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Abstract —
branch and bound method is proposed for the joint

A fast optimal algorithm based on

detection of binary symbols of K users in a synchro-
nous correlated waveform multiple-access (CWMA)
We consider the de-
tection problem as one of optimizing a quadratic ob-

channel with Gaussian noise.

jective function with binary constraints on decision
variables. The average computational cost of finding
the optimal solution is O(K?), which is of the same
order as those of the familiar sub-optimal algorithms.
Simulation results show that the optimal solution can
provide 3 orders or more of magnitude improvement
in the probability of error.

I. INTRODUCTION

Due to the problem of Interuser Interference (IUI) in many
multiuser communication systems, multiuser detection for the
symbol-synchronous Gaussian correlated waveform multiple-
access (CWMA) channel has received considerable attention
over the past ten years. Because of the discrete nature of the
signal, all existing detectors need to perform a projection to
satisfy the integrality constraints. Such a projection can cause
significant errors.

Based on the idea of successive cancellation, a systematic
Decision Feedback Detection (DFD) approach was given in
[1]. Generally, DFD methods can give a significant improve-
ment in probability of error when compared with traditional
methods, while maintaining the same computational complex-
ity of O(K?). However, computer simulations show that there
is still a large gap between the probability of error of DFD out-
puts and that of the optimal solution. In this paper, a fast op-
timal algorithm based on the idea of branch and bound is pro-
posed. The Minimum Mean Square Error (MMSE) method is
used to provide a tight lower bound for each branch. Theoreti-
cal analysis shows that the number of multiplications for lower
bound estimation is linear in the number of unassigned users.
In addition, the tight MMSE lower bound helps greatly in cut-
ting the number of branches, thereby decreasing the number
of sub-problems. Computer simulations for a 10-user system
show that the magnitude improvement in the probability of
eror can be 3 orders or more when compared with the D-DFD
method [1], while the average number of multiplications is
around 2K?2. Furthermore, theoretical discussion is given to
show that the DFD method is in fact an order-one approxi-
mation to the optimal solution.

This paper is organized as follows. The synchronous multi-
user detection problem formulation and existing solution tech-
niques are discussed in section 2. In section 3, the fast optimal
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algorithm to reduce the number of sub-problems is presented,
and theoretical analysis of the computational complexity is
given. The idea of order-one sub-optimal approximation is
proposed in section 4 and is proved to be the DFD method.
Simulation results and comparative analyses are provided in
section 5. The paper concludes with a summary in section 6.

II. PROBLEM FORMULATION AND EXISTING METHODS

A discrete-time equivalent model for the matched-filter out-
puts at the receiver of a CWMA channel is given by the K-
length vector [1]

y=Hb+ N 1)
where b € {~1,+1}* denotes the K-length vector of bits
transmitted by the K active users. Here H = WERW? is
a nonnegative definite signature waveform correlation matrix,
R is the symmetric normalized correlation matrix with unit
diagonal elements, W is a diagonal matrix whose k-th diagonal
element, wy is the received signal energy per bit of the k-
th user, and N is a real-valued zero-mean Gaussian random
vector with a covariance matrix o> H. It has been shown that
this model holds for both baseband [2] and passband [1]
channels with additive Gaussian noise.

When all the user signals are equally probable, the optimal
solution of (1) is the output of a Maximum Likelihood (ML)
detector [1] (also a Maximum A Posteriori (MAP) receiver in
this case)
min b Hb—2y"b (2)

¢]ML M 8 = arg
be{—1,+1}%

The ML detector has the property that it minimizes, among
all detectors, the probability that not all users’ decisions are
Usually, éarr is considered NP-hard and exponen-
tially complex to implement; the focus is then on developing
easily implementable and effective multiuser detectors.

correct.

The MMSE-based solution of conventional decorrelation
detector [2]

. _1 52
min Hb—H 1yH2 (3)

:b=ar
¢D gbe{fl,H}K

is found in two steps. [Dirst, the unconstrained solution
b=H lyis computed. This is then projected onto the con-
straint set via: b; = sign (bl)

The DFD method based on the decorrelation detector is
described in [1] by

K i—1
¢D7DFD : 8: PE, bi = sign ZFiijj — ZBijEj (4)
j=1 j=1

where F' = U ([PHP]™"), B = L(FPHP). Here, U(-) repre-
sents the upper triangular part of a matrix and L(-) represents



the strictly lower triangular part of a matrix. P is a permu-
tation matrix, such that, for the Cholesky decomposition of
PHP = LI", we have [1]

L > L3 > . > Lk (5)
Without loss of generality, in the rest of this paper, we assume
LL™ = H and L satisfies (5).

The number of multiplications for the above two algorithms
is exactly K2. In general, D-DFD methods perform well and
can provide two to three orders of improvement in magni-
tude of probability of error when compared with conventional
linear detectors. However, the output of D-DFD is still a sub-
optimal solution. Simulation results show that, in most of
the cases, there still exists a substantial gap in performance
between the D-DFD and the optimal solution.

III. OPTIMAL ALGORITHM BASED ON BRANCH AND
BounD

The idea of using a branch and bound method in solving
optimization problems is already well known [3].
the tradeoff between a tight lower bound and a lower bound
with less computational requirements is common in most of
the problems [4]. In this paper, the fast optimal algorithm
uses a tight MMSE lower bound and we find an iterative way
to update the lower bound such that the computational cost
for each estimation is linear in the number of the rest of unas-
signed users.

However,

We will first give a useful proposition, which is the key idea
of the fast optimal algorithm in this paper.
Proposition 1: Suppose H~' = LL” is the Cholesky decom-
position of H', and L = L™! is the inverse of L. Suppose

T
- { H(gfn),(f@m Hv;}:;m ] (6)

n,(K—n)

is the partition of H on the (K — n)th diagonal element, and

|

- Lix—n) () 0
L= - ’ A
|: Ln,(Kfn) Ln,n

Lig nyx—mn 0
Ln,(K—n) Ln,n

(7)

are the corresponding partitions for L and ﬁ, respectively.
Then, we have the following results:

7 —1
Lk —n).(k=n) = Lk _n,(k—n)

Proof: Since LL = I, we have

[ Lk —n),(k—n) L(K —n),(K=n) 0 ] 7
Ln,(K—n)L(K—n),(K—n) + Ln,nLn,(K—n) Ln,nLn,n

(10)
and 1mrned1ately gives (8). In addition, since H~* = LLT, we

have H = L7 L which implies

|
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Hence (9) can be easily obtained.

In minimizing the objective function (2), suppose, on an
arbitrary branch, b, y and H in (2) can be partitioned as
T
b= [ b(K—n) bn }
T
Yy = [ Y(K—n) Yn }

T
g | He—n,x—n)  Ha,(x—n)
Hy (s —n)

n,n

(12)

where b(x_,) has already been fixed by the branch. The ob-
jective function of the user-expurgated channel with respect
to b can then be written as

T
f(b) = bZHn,’nb’n -2 (yn - Hn,(Kfn)b(Kfn)) bn
bk —ny H (K =), (K =) (=) — 2Y(5—m)b(rc—n)  (13)

It is easy to see that the unconstrained MMSE solution for
(13) is

bo = Hy o, (yn - Hn’(Kfn)b(Kfn)) (14)

Hence, by using the result of proposition 1, we have

min F®) =gn (bx—n))

=—(&— 'l/}n)T (&n — thn) + i — 20y (15)
where

En - n nyn

1/fn = Ln,(K—n)b(K—n)

Hn = b,(TK—n)H(K—n),(K—n)b(K—n)and
(16)

VUn = y(TKfn)b(K—n)
Initially, we have {x = LTy, ¥k =0, ux = 0, v = 0. With
iterative update, the following formulae (17)~(19) enable us
to obtain fn, ’l/)n, Hny VUn fI'OHl §n+17 ¢n+17 Hn+1, Unt1 with
2n + 4 multiplications.

€nt1 = Liny1),(nin)Y(nt1) = { [fngnl]l } (17)
Here [£n41], represents the first component of £,41. Thus,

equation (17) shows that we can obtain &, from &,11 directly.

Similarly,

(18)

¥ = Wontlgiy + [Losr-m] e, [o=—n)] .,

where [tnt1],,,,, represents the sub-vector of w41 with
the first component subtracted out from t¢n41. In (18),
[ﬁn,(K,m] .k, Tepresents the (K —n)th column of f/n’(K,n).
This implieé that n multiplications are needed to get ¥, from
Yn+1. To obtain pn, we have

P = pnt1 T2k nlg_, [ﬁ(n+1) n+1)} Yo+l
2
+ [Huttnt1]y g (Ox-nlg ) (19)
Hence, we mneed n + 1 multiplications to obtain
[L(ns1).(nt1)], ¥nt1, and another 2 multiplications to

determine u,. Finally, we need 1 multiplication to evaluate

Up as

(20)

Un = Vn+1 + [y(Kfn):IK n [b(Kfn)} K



An extra n multiplications are needed to obtain g (b( K_n)).
Hence the overall number of multiplications needed is 3n + 4.
Further simplification is possible for i, when n > £, which
we will omit for the sake of brevity.

In addition to the iterative update of lower bounds, we
first sort the users according to (4) and (5), which is, in most
cases, the optimal detection sequence for the DFD method
[1]. Similar to the proof in [1], it is easy to see that this
is also the best detection sequence in terms of computational
complexity for the branch and bound algorithm.

IV. SUB-OPTIMAL ALTERNATIVE AND THE DFD
METHOD

Although the proposed branch and bound method works
very fast on average, the original problem (2) has been proved
to be NP-hard in general, hence there is no guarantee of get-
ting the result in polynomial time. In this section, we will
focus on the sub-optimal alternative when strict limitations
on computational cost exist.

Proposition 2: In the optimal algorithm, when we
branch, we choose that with the smaller lower bound and push
the other one to the stack. By doing this, the first feasible so-
lution we obtain will be exactly the output of the D-DFD
method.

Proof: Suppose for each branch, before branching down
according to (13), we update the data as,

9= yn — Hn (k—n)b(x—n)
E[ == Hn,n
b=bn (21)

The optimization within this branch will be equivalent to

min f(b) = min (5" Hjj — 25" b) (22)
b b
Then, for one level branching, we denote l~>, g, H by
- b
N bnfl
o Y1
. { - }
- Hiq ﬁ(na) 1
H=| 77 2 23
[ Hup—1 H (23)

Note here, since we just branch down by one level, 51, H 1,1
and 7 are all scalars. The MMSE lower bound of the sub-
branch is a function of b;. Considering b1 € {—1,1}, from
(15), we can easily see that,

argmin min f (5) = sign [§1 - g(q;_l)JWOPT] (24)
b1 b(p_1)
where
Mopr = L(Tnl—l),(n—l) (‘i(”_l)’(K_”+1)):,(K—n+1) (25)

From the discussion of [1], we know the decision for D-DFD
is
buoen = s () ],

= sign [[@7]1 + ]WEFD@?(nﬂ)} (26)

where
Mbrp = [Lnuli) [L(nfl),(K*"H)} (K —n+1) (27)
Using Ln,nﬂn,n = I, we obtain
Mprp = Mopr (28)

Since the number of multiplications to obtain the first feasi-
ble solution is 1.5K?% 4+ 2.5K — 1, when the strict computa-
tional limitation is above this number, we can simply pick the
current-best solution as a sub-optimal alternative.

V. SIMULATION RESULTS

In this section, we compare the error performances
and complexities of Decorrelation method, optimal D-DFD
method, and the fast optimal algorithm. A K-user CWMA
channel is considered (K = 10 in Figure 1). The signature
waveform correlation matrix H is generated as follows: First,
the signature correlation matrix R is found by computing the
correlation between randomly generated signature sequences
of 14-bits length each. The condition number of R is chosen
to be greater than 20. Second, the signal energies (i.e., the
elements of matrix W) are generated within the range [1, 3.0],
and H is calculated as H = W2ZRW?2. The SNR is chosen
so that the probability of error (calculated based on impor-
tance sampling of 10000 Monte-Carlo runs) is similar to that
observed in real applications.

Figure 1 shows the probability of error for group detec-
tion. A sub-optimal alternative with a strict 5K2 multipli-
cation limit is also presented. The number of multiplications
needed for optimal algorithm under different SNRs as a func-
tion of number of users are shown in Figure 2. In most of the
cases when noise is small, we can get the optimal solution in
0] (2K 2) multiplications.
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Figure 1: Performance of various methods (K = 10)

VI. CONCLUSION

Typically, the optimal solution to multi-user detection is re-
garded as NP-hard and unlikely to be implemented. However,
the algorithm proposed in this paper shows that there does
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Figure 2: Number of multiplications (The numbers of
multiplications for the Decorrelation and the D-DFD
method are exactly K?)

exist a fast implementation of the optimal algorithm, which
on average, has the same order of computational cost as those
of conventional methods. All the above results can be easily
extended to integral signals instead of binary ones.
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