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Abstract— The optimal signature sequences that
maximize the sum capacity of a direct sequence CDMA
system are characterized in the general case of symbol
delay profile and user power constraints. It is shown
that the optimal sum capacity of the symbol asyn-
chronous system equals that of the symbol synchronous
system with the same user power constraints. With
the optimal signature sequence set, the maximum sum
capacity is achieved with white Gaussian input signals.
The existence of the optimal signature sequence set
is proved by the proposal of an explicit construction
method for arbitrary user delay profiles and power
constraints.

I. INTRODUCTION

Due to the capability of offering high capacity, flexibility
and security, DS-CDMA systems became popular in the
early 1980’s and have been studied extensively since then
[1]. Among the research works on CDMA, there has been
special interest in understanding the impact of signature
sequences on the sum capacity of the system. Suppose that
K and N are the number of users and the spreading gain
of the system, respectively. For the symbol synchronous
CDMA system, when the user powers are equal, [2] showed
that the sum capacity is maximized by assigning an or-
thogonal signature sequence set to the users when K < N,
and by assigning a Welch-Bound-Equality (WBE) signa-
ture sequence set to the users when K > N. The general
case of asymmetric user powers is solved in [3], where it
is shown that the sum capacity is maximized by assigning
orthogonal signatures to the oversized users (see equation
(16) for a definition), and assigning a generalized WBE
(GWBE) sequence set to the non-oversized users. Iterative
methods are proposed in [3][4] to construct the optimal
sequence sets. The signature sequence design problem for
symbol asynchronous (but chip synchronous) systems is
studied recently in [5]. For a special case when the users
are equal powered and when the matched filter receivers
are used, the optimal sequence set that maximizes the user
capacity has been found by minimizing the Total Squared
Asynchronous Correlation (TSAC). An extension to the
asymmetric user powers case was presented in [6]. It has
been shown that the constraints on the optimal signature

sequences in a symbol asynchronous system are stricter
compared to those in a symbol synchronous system. We
refer to the optimal signature sequence set obtained in [5]
the Asynchronous WBE (AWBE) sequence set in this pa-
per. Although simulations show that the AWBE sequences
can be obtained by minimizing the TSAC, the existence
of the AWBE sequence set under an arbitrary user delay
profile was left as an open problem in [5][6].

In this paper, we study the signature sequence design
problem from the sum information capacity point of view
for asymmetric (i.e., unequal) user powers in a symbol
asynchronous (but chip synchronous) CDMA system. We
assume that the users are frame synchronous, and have a
fixed deterministic delay profile. We show that the sum
capacity of the symbol asynchronous system is upper
bounded by that of the symbol synchronous system with
the same power constraints. We derive the optimal signa-
ture sequences for the asynchronous system that achieve
the sum capacity upper bound. Similar to the result in
[3], we show that the optimal signature sequences for
the symbol asynchronous system is obtained by assigning
orthogonal signatures to the oversized users and assigning
a Generalized AWBE (GAWBE) signature sequence set to
the non-oversized users. We show that, when the users are
equal-powered, the AWBE signature sequences given in
[5] are indeed optimal. In addition, we present an explicit
method to construct the optimal signature sequence set,
given an arbitrary signal delay profile and general user
power constraints. This solves the existence problem left
open in [5]; in fact, it solves the existence problem in a
more general setting of arbitrary powers.

II. SYSTEM MODEL

We consider a DS-CDMA system where all K users
transmit to a single receiver. We assume that the user
signals are chip synchronous; the chip waveform is identi-
cal for all users and is designed such that it can pass the
bandwidth-limited channel with ignorable distortion. The
processing gain is V.

Define s, = [ sk1 Sk2 SEN as the signature
sequence of user k. Suppose the symbol delay of user k is ¢
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chips, where ¢, = 0,1,..., N — 1. We divide the signature
sequence of user k into two parts. The subvector éf that
contains the first N —cj, chips is termed the left signature
sequence, and the subvector ékR that contains the last cg
chips is termed the right signature sequence, i.e.,
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81 = [Sk1,8k2s - - Sk(N—ci)]

B = [Sk(N—cot1)s Sk(N—cxt2)s - s SkN] T (1)

In addition, define an N x 1 vector s& by padding 0s to
éf from the top and define an N x 1 vector s¥ by padding
0Os to ékR from the bottom.

ci 08 T N*CkOST
—— T T —"
L _ <L R _ | zR
s, = 1{0,...,0, 54 , s, = |8, ,0,...,0

(2)
Consider the first M symbol durations. The chip matched
filter output of the receiver can be denoted by an M N x 1
real-valued column vector y, which satisfies the following
system model

K
y= Z Sixr +n (3)
k=1

Here y = [y(l)T,y(2)T, .. .,y(M)T]T, where y(m) is
the chip-matched filter output vector of the m** symbol
duration; @ = [ k(1) zk(2) (M) 1T is the
source symbol vector of user k; m is the Gaussian noise
with zero mean and covariance matrix E[nn’| = 021y,
Iy n being the M N x M N identity matrix; and Sy is the
signature matrix of user k, which is given by

sko o0
st sk 0
S = k 'k ' 4)
0 .0
0 skR sf

We assume both the symbols and the signature sequences
are real-valued. The average power of the normalized
source signal of the k' user is restricted to

tr (E [zypxl]) < MPy (5)

where Py is the average power per symbol of user k. Given
J as an arbitrary group of users, the mutual information

I(xres; ylxrgs) is given by [7]

S.E[x,zl]ST
IMN+Z k [mk;%] k
kedJ g

1
I(mkeJ;y|mk€J) < ilogz [

with equality if the signals of users k € J are Gaussian.
Assume that the user delay profile is known to both the

transmitters and the receiver. The capacity region of the

system is given by the convex closure, over independent

random vectors xy satisfying (5), of the union of the
following heptagons.
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0< ];]Rk < Mf(mkeJ;mmng)} (7)

Suppose the signature sequences are given. In the situation
when user signals are symbol synchronous, it is shown in
[7] that the rate constraints are maximized if the source
signals have white power spectra, i.e., E[zizl] = Pyl pr,
Vk. However, in the symbol asynchronous case, in general,
there is no unique power spectrum that can maximize the
rate upper bounds in (7) simultaneously [7].

In the literature, the sum capacity of the rate region,
defined as max (Zszl Ry ), has been of particular interest
since it is a single number that represents the overall
capacity limit of the system. Combining equation (6) and
(7), the sum capacity per symbol of the system satisfies

lim max
M—oo tr(E[xrxT])<MPs

Csum <

K
S.E[x,xzl|ST
IMN+Z kElzrey ] S),

o2

(8)

1
oM log,

where equality holds when the input signals are stationary
Gaussian.

k=1

III. UrPER BOUND ON THE SuM CAPACITY

Suppose that the power of each symbol of the user
is upper bounded. The following Theorem shows that,
when calculating the channel capacity, we can replace the
signature matrices by their corresponding block circulant
versions.

Theorem 1: Suppose the eigenvalues of [mkmf] are
uniformly bounded, which is true for most of the practical
signals of interest. Define the block circulant signature
matrix Syof user k by adding the N x 1 column vector
s® to the up-right corner of Sy in (4). Then for any

set of users J, the two matrices ), ; S’kE[cck:cg]S'k and
Y okes Skl [zx2z]]S{ are asymptotically equivalent (see
the definition in [8]).

The proof of is provided in [10].

According to Theorem 1 and [8, Theorem 2.3], the sum
capacity in (8) can be written as

lim max

C <
s M—oo tr(E[xrxT])<MPs

K - ~T
SyE s
mmZM )

o2

1
oM log,

Note that all circulant matrices of the same dimension
have identical eigenvector set. Define the M x 1 vector gq,,

k=1



and the M x M Fourier transform matrix Q,; as

H
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Denote the m*" component of vector q,, by gnm. According
to [8], we can decompose the block circulant matrix Sj, as

au | (10)

guiln -I

{ quln
Sk = :

Q5 (11)
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where ®, is a block diagonal matrix, defined as,

¢ 0 0
B, = 0 o (12)
L O 0 & |

and ¢y, in equation (12) is an N x 1 column vector given
by

L J21'r(m 1)
b = Sk + sie

Substituting (11) into (9), we get

O P.®L
IMN+Z k

(14)
where Py is an M x M diagonal matrix, whose diagonal
entries are equal to those of Q47 E[xxx]]Q ;. The inequal-
ity in (14) is due to the generalized Hadamard inequality
[7].

Denote the m'" diagonal entry of Pj by pgm. Since
equation (14) holds with equality when Q% E[x,xl]Q,,
is diagonal, substituting (14) into (9), we obtain

(13)

K - ~T
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k=1

Cyum < lim max
M —o0 ZM Pram <M Py,
Z logy | [In + Z 7¢kmpkm¢km ] (15)
k=1

When the signature sequences of the users are given, the
sum capacity can be found by solving (15) with an iterative
water filling algorithm [7]. It is easily seen that, given
an arbitrary signature set and user delay profile, the sum
capacity is usually not achieved by input signals with white
spectra (i.e., Py = PyIpr).

In the following Theorem, we give an upper bound on
the sum capacity. The upper bound has the feature that
it is not a function of the signature sequences of the users.

Theorem 2: Similar to [3], define user k as oversized

if
K
Zj:l Pj1Pk>Pj

P >
N-Y% 1p<p,

(16)

Denote the set of the oversized users as K. The sum
capacity is upper bounded by

— P
N =K 2|K|10g2 (1—1-7( Ziglc - )

K[)o?
4= Z log, (1 + —)

kGIC

Csum S
(17)

This upper bound is equal to the optimal sum capacity of
the symbol synchronous system, as given in [3].
The proof is given in [10].

IV. OPTIMAL SIGNATURE SEQUENCES

Although the upper bound given in (17) may not be
achieved with an arbitrary signature sequence set, we
show in this section that, it is indeed achievable when
the signature sequences are optimally designed, given any
arbitrary user delay profile and average power constraints.

A. The Necessary and Sufficient Condition

The following Lemma shows the connection between the
Frobenius norm, denoted by ||.||r, and the eigenvalues of
a symmetric matrix A.

Lemma 1: Suppose A is an N x N positive definite
matrix that satisfies A” = A. Suppose N < N and
AL, ..., Ay are all the non-zero eigenvalues of A. If A is
constrained such that tr(A) = P, then HAHF > P~ with
equality if and only if \y = Ay =

The proof is given in [10].

With the help of Lemma 1, we are now ready to present
the necessary condition on the optimal signature sequence
set, which guarantees that the sum capacity achieves the
upper bound given in (17). Somewhat surprisingly, the
condition becomes sufficient if the input signals have white
spectra.

Theorem 3: If K is the set of oversized users, given the
user delay profile and the power constraints, if the sum
capacity upper bound of (17) is achieved with equality,
then the input signals are Gaussian and the following three
conditions hold.

o Condition 1: For all kK € K and j # k

2-
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The input signal of user £k € K has white power
spectrum.
o Condition 2:
Z Pyst skRT =0

kgk

(19)

¢ Condition 3:
2
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(20)



Furthermore, given the user delay profile and the average
power constraints, if equations (18), (19), (20) hold, and
the user signals are white Gaussian, i.e., Elzyzl] =
PrI s, VE, then the sum capacity of the system achieves
the upper bound given in (17).

The proof is presented in [10].

To be consistent with [3], we term the signature se-
quence set of the non-oversized users that satisfy con-
ditions (18), (19) and (20) the generalized asynchronous
Welch-Bound-Equality (GAWBE) sequences.

Note that in the equal user power case, with condition
(19) HPk ZkQK (sf sf +sht sk )H is proportional to
the TSAC of the system, defined in [5], which is also the
TSC when the user signals are symbol synchronous. Under
the constraint of (19), Lemma 1 implies that minimizing
the TSC or the TSAC results in the optimal signature
sequences.

B. Construction of the Optimal Signature Sequences

Assume that the input signals have white spectra. Al-
though Theorem 3 gives the necessary and sufficient condi-
tion for the sum capacity to reach its upper bound, it can
be seen that the conditions for the symbol asynchronous
system are much stricter than the symbol synchronous
case in general. Hence, given an arbitrary power constraint
set and a user delay profile, it is natural to ask whether
such optimal signature sequence set always exists. In this
section, we provide an explicit algorithm to construct
the optimal signature sequence set that satisfies all three
conditions in Theorem 3. The construction algorithm guar-
antees that the upper bound in equation (17) is always
achieved with i.i.d. Gaussian inputs.

First, we consider the situation when there is no over-
sized users, i.e., the power of all the users satisfy P, <

Z]I‘(:I b

~ > Vk. Our purpose is to construct a signature
sequence set such that skR = 0 for all k. Although this
guarantees that the requirement in (19) is met, unfor-
tunately, meeting the requirement in (20) with such a
strict constraint is not always possible for a general user
delay profile. We use the time labeling idea presented in
[9], that enables us to work with other N — 1 equivalent
delay profiles, even when the user delay profile is given.
This significantly increases our freedom in the signature
design. We will show that, among all the N equivalent
user delay profiles, there always exists one that allows
us to construct an optimal signature sequence set that
simultaneously satisfies s = 0, Vk and condition in (20).

Arrange the users in increasing order of their delays,
ie.,, e < ¢ < ... < ck. Since all ¢ take values in
[0, N — 1], we can divide the users into N groups, denoted
by G1,Ga, ..., G, such that the users in the same group
are symbol synchronous. Specifically, the delay of the users
satisfy

ck=1—1, itk eG,; (21)

The aggregate signal power in group G; is denoted by

.= Zkecj Py. It is possible that some of the groups
are empty, depending on the user delay profile.

Note that (21) is based on the assumption that the users
in group G have zero delays. Suppose we pick an arbitrary
time labeling and define it as 71 = [G1,Ga,...,GN].
Now, without changing the physical signals, if we change
the time labels and define the users in group Gy as the
zero-delayed users, we can reorder the groups chronolog-
ically according to the new time labels and get another
equivalent group ordering, 7o = [Gn,G1,G2...,GN-1].
Overall, there are N different time labelings, and each
time labeling is uniquely determined by the corresponding
chronological order of the group. We say that time labeling
T, is obtained from 73 through a backward rotation.

The following Theorem shows that among the N differ-
ent time labelings, there is one time labeling that possesses
a special property, which is the key feature that ensures
the existence of the optimal signature sequence set.

Theorem 4: Assume that there are no oversized users.
Among all the time labelings, there exists one time label-
ing T = [Gl,GQ,.. GN] such that V1 < j < N, the
signal powers satisfy

ZP >ng 1

(22)

The proof is presented in [10].

Now, consider the time labeling T, and arrange the
users and the groups in the chronological order of their
symbol delays. For notational simplicity, we still term
these groups G1,Gs,...,Gy. Consider the signature ma-

G ~ rT .;T17T .
trix S = [ & Sk | where 8§ = [sk ) 8% is
constructed by stacking the right signature sequence and
the left signature sequence of user k together. Here the left
signature sequence éf and the right signature sequence ékR
are defined as in (1) according to the symbol delay ¢ of
user k in time labeling T. Next, we show that one can
always construct a GAWBE sequence set, such that all
the components of the right signature sequences are 0s.

Construction of the GAWBE sequence set

o Step 1: Initialize hg as a K x 1 column vector \;\(/hose

P
first IV components have identical values of #

and other components are 0, i.e.,

K K
Zk:l Pk Zk:l Pk O o O

hy =
0 N ) ) N

(23)

Initialize matrix Ho = diag(hg). Let ¢ = 1.
o Step 2: Construct a K x 1 column vector h; such that
the following properties are satisfied

— Property 1: All the components of h; are non-
negative.
— PropertyK2: The first N —i components of h; have

Py
k=1
value kel —



— Property 3: The last Z;VZN%H |G;| compo-
nents of h; are the powers of users in groups
GN—i+1,--.,GN, respectively, in the same order.

— Property 4: The components located between the
N — ith and the Zj\[:? |G| + 15" components

satisfy
N—1i
[hil; < [hica];, YN —i<j< ) |Gy (24)
j=1

If we denote the powers of users in group G; as

pE p|<GG_i|>, h; can be described as
N—i items
% K
h, = 2 k=1 Br k=1 P ? ?
i N gee ey N AR S

T
Pl (25)

R G

where the components marked with “?” can be arbi-
trary so long as they satisfy the inequality in (24).
Note that such an h; vector always exists since
" N—i (N-D)>°F P

rom (22) we have, > ._ ' Pg, > ——5*=— and
S ¥ Pa, = Yy Pr, whichyields Y3y, Pa, <
i3 P

By Jf\{)llowing the method in section IV of [3], we
can construct a unitary matrix Upy_;4+1, such that
the diagonal components of U%ﬂ-HHi,lUN,Hl are
exactly the components of h;, in the same order. We
define H; = UN_; 1 Hi 1Un_i41.

e Step 3: If ¢ < N, let ¢ = ¢ + 1 and goto Step 2.
Otherwise, goto Step 4.

o Step 4: Define U = UnUpn_1...Uq, and define the
matrix that contains the first N rows of U as V. We
can then construct the signature sequence matrix as

S Pe, o ( 1 1 )
k=1 "k giag | —, ..., —— 26
~ e\ 75 T (26)

wn
Il

|

Theorem 5: The GAWBE signature sequences con-
structed via the above procedure satisfies the conditions
(19) and (20) in Theorem 3, for any time labeling.

The proof is presented in [10].

Compared with the optimal signature sequence con-
struction in the symbol synchronous case [3], the key steps
are that, first, we operate on the diagonal components of
the H; matrices in a specific order, and second, that the
time labeling 7' satisfies the property shown in (22).

In the general case where there are || oversized users,
we arrange the users such that users 1,..., K — |K]| are
non-oversized and users K — ||+ 1,..., K are oversized.
Now, we partition the signature sequence matrix S as

[ 8

0 I|;C| (27)

The signature sequence of user k > K — |K] is designed
as 8, = ey, where ey is the column vector whose k"
component is 1 and all other components are 0. The
signature sequences of the non-oversized users are designed
such that §,; = 0, Vk < K — |K] and j > N — |K|.
Consequently, (18) is satisfied irrespective of the values
of the components in the upper-left block matrix S K—|K|-

Now consider the subblock matrix S K—|k| With dimen-
sion (N —|K]) x (K —|K]) in (27). The signature sequence
design of S’K,“q is equivalent to that of a K — |K| user
system with spreading factor of N—|X|, where no oversized
users are present. Therefore, we can assign the GAWBE
sequence set for S K—|x|, which completes the optimal
sequence construction of the K user system.

V. CONCLUSION

The optimal signature sequences that maximize the
sum capacity of a symbol asynchronous CDMA system
are characterized in this paper. By assigning orthogonal
signature sequences to the oversized users, and assigning
a GAWBE signature sequence set to the non-oversized
users, asynchronous system achieves the same sum ca-
pacity as the synchronous system with the same user
power constraints. An explicit method is provided for the
construction of the optimal signature sequence set. This
resolves the existence of the optimal signature sequences
for arbitrary user delay profiles, and average power con-
straints.
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