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Abstract

A fast optimal algorithm based on the branch and bound method, coupled with an iterative lower bound

update, is proposed for the joint detection of binary symbols of K users in a synchronous correlated waveform

multiple-access (CWMA) channel with Gaussian noise. Although the group optimal detection problem is

generally NP hard, the proposed method can significantly decrease the average computational cost. A fast

“any-time” sub-optimal algorithm is also available by simply picking the “Current-Best” solution in the Branch

and Bound method. Theoretical results are given on the computational complexity and the performance of the

“Current-Best” sub-optimal solution. Although the performance of sub-optimal algorithms are affected by the

detection order, an order algorithm is proposed and the optimal detection order is shown to be identical to all

the proposed sub-optimal algorithms. Simulation results are presented to verify the theoretical analysis. In the

situation when only a small number of users are correlated, sub-optimal algorithm outperforms the decision

feedback method significantly and the computational cost can be even less than that of the conventional method.
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I. Introduction

D
UE to the problem of interuser interference in many multiuser communication systems, multiuser

detection for the symbol-synchronous Gaussian correlated waveform multiple-access (CWMA)

channel has received considerable attention over the past ten years. When the source signals are

binary- or integer-valued, the resulting integer programming problem is generally NP hard [2], unless

the signature waveform auto-correlation matrix has a special structure [11] [12]. Consequently, prior

research has focused on designing suboptimal receivers with low computational complexity and better

performance than a conventional linear detector. Among them are the multistage detection [3] [5],

the group detection [7] and the decision feedback detection [6] [8] [13]. Usually, suboptimal methods
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need to perform a projection to satisfy the integrality constraints, which can cause significant detection

errors.

Based on the idea of successive cancellation, a systematic Decorrelator-based Decision Feedback

Detection (D-DFD) approach was given in [13]. While maintaining the computational complexity of

O(K2), D-DFD methods provide a significant improvement in probability of error when compared with

traditional Minimum Mean Square Error (MMSE)-based decorrelation detector. However, computer

simulations show that, in most cases, especially when some signature waveforms are correlated, there

is still a large gap between the probability of error of D-DFD outputs and that of the optimal solution.

In this paper, we consider the multiuser detection problem as a constrained optimization problem.

A fast optimal algorithm based on the branch and bound method is proposed. The Minimum Mean

Square Error (MMSE) method is used to find a lower bound; this requires fewest branches to find

the best solution in the noise-free case. In addition, when the noise is small, the MMSE lower bound

is tight and helps greatly in pruning the number of branches, thereby decreasing the number of sub-

problems to be solved. Although the computational cost for the worst case is exponential, computer

simulations show that the optimal algorithm maintains the same level of computation on average

as the D-DFD method, while being able to provide significant improvement in the probability of

error when compared to the D-DFD method [13]. In the noise-free case, the optimal algorithm

even requires less computation than the conventional methods. Furthermore, theoretical discussion

is given to show that the D-DFD method is in fact an order-one approximation to the proposed

optimal solution. When strict computational limits exist, a sub-optimal solution can be obtained by

simply picking the “current-best” solution in the branch-bound search. Since the D-DFD method is a

first-order approximation to the optimal algorithm, a “current-best” solution of second or third order

approximation will generally outperform the D-DFD method with marginal increases in computation.

Theoretical analysis of the performance and computational cost on the “current-best” solution is

given and verified by the simulation results. For a given CWMA system, these results can be used

offline to estimate the performance and computational costs for the proposed optimal and sub-optimal

algorithms. In addition, the optimal detection sequences for different computational constraints as

well as the D-DFD methods are found to be identical.

The rest of the paper is organized as follows. The synchronous multi-user detection problem formu-

lation and existing solution techniques are discussed in section 2. In section 3, a fast optimal algorithm

to reduce the number of sub-problems is presented, and theoretical analysis of the computational com-

plexity is given. By using a depth-first search, analysis is given to show that the D-DFD solution is in

fact the first feasible solution in the branch-and-bound approach. In section 4, the performance and

the computational complexity for the “current-best” sub-optimal solution are discussed. Theoretical

analysis for finding the optimal detection sequence is given at the end of this section. Simulation
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results and comparative analyses are provided in section 5. The paper concludes with a summary in

section 6.

II. Problem Formulation and Existing Methods

A discrete-time equivalent model for the matched-filter outputs at the receiver of a CWMA channel

is given by the K-length vector [2]

y = Hb+ n (1)

where b 2 f¡1,+1gK denotes the K-length vector of bits transmitted by the K active users. Here

H = W
1
2RW

1
2 is a nonnegative definite signature waveform correlation matrix, R is the symmetric

normalized correlation matrix with unit diagonal elements, W is a diagonal matrix whose k-th diagonal

element, wk, is the received signal energy per bit of the k-th user, and n is a real-valued zero-mean

Gaussian random vector with a covariance matrix σ2H. It has been shown that this model holds for

both baseband [2] and passband [13] channels with additive Gaussian noise.

When all the user signals are equally probable, the optimal solution of (1) is the output of a Maximum

Likelihood (ML) detector [2]

φML : b̂ = arg min
b∈{−1,+1}K

(
bTHb¡ 2yT b

)
(2)

The ML detector has the property that it minimizes, among all detectors, the probability that not

all users’ decisions are correct. Usually, φML is considered NP-hard and exponentially complex to

implement; the focus is then on developing easily implementable and effective multiuser detectors.

The MMSE-based solution of conventional decorrelation detector [2]

φD : b̂ = arg min
b∈{−1,+1}K

∥∥∥b¡H−1y
∥∥∥2
2

(3)

is found in two steps. First, the unconstrained solution b̃ = H−1y is computed. This is then projected

onto the constraint set via: b̂i = sign
(
b̃i
)
.

The DFD method based on the decorrelation detector is described in [13]. It is characterized by

φD−DF : b̂ = Pb̃, b̃i = sign


 K∑

j=1

FijPyj ¡
i−1∑
j=1

Bij b̃j


 (4)

where F = U([PHP ]−1), B = L(FPHP ). Here, U(¢) represents the upper triangular part of a matrix,

L(¢) represents the strictly lower triangular part of a matrix, and P is a permutation matrix (symmetric

and orthoganal). The choice of P has been discussed in Theorem 1 of [13].

For the group detection of multiuser detectors, Symmetric Energy (SE) is an important performance

measure in the low noise regime [13]. It is defined as follows,
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Definition: Let ε(φ) denote the event that the detector does not detect all users correctly. Let the

effective energy e(σ, φ) corresponding to the probability of ε(φ) be defined implicitly via the equation

Pr(ε(φ)) = Q



√
e(σ, φ)

σ


 (5)

where Q(.) is defined as Q(x) =
∫∞
x

1√
2π
e−

x2

2 dx. The SE is defined as the limit of the effective energy

e(σ, φ) as σ ! 0 so that

E(φ) = lim
σ→0

e(σ, φ) = sup

{
e ¸ 0; lim

σ→0

Pr(ε(φ))

Q (
p
e/σ)

< 1
}

(6)

If we denote the (i, j)th component of a matrix A by Aij, the SE of the ML detector, Decorrelator

and the D-DFD detector can be expressed, respectively, by [13]

E(φML) = min
e∈{−1,0,1}K−{0}

eTHe

E(φD) = min
i=1,...,K

1

[H−1]ii

E(φD−DF ) = min
i=1,...,K

L2
ii (7)

where L is the Cholesky factor of PHP , i.e., PHP = LTL. Although both the computational costs

for the decorrelation and D-DFD algorithms are K2 multiplications and K(K ¡ 1) additions, it has

been shown [13] that E(φD−DF ) ¸ E(φD). Usually D-DFD can provide 2 to 3 orders of improvement

in the magnitude of probability of error when compared with a conventional linear detector. However,

the output of D-DFD is still a sub-optimal solution. Simulation results show that, in most cases, there

still exists a substantial gap in performance between the D-DFD and the optimal solutions.

III. Optimal Algorithm Based on Branch and Bound

The idea of using a branch and bound method in solving optimization problems is already well known

[4]. However, the tradeoff between a tight lower bound and a lower bound with less computational

requirements is common to most of the problems. In multiuser detection, branch-and-bound method

with breadth-first search has been used in [9] to find the minimum distance, which is defined by,

dmin =
√

min
e∈{−1,0,1}K−{0}

eTHe (8)

Similar to [9], in this paper, the fast optimal algorithm uses a tight (when noise is small) MMSE lower

bound. In particular, we update the lower bound in an iterative way such that the computational cost

for each estimation is linear in the number of the rest of unassigned users.

Suppose H = LTL is the Cholesky decomposition of H. Then H−1 = L−1L−1T . The objective

function in (2) can be equivalently written as

φML : b̂ = arg min
b∈{−1,+1}K

(b¡H−1y)TH(b¡H−1y)
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= arg min
b∈{−1,+1}K

∥∥∥L(b¡H−1y)
∥∥∥2
2

= arg min
b∈{−1,+1}K

∥∥∥Lb¡ L−1T y
∥∥∥2
2

(9)

Define ỹ = L−1Ty, D = Lb, and denote the kth component of D and ỹ by Dk and ỹk, respectively.

Consequently, we have

φML : b̂ = arg min
b∈{−1,+1}K

kD ¡ ỹk22

= arg min
b∈{−1,+1}K

K∑
k=1

(Dk ¡ ỹk)
2 (10)

Here, since L is a lower triangular matrix, Dk depends only on (b1, b2, ..., bk). When the decisions for

the first k users are fixed, the term

ξk =
k∑

i=1

(Di ¡ ỹi)
2 (11)

can serve as a lower bound of (10). It can be easily seen that the lower bound is in fact an unconstrained

MMSE solution and is achievable when the binary constraints on (bk+1, ..., bK) are disregarded. The

branch and bound tree search to find the minimum value of kD ¡ ỹk22 is described below.

Similar to a general branch and bound method [10], the algorithm maintains a node list called

OPEN , and a scalar called UPPER, which is equal to the minimum feasible cost found so far, i.e.,

the “Current-Best” solution. Define k to be the level of a node (virtual root node has level 0). Label the

branches with Dk(b1, b2, ..., bk+1), which connect the two nodes (b1, ..., bk) and (b1, ..., bk+1). The node

(b1, ..., bk) is labeled with the lower bound ξk. Also, define vk =
∑k

i=1 [bi ¤ (the ith column of L)] ¡ ỹ,

denote [vk]j as the jth component of vector vk, and Lij as the (i, j)th element of L. The branch and

bound algorithm proceeds as follows.

1) Precompute ỹ = L−1T y;

2) Initialize k = 0. vk = ¡ỹ, ξk = 0, UPPER = +1 and OPEN = NULL;

3) Set k = k + 1. Choose the node in level k such that bk = ¡sign ([vk−1]k). If k < K, append the

node with bk = sign ([vk−1]k) to the end of the OPEN list;

4) Compute vk = vk−1 + bk ¤ (the kth column of L);

5) Compute ξk = ξk−1 + (Dk ¡ ỹk)
2 = ξk−1 + (vk)

2
k;

6) If ξk ¸ UPPER and the OPEN list is not empty, drop this node. Pick the node from the end

of the OPEN list, set k equal to the level of this node and go to step 4;

7) If ξk < UPPER, k = K and the OPEN list is not empty, update the “Current-Best” solution

and UPPER = ξk. Pick the node from the end of the OPEN list, set k equal to the level of this

node and go to step 4;

8) If ξk < UPPER and k 6= K, go to step 3;
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9) If ξk < UPPER, k = K and the OPEN list is empty, update the “current-best” solution and

UPPER = ξk;

10) For all other cases, stop and report the “current-best” solution.

Example 1: The following 3-user example illustrates the procedure. The system is given by

y = Hb+ n

H =



4.25 0.85 0.57

0.85 3.0 1.6

0.57 1.6 2.0




=



2.0 0 0

0.3 1.3 0

0.4 1.1 1.4



T 

2.0 0 0

0.3 1.3 0

0.4 1.1 1.4


 (12)

Assume the source signal is b = [1,¡1, 1]T , the noise vector is n = [0.81,1.93,¡0.22]T , hence y =

[4.78, 1.38, 0.75]T . Figure 1 shows the branch-and-bound tree structure.

Fig. 1. Example of the depth-first Branch-and-Bound algorithm

In step 1), we precompute ỹ = (L−1)Ty = [2.2, 0.6, 0.5]T . Then, initialize k = 0, v0 = [¡2.2,¡0.6,¡0.5]T ,

ξ0 = 0, UPPER = +1, OPEN = NULL. In step 3), let k = 1, choose the node with b1 =

¡sign(¡2.2) = 1 (node 1 in Figure 1). Add node 5 to theOPEN list. Update v1 = [¡0.2,¡0.3,¡0.1]T ,

ξ1 = 0.04. Since ξ1 < UPPER, goto step 3. This leads us to node 2. Add node 4 to the end of the

OPEN list. Then, since the next level is the bottom level, from step 3, we know node 3 gives better
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result than node (1, 1,¡1). Therefore, without changing the OPEN list, we go to node 3 (which is

the first feasible solution and, as shown later, it also corresponds to the D-DFD solution.) and update

UPPER = ξ3 = 2.64. In step 6, we pick node 4 from the end of the OPEN list. Go to node 5, and

obtain ξ3 = 2.63 < UPPER, which means that node 5 is a better solution. Update UPPER = 2.63

and pick node 6 from the OPEN list. For node 6, since ξ1 = 17.6 > UPPER, we drop this node.

Now the OPEN list is empty, the algorithm stops and reports node 5 as the optimal solution.

The above algorithm is a branch and bound method with depth-first search. The computational cost

for step 1) is K(K+1)
2

multiplications and K(K−1)
2

additions. In step 3), since bk can only take known

discrete values, bkL can be precomputed and stored; hence, only K ¡ k + 1 additions are needed to

obtain vk. Step 5) needs 1 addition and 1 multiplication. Notice that step 1) is outside the branch

and bound search. To update the lower bound for a node on level K ¡ k+1 (k = 1, ...,K), only k+1

additions and 1 multiplication is needed. In addition, the computation for finding the first feasible

solution (also the optimal solution in the noise-free case) requires K(K+3)
2

multiplications and K(K+1)

additions.

Proposition 1: The first feasible solution obtained from the above depth-first search is the solution

of D-DFD method.

Proof: From step 3), when we branch, we first go to the node with a smaller lower bound value. In

the above branch and bound method, suppose (b1, ..., bk−1) has already been fixed by the branch, the

choice of bk for the branch and bound method can be described by

b̃ = arg min
bk ∈ {−1,+1}

bk+1, ..., bK ∈ (−∞,∞)

(b¡H−1y)TH(b¡H−1y)

bk = b̃k (13)

Notice that in (13), (b1, ..., bk−1) is fixed and we only have a binary constraint on bk. The choice of

bk for D-DFD method, however, is given by

b̃ = arg min
bk,...,bK∈(−∞,∞)

(b¡H−1y)TH(b¡H−1y)

bk = sign(b̃k) (14)

Figure 2 shows the difference between the above two choices. The ellipses here represent the level

curves of the objective function. For the D-DFD method, the decision on bk is made by comparing

the lengths jAOj and jBOj. While for the proposed branch and bound method, the decision on bk is

made by comparing the lengths jCOj and jDOj. Since the triangles AOC and BOD are similar, (13)

and (14) are equivalent.
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Fig. 2. Comparison of D-DFD and Branch-Bound decisions on bk

Example 1 - continued : In the above example, on node 1, the user expurgated channel for the

D-DFD method is represented by


 y2

y3


¡


 0.85

0.57


 =


 3.0 1.6

1.6 2.0




 b2

b3


+


 n2

n3


 (15)

According to (14), the decision on b2 for D-DFD is made by

b̃ =


 3.0 1.6

1.6 2.0



−1


 1.38

0.75


¡


 0.85

0.57






=


 0.22

¡0.09




b2 = sign(b̃2) = 1 (16)

which is consistent with the depth-first direction of branch-and-bound algorithm. However, as shown

in the example, D-DFD method failed to find the optimal solution.

Recall that in the branch and bound algorithm, the computational cost required to obtain the first

feasible solution (also the solution of D-DFD) is much less than the computational cost of a conventional

linear detector. Evidently, any further computations will result in better accuracy than the D-DFD

(unless the D-DFD is already optimal).

IV. “Any-Time” Suboptimal Algorithm

Although the average computational cost may not be very high, the computation for the worst case

is still exponential in the number of users since the ML solution is generally NP hard. Hence the

optimal algorithm is not implementable when the number of users is large. When a strict limitation

on computational cost exists, the “current-best” solution in the above branch and bound method can

serve as a sub-optimal alternative to the NP hard optimal solution.
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Define the sub-opimal detector that explores the sub-tree under and including level K ¡ k +1 to be

φBB−k (k = 1, ...,K). From the above analysis of the computational cost, the worst-case computation

for φBB−i is given by

Multiplications · K(K + 3)

2
+ 3 ¤ 2k−1 ¡ k ¡ 2

Additions · K(K + 1) + 5 ¤ 2k

¡(k + 3)(k + 4)

2
(17)

To derive the Symmetric Energy (SE) measure for φBB−k, define P (ij1, ..., i¡1) to be the event that

the decision on user i is correct (i = 1, ...,K ¡ k), given all the decisions on users j < i are correct.

Consider the ML solution (9). Substitute (1) into (9), denote the true source signal by b0, to obtain

φML : b̂ = arg min
b∈{−1,+1}K

∥∥∥Lb¡ L−1Ty
∥∥∥

= arg min
b∈{−1,+1}K

∥∥∥L(b¡ b0)¡ L−1Tn
∥∥∥

= arg min
b∈{−1,+1}K

kL(b¡ b0)¡ ñk (18)

Since E[nnT ] = σ2H, we have E[ññT ] = σ2I. Thus, ñ can be viewed as K independent zero mean

Gaussian noise variables with covariance matrix σ2I. Assuming that the decisions on (b1, ..., bi−1) are

correct, the lower bound ξi can be expressed as

ξi =
i∑

j=1

(Dj ¡ ỹj)
2 =

i−1∑
j=1

ñ2
j + [Lii(bi ¡ b0i) ¡ ñi]

2 (19)

Since ñ is Gaussian with a covariance matrix σ2I, P (ij1, ..., i¡ 1) is given by

P (ij1, ..., i¡ 1) = Q(
jLiij
σ

) (20)

Also, similar to (8), define the minimum distance among users K ¡ k + 1, ...,K by

dmin−k =
√√√√√√

min
e 2 f¡1, 0, 1gK ¡ f0g

e1, ..., eK−k = 0

eTHe (21)

Given that the decisions on users 1, ...,K ¡ k are correct, the group detection error of φBB−k can be

approximated by

P (K ¡ k + 1, ...Kj1, ...,K ¡ k) ¼ Q(
dmin−k

σ
) (22)

Therefore, the overall group decision error of φBB−k can be expressed as

P φBB−k
e ¼ 1¡ f

K−k∏
j=1

[1 ¡Q(
jLjjj
σ

)]g[1 ¡Q(
dmin−k

σ
)] (23)



10

The SE is then given by

E(φBB−k) = min
i=1,...,K−k

(L2
ii, d

2
min−k) (24)

Furthermore, from the definitions of (21) and (8), we have

d2min−k ¸ d2min = E(φML) ¸ E(φBB−k) (25)

E(φBB−k) can then be denoted by

E(φBB−k) = min(d2min, min
i=1,...,K−k

L2
ii) (26)

Evidently, the performance and even the average computational cost of the above sub-optimal

method are also affected by the detection order of the users. For the D-DFD method, a user or-

dering algorithm is proposed in [13] as follows,

Order Algorithm: Order users as follows: select the first user in the new order (denote this user’s

index as i1) as

i1 = arg min
j=1,...,K

[H−1]jj (27)

For k = 2, ...,K, form a new matrix Ĥ to be part of H that only contains the components fHijg
(i, j 2 ff1, ...,Kg ¡ fi1, ..., ik−1gg). Find

îk = arg min
j=1,...,K−k+1

[Ĥ−1]jj (28)

and let ik equal to the user corresponding to îk.

Proposition 2: When ordering users by the order algorithm, the Symmetric Energy E(φBB−k) of

all k = 1, ...,K are maximized simultaneously.

Proposition 2 states that the order defined by the order algorithm is optimal for all the proposed

sub-optimal detectors as well as the D-DFD. See appendix for the proof.

V. Simulation Results

According to (17), the computational complexity for the sub-optimal detector φBB−k is exponential

in k. However, since we assume H to be known, the SE of the proposed “current-best” sub-optimal

solutions can be found offline by (26). The following simulation results show that, in some cases, a

small amount of extra computation can significantly improve the performance of the system, when

compared with the φD−DF (which is the same as φBB−1).

Example 1 - continued: In the previous example, since users 2 and 3 are strongly correlated, we

expect that E(φBB−2) will be a significant improvement over E(φD−DF ). The SE for different detectors

can be obtained via (7) (26), E(φML) = 1.8, E(φBB−2) = 1.8, E(φD−DF ) = 1.69. The simulation result

is given in Figure 3, which is consistent with the theoretical analysis.
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Fig. 3. Performance of various methods (3 users, 10000 Monte-Carlo runs)

Example 2: Now suppose we have 50 users. We use binary signature sequences of length 55.

The signature sequences are generated such that 5 ¡ 10 users are correlated with each other (The

maximum correlation among users is set to be around 0.85). The energy of each user is generated

randomly between [1, 4.5]. In these cases, the proposed sub-optimal algorithm outperforms the D-

DFD method significantly. In the situations when only a small number of users are correlated, the

sub-optimal algorithms can even reach the performance bound of the optimal detector with marginal

increases in computational cost over the D-DFD method. Figure 4 shows the simulation results of

one of these examples. The comparison of the computational cost for the group detection of different

algorithms is given in Table I.

Fig. 4. Performance of various methods (50 users, spreading factor 55, 10000 Monte-Carlo runs)

Example 3: In another 8 user example, the H matrix is randomly generated as
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φD φD−DF φBB−5

SNR £ + £ + £ + £ +

(db) Average Maximum

17 2500 2450 1325 2550 1329.1 2568.5 1366 2674

18.5 2500 2450 1325 2550 1329 2568.1 1366 2674

19.5 2500 2450 1325 2550 1329 2568 1366 2674

21.1 2500 2450 1325 2550 1329 2568 1366 2674

21.8 2500 2450 1325 2550 1329 2568 1366 2674

TABLE I

Comparison of Computational Cost (50 users, spreading factor 55, 10000 Monte-Carlo runs, £ =

number of multiplications, + = number of additions)




3.0 −0.4 1.4 −0.5 0.4 −0.3 0.3 −0.6

−0.4 1.9 −0.8 0.0 0.7 0.6 −0.5 0.2

1.4 −0.8 2.8 −1.8 0.8 −0.0 0.0 −0.3

−0.5 0.0 −1.8 2.6 −1.6 −0.6 −0.6 −0.3

0.4 0.7 0.8 −1.6 2.2 1.2 −0.0 0.2

−0.3 0.6 −0.0 −0.6 1.2 1.4 −0.0 0.2

0.3 −0.5 0.0 −0.6 −0.0 −0.0 1.2 −0.2

−0.6 0.2 −0.3 −0.3 0.2 0.2 −0.2 1.0




The users have already been ordered by the order algorithm. The Symmetric Energy for the ML

detector is

E(φML) = d2min = 1.0 (29)

The SE for various sub-optimal detectors are (for E(φBB−1) through E(φBB−7))

f0.87, 0.87, 0.87, 0.87, 0.87, 0.89, 1.0g (30)

In this example, the computational cost for improving the performance from D-DFD is high. In

addition, even the SE of the ML detector does not differ much from that of D-DFD. Hence, D-DFD is

an efficient detector in this case. Figure 5 shows the probability of error for group detection.

VI. Conclusion

The proposed branch-and-bound algorithm shows that, in addition to the D-DFD method, there

exists a class of sub-optimal methods that provides “any-time” sub-optimal solutions to the user.

Given a CWMA system, the performance (measured by the Symmetric Energy), the computational

bound and even the distribution of computational cost for the proposed sub-optimal algorithms can

be estimated offline via (17) and (26). In addition, the detection sequence provided by the order

algorithm is proved to be optimal for all the sub-optimal algorithms. The proposed algorithm can be
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Fig. 5. Performance of various methods (8 users, 10000 Monte-Carlo runs)

easily extended to finite-alphabet signals instead of binary ones. The proposed computational method

can also be easily extended and applied to group detection [7], and applied to the two-path tree search

algorithm [14], which are the focus of future study.

Appendix

I. Proof of The Optimal Detection Sequence

To simplify the proof, we will first derive 2 useful lemmas.

Lemma 1: Suppose H = LTL is partitioned on two arbitrary diagonal elements as



H11 HT

21 HT
31

H21 H22 HT
32

H31 H32 H33




=



L11 0 0

L21 L22 0

L31 L32 L33



T 

L11 0 0

L21 L22 0

L31 L32 L33


 (31)

For any permutation matrix P of the same size as H22, if



I 0 0

0 P 0

0 0 I





H11 HT

21 HT
31

H21 H22 HT
32

H31 H32 H33





I 0 0

0 P 0

0 0 I




=



L̃11 0 0

L̃21 L̃22 0

L̃31 L̃32 L̃33



T 

L̃11 0 0

L̃21 L̃22 0

L̃31 L̃32 L̃33


 (32)
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then the following results hold.

L̃11 = L11

L̃33 = L33

L̃T
22L̃22 = PLT

22L22P (33)

Proof:

From (32), we obtain

L̃T
11L̃11 + L̃T

21L̃21 + L̃T
31L̃31

= LT
11L11 + LT

21L21 + LT
31L31

L̃T
22L̃21 + L̃T

32L̃31 = PLT
22L21 + PLT

32L31

L̃T
22L̃22 + L̃T

32L̃32 = PLT
22L22P + PLT

32L32P

L̃T
33L̃31 = LT

33L31

L̃T
33L̃32 = LT

33L32P

L̃T
33L̃33 = LT

33L33 (34)

Substitute the last 3 equations into the other ones to obtain

L̃T
11L̃11 + L̃T

21L̃21 = LT
11L11 + LT

21L21

L̃T
22L̃21 = PLT

22L21

L̃T
22L̃22 = PLT

22L22P

L̃33 = L33 (35)

Substitute the second and third equations into the first one to obtain

L̃T
11L̃11 = LT

11L11 (36)

Hence Lemma 1 holds.

Lemma 2: Suppose H, H̃ and Ĥ are K £K symmetric and positive definite matrices, and

H = H̃ + Ĥ (37)

Assume the Cholesky decompositions for H and H̃ are, respectively,

H = LTL

H̃ = L̃T L̃ (38)
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Then, the following result holds for the diagonal elements of L and L̃

Lii ¸ L̃ii (for i = 1, ...,K) (39)

Proof:

• It is obvious that Lemma 2 holds for 1£ 1 matrices.

• Suppose Lemma 2 is true for (n¡ 1)£ (n¡ 1) matrices.

Suppose matrices H, H̃ are of size n £ n. Partition H, H̃ and their Cholesky decomposisions on

the last diagonal element as


 H11 HT

21

H21 h22


 =


 L11 0

L21 l22



T 
 L11 0

L21 l22





 H̃11 H̃T

21

H̃21 h̃22


 =


 L̃11 0

L̃21 l̃22



T 
 L̃11 0

L̃21 l̃22




(40)

Here h22, h̃22, l22 and l̃22 are scalars. Since Ĥ is positive definite, we can find a positive definite

matrix H̄ with the Cholesky factor L̄ (also partitioned on the last diagonal element) that satisfies


 H̄11 H̄T

21

H̄21 h̄22


 =


 L̄11 0

L̄21 l̄22



T 
 L̄11 0

L̄21 l̄22





 L11 0

L21 l22



T 
 L11 0

L21 l22


 =


 L̃11 0

L̃21 l̃22



T

(I + H̄)


 L̃11 0

L̃21 l̃22


 (41)

Using the fact that l222 = l̃222(1 + l̄222), we obtain

LT
11L11 = L̃T

11

[
I + L̄T

11L̄11 + L̄T
21L̄21

(
1

1 + l̄222

)]
L̃11 (42)

Therefore, according to the above assumptions and since l222 >= l̃222, Lemma 2 also holds for n£n

matrices.

The proof is complete.

With the help of lemmas 1 and 2, the order algorithm can be equivalently stated as follows.

Equivalent Order Algorithm: Order users as follows: Among all the permutation matrices P ,

find the matrix P1 and the concomitant Cholesky decomposition matrix LTL = P1HP1 such that L11

is maximized. Select the first user in P1HP1 to be the first user of the new order (denote this user’s

index as i1).
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For k = 2, ...,K, form a new matrix Ĥ to be part of H that only contains the components fHijg
(i, j 2 ff1, ...,Kg¡fi1, ..., ik−1gg). Among all the permutation matrices P̂ of compatible size, find the

matrix P̂k and the Cholesky decomposition matrix L̂T L̂ = P̂kĤP̂k such that L̂11 is maximized. Set the

kth user of the new order to be the first user in P̂kĤP̂k (denote this user’s index as ik).

Proof of equivalence: Firstly, for any permutation matrix P̂ , we have

(P̂ ĤP̂ )−1 = P̂ Ĥ−1P̂ (43)

Hence

min
j=1,...,K−k+1

[Ĥ−1]jj = min
j=1,...,K−k+1

f[P̂ ĤP̂ ]−1gjj (44)

Secondly, since [L̂−1]11 =
1

L̂11

and

1
L̂2

11

= [L̂−1]211

= f[P̂ ĤP̂ ]−1g11
· min

j=1,...,K−k+1
[Ĥ−1]jj (45)

The equality holds when P̂ = P̂1, which means that the above order algorithm is equivalent to the one

in (27) and (28).

We are now ready to prove proposition 2. Denote the detection sequence determined by the order

algorithm as S. For an arbitrary detection sequence S̃, define M S̃
j = minS̃(jL11j, ..., jLjjj) and define S̃j

to be the jth user in the sequence. The following proposition gives a stronger result than proposition

2.

Proposition 3: For any detection sequence S̃, suppose S̃ differs from S and their first difference

begins at user i, that is,

S̃1 = S1, ..., S̃i−1 = Si−1

S̃i 6= Si (46)

There exists a sequence Ŝ that is identical to S on at least the first i users, (Ŝ1 = S1, ..., Ŝi = Si) and

satisfies,

M Ŝ
j ¸ M S̃

j 8j 2 [1,K] (47)

Proof: Accroding to (46), we can find j > i, that S̃j = Si. Construct Ŝ as,

1) Let Ŝ = S̃

2) “Move” Ŝj to Ŝi, which gives Ŝi = S̃j = Si and fŜi+1, ..., Ŝjg = fS̃i, ..., S̃j−1g.
Suppose the Cholesky decompositions corresponding to detection sequences S̃ and Ŝ are

P̃HP̃ = L̃T L̃

P̂HP̂ = L̂T L̂ (48)
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respectively. Partition L̃ and L̂ on the i¡ 1 and the jth diagonal elements as

L̃ =



L̃11 0 0

L̃21 L̃22 0

L̃31 L̃32 L̃33




L̂ =



L̂11 0 0

L̂21 L̂22 0

L̂31 L̂32 L̂33


 (49)

According to (46), Lemma 1, and the construction of Ŝ, it is easy to see L̃11 = L̂11 and L̃33 = L̂33.

Define

C̃ = L̃22

Ĉ = L̂22 (50)

Partition Ĉ on the first diagonal element, and C̃ on the last diagonal element as

C̃ =


 C̃11 0

C̃21 c̃22




Ĉ =


 ĉ11 0

Ĉ21 Ĉ22


 (51)

Notice that c̃22 and ĉ11 are scalars. According to Lemma 1, we have


 ĉ11 0

Ĉ21 Ĉ22



T 
 ĉ11 0

Ĉ21 Ĉ22


 =


 0 1

I 0




 C̃11 0

C̃21 c̃22



T 
 C̃11 0

C̃21 c̃22




 0 I

1 0




(52)

which gives,

ĈT
22Ĉ22 = C̃T

11C̃11 + C̃T
21C̃21 (53)

From Lemma 2, we know that the diagonal elements of Ĉ22 is larger than or equal to the corresponding

diagonal elements of C̃11. In addition, according to the equivalent order algorithm and the construction

of Ŝ, ĉ11 ¸ (The upper left component of C̃11). Recall L̃11 = L̂11 and L̃33 = L̂33 in (49), it is evident

that (47) is satisfied.

The proof is complete.
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