource requirements, locations, and precp-—; =0

A. Scheduling in Organizational Design: Motivation and
Problem Definition

dence relations must be executed by a set of platforms wit ds @)
given resource capabilities, ranges of operation, and velocitieg. s; — s; + 2, - (i + a;; -T> <a;-T—t

Tasks are allocated to groups of platforms in such a way tha Um

for each such platform package to task assignment, the vectqr th,j=1,...,Nym=1, ..., K
of task’s resource requirements is componentwise less thah K

or equal to the aggregated resource capability of the platfor Z Tl Wim > Ry, i=1,...,N;l=1,...,L;
group. The task processing can begin only when the processingm=1

of all its predecessors is completed and all platforms from| s; — Y < —t;, 1=1,..., N;

the group assigned to this task have arrived at the appropriatg <Y <T; s> 0; w0, wir, € {0, 1}
location. In our model, we assume that a resource can only
process one task at a time. Platforms are to be routed amon@his is a mixed-binary (i.e., containing continuous and binary
the tasks so that the overathission completion timéi.e., variables) linear programming (MIP) problem (which is proven
the completion time of the last mission task) is minimizedo be NP-hard). Moreover, even relaxing the constraints on the
An output of the scheduling phase specifies a platform-tabinary variablesv;,, andz;;,, (thatis, making them real num-
assignment for our organizational design, delineating task staetrs in the [0, 1] range) produces a linear programming problem
times, and platform-task routing. (LP) with the number of variables equal k(N +1)2 + N +1,
the number of equality constraints equalt§ (N + 1), and the

B. Mathematical Formulation of the Scheduling Problem  nymber of inequality constraints equalkaV (N — 1)+ L(N +

The scheduling problem associated with the Phase | of oyr This makes it hard to find solutions to even average-sized
three-phase organizational design process is defined by the fstheduling problems.
lowing variables:

Assignmenvariables: C. Related Research

The scheduling problem arising in organizational design ex-
tends to a large set of well-known problems. When there exists
only one platform, itis related to the traveling salesman problem
Traversingvariables: (TSP) and its extensions (such as time-dependent TSP, TSP with
precedence relations, etc. (for a review, see [34], and for recent
results, see [20], [23], [48], and [69]). When any platform can
process any task, the problem simplifies to multiple TSP with
precedence relations. If, in addition, the processing of a task can

1, if platform P, is assigned to task;
Wim = .
0, otherwise.

after processing task;

1, if platform P, is assigned to process task
Tijm = {
0, otherwise.

Objective function be separated in time among different platforms, our problem is
o o related to the vehicle routing problem and its extensions (for
Y = mission completion time a review, see [25] and [45], for the latest results, see [15] and

(time when the last task is completed)[21]). In the case when travel times among task locations are
i much smaller than the task processing times (and therefore can
The following parameters are used: be ignored), our problem reduces to a multiprocessor scheduling
0, if taskT; must be completed problem with precedence constraints (for a review, see [11] and
aij = { before taskl’; can start [16]; for recent studies see [5], [10] and [63]). For a review of
1, otherwise. general scheduling problems, see [16] and [52].
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Other variations of problem formulation are possible. For exially assigning tasks to platforms until task set is exhausted.
ample, there may exist a delay between processing of two taskBLS heuristic has two main steps:
on the same platform (“adjustment” delay). The opposite of this Step 1: Select the task to be processed.
situation is when the delay occurs only when tasks are processe8tep 2: Select the group of platforms to be assigned to it for
on different platforms (communication delays) with no delagrocessing.
for processing by the same platform. This has relevance in mul-Task Selection:In the first step, a ready task is selected (a
tiprocessor scheduling with inter-processor communication desk becomeseadywhen all its predecessors have been com-
lays [5]. Another variation is the existence of time windows fopleted). The selection is determined by the current assignment
processing each task (that is, the earliest start times, aalledinformation and precedence structure. The selection is made ac-
lease timesand the latest end-times, calldéadlines define cording to the priority coefficients assigned by using one of
opportunity windows for tasks). In this case, the objective funthe three algorithmst) critical path (CP); 2) level assignment
tion involves the minimization of earliness-tardiness penalti€sA); or 3) weighted length (WLB0]. The complexity of calcu-
(that is, the penalties resulting from processing tasks outsiddating task priority coefficients is the same for each algorithm,
their time-windows). In our problem, we assume that task-prand it is O(\/), whereM is equal to number of edges in the task
cessing times are fixed. In the real world, situations may aripeecedence graph.
when task-processing times depend on the amount of resourceSritical Path Algorithm (CP): Many of the earlier and clas-
allocated to them. The objective then is to achieve a tradesftal task allocation schemes are based on a CP heuristic. The
between processing tasks as fast as possible and using as it is that tasks on the CP determine the shortest possible exe-
resources as possible. Another complication is that a task @arion time for the mission. Furthermore, tasks on the CP must
begin to be processed when the assigned platforms are withimesexecuted in sequence. Therefore, one may identify the length
specified distance of this task (depending on the task and rangéthe CP for each graph node (task), rank the tasks in the de-
of platforms). In this case, the problem assumes the form of tbeeasing order of CP lengths, and assign them to platforms on
shortest covering path problem [13]. Other realistic constraintege basis of the priority list scheduling method. CPs and their
such as the ability of tasks to move during the mission, amehgthsC L(:) are calculated for each task given the task prece-
platforms having expendable resources (such as fuel, firepowdance graph and the task processing times EsiePathalgo-
supplies, etc.) can be included. rithm in [60]). In the list-scheduling algorithm, a ready task is
Since the static scheduling problem is NP-hard in its genes®lected with the largeétL (). When ties occur, a task with the
forms [24], the research in this area has mainly focused on dargest number of direct successors is chosen (or ties are broken
taining heuristic scheduling algorithms with good performancarbitrarily).
Most of the heuristic scheduling methods can be classified as eiLevel Assignment Algorithms (LA)evels are defined for
ther aclustering algorithnor alist-scheduling algorithm_Local each task based on the task precedence graph in a sequential
searchtechniques are used to further improve the quality of threanner. All predecessors of a task can be located only on lower
schedule. levels (no task can have a direct successor in the same or lower
The clustering algorithm divides the task set into clusters tevel) with one immediate predecessor located at the previous
be assigned to the processing elements. This method can be Usexl. The LA algorithm assigns tasks level by level. At each
only when there is no resource sharing in task processing (thatel, tasks are assigned in the decreasing order of their pro-
is, no multiplatform task processing). A list scheduling methockssing times [60] (this is callddeavy Node Firsalgorithm)
assigns priorities to tasks. They are executed according to titén the decreasing order of their CP leng@&(-) [1].
priorities and precedence constraints. A local search techniqué&Veighted Length Algorithm (WL)A major flaw in the CP
improves the quality of the schedule by task reassignments agorithm is that it does not take into account the structure of
shifting tasks in the processing sequence or inctfitecal path  subtrees in the node’s neighborhood. The success of sched-
(CP) (longest processing sequence) [19], [23]. uling depends on the efficiency of balancing the load of task
List scheduling algorithm selectsraady node (a node be- processing among platforms. It is clear that the more tasks
comes ready when all its predecessors are executed) accordireg ready for processing at the current time, the more effi-
to the task priority information. The following typical method<ient the load balancing would be. Therefore, tasks with large
for deciding task priority coefficients were develop&sliel as- numbers of direct successors (calledntrol node} should
signment (LA), critical path (CP)and weighted length (WL) have a higher priority of processing.
[60]. This will be explained in more detail in Section IV-D. The WL algorithm is an extension of the CP method in which
When a task is selected, it is to be assigned to platforms ftye rank of a node depends on its processing time, a branching
processing. In our case, task-resource requirement vector festor, number of direct successors, and their weights. In WL,
sults in multiplatform task processing. As will be shown in Sedasks are assigned priority coefficients according to [60]
tion IV-D, this problem can be formulated as a multidimensional

knapsack problem. The one-dimensional knapsack problem was > WL(y)

shown to be NP-hard, but pseudopolynomial algorithms exist WLGE) =t; + max WL() + JEOUT (i) @)

for this problem (see [46] for a review). JEOUT(i) ~max WL(j)
JEOUT(4)

D. Multidimensional Dynamic List Scheduling Method whereOUT (i) is the set of direct successors of tégkin the

The multidimensional dynamic list scheduling (MDLS) finddask precedence graph. Here, the third coefficient is the sum of
the platform-task allocation and mission schedule by sequafiLs of the children of tasi; normalized by the maximum WL
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among them. The WL algorithm selects a ready task with thwe assigned to process a task. Following the ideasasfdyal-
largestW L(i). If ties occur, a task with the large6tL(i) is gorithms for knapsack problems, the assignment group is found
chosen (or ties are broken arbitrarily). by selecting platforms in the increasing order of the following

Another variation of this approach is to assign priorities acoefficients:
cording to weighted CP length

R(m) = ™ %
. O%T ) CL(J) Z IIliIl(?”ml7 R“)
WCP(i) = CL(i)+ max CL(j)+ % 3) =1
JEOUT (i) JCOUT ) (4) until the group’s aggregated resource capability vector is

componentwise equal to or more than the resource requirement

In list scheduling based on LA, tasks are scheduled level-byector of a task. Then, the group is pruned making feasible
level. Thus, we can decrease the complexity of selecting the tasluctions in the reverse order.
to be processed by using a heap implementation (storing taskgoefficientsc,,; determine performance of the algorithm.
in the same level as heaps according to their priorities).  Accordingly, four basic platform coefficients are used

Platform Group SelectioniIn the second step, a group of
platforms is chosen for processing a selected task. A task is R'(m) = (Sl(m) + tym) + dim), 1)
assigned to groups of platforms in such a way that the vector
of task’s resource requirements is componentwise less than or

m

equal to the aggregated resource capability vector of the group > > min(rp, Ri)
of platforms assigned to it. An assignment is considered when- (YEREADY\{i} =1 ®)
ever a task (or a group of tasks) is completed. At that time, all Lo R
of the platforms processing the completed task becivese l; min(rmi, Rit)
A major question is how to distribute the processing of a task d
under resource requirement constraints among available plat- R%(m) = Si(m) + tigm) + ——2 Jum), @ (9)
forms to achieve minimal execution time of the mission. We Um
obtain a tradeoff between the following objectives: 3 dim), i
1) minimization of task’s completion time; R*(m) = (5’(’”) +hiom) + U )
2) minimization of allocated resources assigned to this task L
that may be needed to process remaining tasks. ) Z Z e (10)
Accordingly, the objective functiod ™ _, ¢,.i - wiy, is mini- CeREAD (1) miy T
mized subject to resource requirement constraints
L
K > > min(rm, Ra)
> Tt Wim > Ry, 1=1,..., L. 4) Ri(m) = ieREADZ\{i} =1 (11)
m=l > min(rm, Rip)
The coefficients of the objective functian,; define thecost =1

of assigning platformP,, to process task;. The group with whereREADY = {j: taskT; is ready for processirjg and
minimal aggregated cost is selected. The problem becomes
READY \ {i} = {j: j € READY, j # i}.

min Z Comi - Wim When atask s assigned, platform-task related assignment and
scheduling information is updated, as well as the activity coef-
K ficients of the platforms. The starting time of the selected task
ZT VWi > Ry, =1, ..., L T; is found to be
m m (15 b} ) Ll (5)
me1 di(m), i

Reducing and relaxing resource constraints produces a probletvere f is the current time( () is the group of platforms as-
which is NP-hard (equivalent to a single 0—1 knapsack problesiyned to taskl;; andi(k) is the last task processed by plat-
form P, (see [40] for details). The multidimensional dynamic

min Z Cmi * Wim list scheduling (MDLS) algorithm is given in the Appendix.
me free
. E. Pairwise Exchange Improvement
Z Wiy - Z min(rpm, Rif) > Z The MDLS algorithm produces sub-optimal solutions. It is
me free -1 (6) expected that the sequence with which the tasks are assigned
wim € {0 1}_ according to MDLS is near-optimal. The pairwise exchange

(PWE) method improves the solution by considering all possible
The knapsack-structure of the relaxed problem [45] is usedtask assignment sequences obtained by exchanging the task at
deriving a heuristic algorithm to find the group of platforms tahe current place in the assignment sequence with some other
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Fig. 9. MDLS results for an experiment usiitf platform-task assignment. Fig. 10. Pairwise exchange results for an experiment with DDD-III simulator.

task. An exchange of tasks andi,,(n < m) in the sequence Gantt-Chart
{i1, ..., in} is feasible if e
a) IN(im) C {1, ..., in-1} E“ . = = =
b) OUT(’L’”«) C {Zm+17 M ZN} ::‘T“ TI _ TI2 TI7
(whereIN (1) is the set of direct predecessors of tdskand " =]
OUT(i) is the set of direct successors of t&gk g fm
. . = (A1)
The algorithm is as follows: % P w0
E P8 T T il T
for n=1.N-1 |
do ::‘ . ‘ 'I'm.Ij = ™ - =
: [ECO I R
Select j € {n + 1,..., N} such that T
the scheduling sequence (i1y -+, in—1, ! — =
ij7 in+17 RS ) ij—lv i’rm ij+17 LR} ZN> is feasible B Time. units ‘ \
and the schedule obtained using platform
allocation from MDLS algorithm is the Fig. 11. MDLS scheduling results for an experiment usitfgplatform-task
shortest one. assignment.
Then
(i1, .-, IN) — (T1, ooy et 45, g1y - - V. SIMULATION RESULTS
G515 Gy G4ty -y IN)

As stated earlier, the scheduling problem is NP-hard, which
means that optimal solution takes exponential time in problem
parameters (such as number of tasks, platforms, resources,
and precedence constraints). Fig. X2H = critical path,

LA = level assignmentiy C P = weightedCP; PWE_CP,

We would like to point out that at each step of the algorithmPW E_LA, PWE_WCP = pairwise exchange based on
the sequenca, ..., i,_1 is fixed (meaning that the schedulingC P, LA, andW C P) shows the box plot of optimality ratio of
and allocation for these tasks are fixed), and the search is ohBuristic algorithms (ratio of objective function value obtained
conducted to find the schedule for the remaining tasks. by heuristic algorithm to optimal solution) for a case of ten

Example (continued):For our experiment with the DDD-IIl tasks (based on 1000 Monte-Carlo simulations). The best
simulator, MDLS algorithms based on CP and LA methodserformance is obtained by list scheduling methods based on
(as well as weighted CP variation of WL) produced the san@P task selection (including weighted CP method).
optimal-length schedules (see Fig. 9). Breaking the ties byAverage CPU time data (for Pentium 600 MHz processor)
choosing a schedule with the least multiplatform task prder heuristic algorithms is shown in Figs. 13 (MDLS) and 14
cessing, the PWE procedure outputs the assignment-schedBWE). CPU times of PWE methods is approximately three
shown in Fig. 10. These results are based on the platform-tdiskes the processing time of MDLS algorithms.
assignment obtained by using coefficieity(-). As was stated earlier, the CPU time of optimal algorithm is

Fig. 11 shows the results based on platform-task assignmstiongly exponential. The data for ten tasks (see Fig. 15) indi-
obtained using coefficientd??(-). Although the completion cate that, although the CPU time of optimal algorithm is mostly
time of the schedule is not optimal, this platform-task allocaticacceptable, in some cases it increases significantly due to the
utilizes resources better (six platforms are left idle during thepecial structure of generated problems. Our simulations show
mission). that this behavior cannot be controlled.

(permute tasks i, and ¢; in the sched-
uling sequence).
end for
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Fig. 16. Average CPU time of MDLS algorithm. Number of simulatieas
500.

number of platforms is seven; each task has no more than four
direct predecessors).

The choice of a particular algorithm depends on the or-
ganization’s objectives and resource constraints, and should
be determined via simulations on a case-by-case basis. As
can be seen from simulation results (see Table Ill), the best
performance is obtained by MDLS and PWE methods based
on CP task selection.

A platform group selection procedure identifies resource uti-
lization. Specifically, it was found that platform-task allocation
obtained using?*(-) priorities produces the best resource uti-
lization (but it extends the mission completion time). Simula-
tions show that the use d@t?(-) priorities produces schedules
with the shortest length, while coefficients' (-) generate the
best tradeoff between the minimization of mission completion

Simulation results for up to 90 tasks for heuristic algorithmgme and efficient resource utilization.
only [with coefficientR?!(-) chosen for task selection] are shown A platform group selection procedure identifies resource uti-
in Fig. 16, Fig. 17, and Table IIl. This data shows linear relatidization. Specifically, it was found that platform-task allocation
between MDLS and PWE execution times. Instead of optimaligbtained using?*(-) priorities produces the best resource uti-
ratio, we use scheduling length ratio (SLR) that is computed k=ation (but it extends the mission completion time). Simula-
the length of the schedule (algorithm’s objective function valuéipns show that the use d@#?(-) priorities produces schedules
normalized by the length of the CP in a task graph. It showsith the shortest length, while coefficients' (-) generate the
that improvement obtained by PWE methods is on average 10#st tradeoff between the minimization of mission completion
(these results are obtained from 500 Monte Carlo simulatiorisne and efficient resource utilization.
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TABLE 11l
OPTIMALITY OF HEURISTIC ALGORITHMS
mumber of| LA WL WCP
tasks
10 1.9008 1.9008 1.9256 1.9506
20 1.9375 1.9375 1.9587 1.9705
30 1.9569 1.9571 1.9784 1.9858
40 2.0106 2.0111 2.0257 2.0312
50 2.0512 2.0507 2.0614 2.058
60 2.094 2.0963 2.1101 2.1124
70 2.0701 2.0723 2.0838 2.0855
30 2.1174 2.1169 2.1219 2.1206
90 2.19 2.1899 2.2109 2.2143
“uf]a:]ils °fl cp pwE | LA PWE | WL PWE | wep PWE
10 1.6942 1.6942 1.6867 1.7019
20 1.7072 1.7048 1.7296 1.7259
30 1.749 1.7486 1.7661 1.7707
40 1.804 1.8047 1.8161 1.8239
50 1.8488 1.8493 1.863 1.8603
60 1.9013 1.9011 1.9156 1.9112
70 1.8877 1.8879 1.8978 1.8978
80 1.9265 1.9261 1.9409 1.9368
90 2.0078 2.0079 2.0188 2.0217

VI. SUMMARY AND FUTURE RESEARCH

In this paper, we presented guidelines for model-driven

man-machine systems allows for replacement of cumbersome
centralized control with decentralized control and autonomy.
Strict mathematical problem formulations provide the founda-
tion for exploring ways to solve design problems efficiently
and with the required degree of optimality to make best use
of available time and computational resources. The latter is
especially important for designing dynamic algorithms that
help humans to adapt.

However, the field of model-based organizational design is in
its infancy. The researchers lack a detailed classification of the
design objectives and principles in building human-machine
systems, as well as an understanding of the inner workings of a
human organization. Some of these issues, including modeling
a human DM as an integral part of a man—machine system and
a detailed methodology for optimizing DM-resource allocation,
inter-DM communication, and DM decision hierarchy, are
presented in Part Il of this paper. These methods, together with
mechanisms for adaptation, including algorithms for on-line
strategy adaptation and structural reconfiguration, form the
basis for our continuing research in this area.

APPENDIX
MDLS ALGORITHM

Initialization

OUT(i) ={j: T; is a direct successor @f; };
nOut(i) = |OUT(3)]
(i)

IN(i

{j: T} is a direct predecessor @F };
nIn(i) =|IN (i)
READY ={j: nOut(j) =0}, FT ={0}, M =0.

STEP 1. Completion time Update.
(skipped during initialization stage).
Pick f = ffgng(ft)
FT — FT\ {f}
Let F¢ be the corresponding group of tasks.
FREE «— FREE UG(Fg)
for eachi € Fg
for eachj € OUT(4)
nln(j) — nIn(j) — 1;
if nIn(j) =0
READY «— READY U {j}

synthesis of optimized organizations for a specific mission. The end if

primary contributions of this paper include a formal method end for

for representing missions and human—machine organizations, a  end for

three-phase iterative design procedure to devise an optimizedTgp 2. Assignment Check.
orgamzanongl structure anql its mission processing strategy, itv,; ¢ READY 3s: Y v < R
and a description of the mission-planning phase (i.e., spec- mEFREE

ifying mission task structure and defining task processing GO TO Step 1.

schedule and resource utilization scheme). We also presented €lse GO TO Step 3

an overview of the state-of-the-art in different domains of  end if

organizational design.

STEP 3. Task Selection.

The potential of applying systems engineering approach to if READY = &
designing organizations is enormous, which was clearly shown GO TO Step 1.
by the experiments [18], [26]. This approach to designing end if
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