Minor Component Analysis with Implementation
to Blind 2-channel Equalization

Jie Luo, Xieting Ling
Fudan University, Shang Hai, 200433, P.R.China
email: xtling@fudan.ihep.ac.cn

Abstract

A null space method is proposed for blind
identification of non-minimum phase linear time-variant
channels using minor component analysis. The
algorithm is proved to be globally convergent in discrete
domain. The fast convergence speed makes this
algorithm very useful for tracing a time-variant channel
in mobile communication. Some simulations are given to
show its tracking ability, and a very efficient method for
equalizing the blind channel is also proposed at the end
of this paper.

1. Introduction

In order to overcome the non-minimum phase
problem, conventional approaches for blind-channel
identification are naturally addressed using high order
cumulant (HOC) of the signal. Such HOC based
methods, as expected, suffer from computational
intensity, unreliability of high order statistics, and slow
convergence rate. Recently, Dong et al{l] proposed a
new method using two receivers and a neural network
with orthogonal learning rule for blind channel
identification. This algorithm is proved to be globally
convergent in the contiuous domian. However, due to the
difference between the continuous domain and the
discrete domain., computer simulations show that
divergence occurs when signal amplitude is relatively
large or the learning step is not very small. Meanwhile,
the algorithm needs a precise estimation of the channel
order to design the neural network. This problem is vital
but no discussion was given to it in [1].

In this paper. a new null space learning rule based on
the same network of [1] is proposed. The algorithm is
proved to be much faster than which of [1] and is
globally convergent in the discrete domain. The problem
of channel order determination has also been solved in
this paper. Simulation results are given to show its
tracking ability and a very efficient method to equalize
the blind channel is presented at the end of this paper.
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2. Network structure

Suppose the linear communication channels can be
described as FIR filters, the structure of the network
proposed in {1] is shown in Figure 1.

Figure 1. Structure of the network proposed in [1]

Here g(x) represents the common input signal sequence,
H,(j=12) describes the jth communication channel.
and  (k)(j=12) is the output sequence of the jth
channel received by the jth sensor. p
represent the weights of the neural network whose output
is . Then we can describe the channels’ transfer
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function in the domain of Z as

Q=S U= ®

where L is the higher order of the two channels. Here
we just suppose we have known the order exactly. We
define two arrays

X =[x (k). .x, (k= L), =x,(K). .~x,(k~L)]
A =[h,(0). .. (L), (0}, hs(L)]
in space R***?, and suppose the input signal S(k) to be

random, we can reach the following theorem

Theorem 1: The correlation matrix of ¢, will have a

distinctive zero eigenvalue whose corresponding
eigenvector will just be the normalized vector of A, if
the following conditions are satisfied



Ly () and H, (2) have no common zeros.

2. At least the higher order of the channels is L .
Proof: First, in the aspect of existence, We can describe
the relationship between x,(k) and S(k) as

5(0) = Sk )h0) @

x (k) = 2ok = j)()

=0
If the correlation matrix of ¢, is denoted as R,

RHA = E[,\”’k/\"k’]ﬁ = E[X’,X’,(’ﬁ] =0 3
can be obtained, that means the normalized vector of A
is an eigenvector of R and the corresponding eigenvalue
of itis 0.

Second, in the aspect of uniqueness. Considering the
following equation
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it has been proved that when condition 1.2 is satisfied,
the transfer matrix will have full column rank[2]. Since
S(k) is random, the space spanned by §, will have a

dimension of 27 + 1, indicating that the zero eigenvalue
is distinctive. Proof completed.

Considering R is quasipositive definite, we can easily
find out that the zero eigenvalue is the minimum
eigenvalue of matrix R and the normalized vector of A
is just the minor component of R .

3. Learning algorithm and convergence
discussion in discrete domain

As has been mentioned by Oja in [3], the convergence
proof in the continuous domain will sometimes not be
true in the discrete domain. Similar to the appendix of
{3], in this section, we will propose our learning
algorithm in the discrete domain and then give the proof
of its global convergence.

Suppose 0<b<1, we define () -1,

[P +1

. SV Since ¢<1 and 420, (1-¢)_, can
[P(1) 9

always be satisfied. Then our learning rule can be written

as

_ 1= oy s s (9)
P(t+1)= P(t)+b(—)[-—yX(t)+ —— P(t)] ~EP(Y)
q |P(1)
It can be easily proved out that all the normalized
eigenvector of R are the equilibrium points of (5), we

E =
°

2236

will prove that only the normalized minor component of
R is stable.

First, in the aspect of direction, we denote the angle
between A1) and X(1) in R¥**? as A1) and the angle

between P(t+1) and X(1) as ot +1), define
PR
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and considering 2 _ | ]3(,)|1 | /\7(,)[1 cos” (1) » We can get from
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p(b) = M =
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(1-8) <1
that is to say o) - 7 can be ensured for every learning
2

step. Especially when 6=1. p)=0 can be got for every

input vector in just one step, indicating that the network
will finally converge to the minor component in the
aspect of direction.

In the aspect of amplitude, we have
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This gives the upper bound of amplitude. Then let us
consider the lower bound. If |5} < 1, from (8), we have
B+ 1) > |P(0) (14 5crg o) ©)
indicating the amplitude has a tendency of increasing.
Meanwhile, when | bretg* &) | p(,)lz >1. due to (8),
B +1) 2 U +bzdg29(t),);/_ 21 (10)
/1P

can be obtained. In fact, this insure us that the lower
bound of the amplitude will finally be 1. Since O z,
2

|P(r + l)l2 =

(1 + bzctgze(t)) =1+bctg’ K1)

(1 +bzc,gzg(,)) — 1 surely holds, accordingly affirming the

convergent point of the amplitude to be 1. Proof
completed.

4. Channel order determination

Though we have prove the global convergence, there
is still one problem left unsolved. Accurately estimating
the channel order is vital to our method but in (4) we just
supposed it to be L. Some HOC based methods for order



determination have already been proposed, but computer
simulations show they often fail to insure a precise order
estimation. In this section, we will present an approach
not appealing in appearance but very efficient to
determine the higher order of the channels.

Suppose we have two neural networks, each is the
sarne as the one shown in figure 1. The two networks are
both designed according to an arbitrary order L. and
their inputs are the same ( ,?k(,)). The only difference

between them is the initial condition. On one hand, if the
supposed order L is higher than the actual one, from (4)
we can see the minor component of R will no longer be
distinctive. Since the two neural networks are different in
initial condition, their learning result will also be
different. So the correlation value of the two weight
vectors will have a large probability to be small, at least
not too high to be above 0.95 for example. On the other

hand, if the supposed order L is lower, ¥, will then

span the entire space of dimension 27 +2. Then the
minor eigenvalue of R will no longer be zero, but most
probably will remain distinctive. As we have discussed
before, the two networks will still converge to the
distinctive minor component. Their crosscorrelation of
weight vectors will keep a very high value close to 1.
From this phenomenon, whether the arbitrary order is
higher or not can be easily judged. That will be enough
for us to find the proper order.

We design the two neural networks in an arbitrary
high order first, then let them have a downward search to
find the proper channel order. Meanwhile, every time
when the current order L of the two NN is not higher
than that of the real channel, we increase the design
order to L +1. Thus, if the higher order of the physical
channels is [, the design order of the two NN will

finally oscillate between [, and I +1. Of course, the

proper order can be picked out easily. Because of the
avoiding of high order statistics caculation and the high
convergence speed of the algorithm, our order
determination method is very accurate and efficient to be
put into practice. Furthermore, it can even trace the
channel order varying in a relatively low speed.

5. Final structure and channel equalization

With the discussion in section 3 and 4, we can present
our final structure of blind channel identification in
figure 2. Here without losing the high convergence
speed, we add a moving average filter behind each neural
network to reduce the effect of noise on the output. In
figure 2, NN is used to identify the channel coefficients
while NN2 and NN3 are used to estimate the channel
order.
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Next, we will propose our decision~feedback approach
to equalize the identified channel. Suppose we have
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Figure 2. Structure of the network in practice
(P, P, P, respectively represent the weight

vector of the neural networks)

20 point moving | {20 point moving

known the signal sequence sent before to be 3, |,
S, =[slk-1) ... ok —L)]', and we have got the channel
coefficient to be 7, 7, =[m(0) .. h‘(L)]‘. What we do

not know is just the current one step of the signal, which
we suppose to be s, (k) then ﬁl,{sé (k)] - x, (k) must holds
Moy

true. That means

5, (k)= ﬁ@[xl(k)—ﬁ;[s_iﬂ an

from this equation, the right signal can be easily found.
In practice, however, the channels and signals are all
blind to us, it is improbably to get §, , correctly.
Fortunately, computer simulations show that we can
initiate the first vector §, with a random vector, and with

the identified channel coefficients 7,, the equalization

network will find the right answer in just several steps.
The equalization structure is shown in figure 3.

Identification
Result % (k )

Guessed sequence I-——-b@entiﬁed Channel

Equalization
Output

»

Figure 3. Equalization structure



6. Simulation results

In this section, two simulations are given to show the
tracking ability and equalizing ability of our network. In
each simulation, we initiate the weights of the neural
networks with a normalized random vector, and let 5 =1
to sct the convergence ratc at its fastest point. For
convenience, we omit the order determination course in
the following simulations.

Simulation 1: Here the inputs g(;) of the neural

networks are outputs of two channels with PAM scheme
driven by a randomly distributed 4-ary transmitting
symbols (k). The tracking ability of the network is

simulated by setting the symbol rate at 300kHz with
channel Doppler spread 100Hz, corresponding to a speed
of a mobile receiver up to about 70mph. For PAM
signals, the time-varying channel coefficients are
simulated by low frequency Guassian noise with the
bandwidth equal to the Doppler spread. The trajectories
of the first three coefficients of the first channel are
given by the dotted lines in figure 4, while their
estimations are given by the solid lines.
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Figure 4. The trajectories of channel

Simulation 2: The order of this simulation is to show the
equalizing ability of the network. This time the
transmitting symbols s(k) is randomly distributed 2-ary

sequence. The actual channel impulse responses are set
as f,=[10 15 07 -04] . A,=[10 09 o6 02]. We
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reduce SNR of the receivers to 14db, figure 5 show the
eye graph of the verdictor input described in equation
(5). Although a precise channel identification can no
longer be obtained with low SNR, we can still get a good
equalization result which indicate the high anti-noise
capacity of the equalizer.
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Figure 5. Eye graph of verdictor input

7. Conclusions

A new method for blind 2-channel equalization using
minor component analysis is proposed. Proof and
computer simulations show its high convergence speed,
low computational complicity and high anti-noise
capacity. It is very efficient in equalizing time-variant
MA channels in mobile communication.
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