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Approaching Blokh-Zyablov Error Exponent with
Linear-Time Encodable/Decodable Codes

Zheng Wang, Student Member, IEEE, and Jie Luo, Member, IEEE

Abstract—Guruswami and Indyk showed in [1] that Forney’s
error exponent can be achieved with linear coding complexity
over binary symmetric channels. This paper extends this conclu-
sion to general discrete-time memoryless channels and shows that
Forney’s and Blokh-Zyablov error exponents can be arbitrarily
approached by one-level and multi-level concatenated codes with
linear encoding/decoding complexity. The key result is a revision
to Forney’s general minimum distance decoding algorithm, which
enables a low complexity integration of Guruswami-Indyk’s outer
codes into the concatenated coding schemes.

Index Terms—Coding complexity, concatenated code, error
exponent.

I. INTRODUCTION

CONSIDER communication over a discrete-time memory-
less channel modeled by a conditional point mass func-

tion (PMF) or probability density function (PDF) pY |X(y|x),
where x ∈ X and y ∈ Y are the input and output symbols,
X and Y are the input and output alphabets, respectively.
Let C be the Shannon capacity. Fano showed in [2] that the
minimum error probability Pe for block channel codes of rate
R and length N is bounded by

lim
N→∞

− log Pe

N
≥ E(R), (1)

where E(R) is a positive function of channel transition
probabilities, known as the error exponent. For finite input
and output alphabets, without coding complexity constraint,
the maximum achievable E(R) is given by Gallager in [3],

E(R) = max
pX

EL(R, pX), (2)

where pX is the input distribution, and EL(R, pX) is given
for different values of R as follows,

maxρ≥1 {−ρR + Ex(ρ, pX)} 0 ≤ R ≤ Rx

−R + E0(1, pX) Rx ≤ R ≤ Rcrit

max0≤ρ≤1 {−ρR + E0(ρ, pX)} Rcrit ≤ R ≤ C.
(3)

The definitions of other variables in (3) can be found in [4]. If
we replace the PMF by PDF, the summations by integrals and
the max operators by sup in (2), (3), the maximum achievable
error exponent for continuous channels, i.e., channels whose
input and/or output alphabets are the set of real numbers [3],
is still given by (2).

In [4], Forney proposed a one-level concatenated coding
scheme, which can achieve the following error exponent,
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known as Forney’s exponent, for any rate R < C with a
complexity of O(N4),

Ec(R) = max
ro∈[R

C ,1]
(1 − ro)E

(
R

ro

)
, (4)

where ro and R are the outer and the overall rates, respectively.
Forney’s coding scheme concatenates a maximum distance
separable (MDS) outer error-correction code with well per-
formed inner channel codes. To achieve Ec(R), the decoder is
required to exploit reliability information from the inner codes
using a general minimum distance (GMD) decoding algorithm
[4]. Forney’s GMD algorithm essentially carries out outer
code decoding, under various conditions, for O(N) times. The
overall decoding complexity of O(N4) is due to the fact that
the outer code (which is a Reed-Solomon code) used in [4]
has a decoding complexity of O(N3). Forney’s concatenated
codes were generalized to multi-level concatenated codes, also
known as the generalized concatenated codes, by Blokh and
Zyablov in [5]. As the order of concatenation goes to infinity,
the error exponent approaches the following Blokh-Zyablov
bound (or Blokh-Zyablov error exponent) [5][6],

E(∞)(R) = max
pX ,ro∈[R

C ,1]

(
R

ro
− R

) [∫ R
ro

0

dx

EL(x, pX)

]−1

.

(5)

In [1], Guruswami and Indyk proposed a family of linear-
time encodable/decodable nearly MDS error-correction codes.
By concatenating these codes (as outer codes) with fixed-
lengthed binary inner codes, together with Justesen’s GMD
algorithm [7], Forney’s error exponent was shown to be
achievable over binary symmetric channels (BSCs) with a
complexity of O(N) [1], i.e., linear in the codeword length.
The number of outer code decodings required by Justesen’s
GMD algorithm is only a constant1, as opposed to O(N)
in Forney’s case [4]. Since each outer code decoding has a
complexity of O(N), upper-bounding the number of outer
code decodings by a constant is required for achieving the
overall linear complexity. Because Justesen’s GMD algorithm
assumes binary channel outputs [7][8], achievability of For-
ney’s exponent was only proven for BSCs in [1, Theorem 8].

In this paper, we show that Forney’s GMD algorithm can be
revised to carry out outer code decoding for only a constant
number of times2. With the help of the revised GMD algo-
rithm, by using Guruswami-Indyk’s outer codes with fixed-
lengthed inner codes, one-level and multi-level concatenated

1Strictly speaking, the required number of outer code decodings is linear
in the inner codeword length, which is fixed at a reasonably large constant.

2The revision can also be regarded as an extension to Justesen’s GMD
decoding given in [7].
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codes can arbitrarily approach Forney’s and Blokh-Zyablov
exponents with linear complexity, over general discrete-time
memoryless channels.

II. REVISED GMD ALGORITHM AND ITS IMPACT ON

CONCATENATED CODES

Consider one-level concatenated coding schemes. Assume,
for an arbitrarily small ε1 > 0, we can construct a linear
encodable/decodable outer error-correction code, with rate ro

and length No, which can correct t symbol errors and d symbol
erasures so long as 2t+d < No(1− ro−ε1). Note that this is
possible for large No as shown by Guruswami and Indyk in
[1]. To simplify the notations, we assume No(1 − ro − ε1) is
an integer. The outer code is concatenated with suitable inner
codes with rate Ri and fixed length Ni. The rate and length
of the concatenated code are R = roRi and N = NoNi,
respectively. In Forney’s GMD decoding, inner codes forward
not only the estimates x̂m = [x̂1, . . . , x̂i, . . . , x̂No ] but also
a reliability vector α = [α1, . . . , αi, . . . , αNo ] to the outer
code, where x̂i ∈ GF (q), with q being a positive integer,
0 ≤ αi ≤ 1 and 1 ≤ i ≤ No. Let

s(x̂, x) =
{

+1 x = x̂
−1 x �= x̂

. (6)

For any outer codeword xm = [xm1, xm2, . . . , xmNo ], define
a dot product α · xm as follows

α · xm =
No∑
i=1

αis(x̂i, xmi) =
No∑
i=1

αisi. (7)

Theorem 1: There is at most one codeword xm that satis-
fies

α · xm > No(ro + ε1). (8)

Theorem 1 is implied by Theorem 3.1 in [4].
Rearrange the weights in ascending order of their values

and let i1, . . . , ij , . . . , iNo be the indices such that

αi1 ≤ · · · ≤ αij ≤ · · · ≤ αiNo
. (9)

Define qk = [qk(α1), . . . , qk(αj), . . . , qk(αNo)], for 0 ≤ k <
1/ε2, where ε2 > 0 is a positive constant with 1/ε2 being an
integer, and qk(αij ) is given by

qk(αij ) =

⎧⎨
⎩

0 if αij ≤ kε2

and ij ≤ No(1 − ro − ε1)
1 otherwise

. (10)

Define dot product qk · xm as

qk · xm =
No∑
i=1

qk(αi)s(x̂i, xmi) =
No∑
i=1

qk(αi)si. (11)

Then following theorem gives the key result that enables the
revision of Forney’s GMD decoder.

Theorem 2: If α · xm > No

(
ε2
2 + (ro + ε1)(1 − ε2

2 )
)
,

then for some 0 ≤ k < 1/ε2, qk·xm > No(ro + ε1).
Proof: Define L = No(1 − ro − ε1), which is assumed

to be an integer. Define a set of values cj = (j − 1/2)ε2 for

1 ≤ j ≤ 1/ε2 and an integer p = �αiL/ε2�, where 1 ≤ p ≤
1/ε2. 3 Note that we assume 1/ε2 is an integer.

Let

λ0 = c1

λk = ck+1 − ck, 1 ≤ k ≤ p − 1
λp = αiL+1 − cp

λh = αih−p+L+1 − αih−p+L
, if p < h < p + No − L

λp+No−L = 1 − αiNo
. (12)

We have

j−1∑
k=0

λk =
{

cj 1 ≤ j ≤ p
αij−p+L p < j ≤ p + No − L

, (13)

and
p+No−L∑

k=0

λk = 1. (14)

Define a new weight vector α̃ = [α̃1, . . . , α̃i, . . . , α̃No ] with

α̃i =
{

argmincj ,1≤j≤p|cj − αi| αi ≤ αiL

αi αi > αiL

. (15)

Define pk = [pk(α1), . . . , pk(αi), . . . , pk(αNo)] with 1 ≤ k ≤
p + No − L such that for 0 ≤ k < p

pk = qk, (16)

and for p ≤ k ≤ p + No − L

pk(αi) =
{

0 αi ≤ αik−p+L

1 αi > αik−p+L

. (17)

We have

α̃ =
p+No−L∑

k=0

λkpk. (18)

Define a set of indices

U = {i1, i2, . . . , iL}. (19)

According to the definition of α̃i, for i /∈ U , α̃i = αi. Hence

α̃ · xm = α · xm +
∑
i∈U

(α̃i − αi) si. (20)

Since |α̃i − αi| ≤ ε2/2, and si = ±1, we have

∑
i∈U

(α̃i − αi) si ≥ −Lε2

2
. (21)

Consequently, α · xm > No

(
ε2
2 + (ro + ε1)

(
1 − ε2

2

))
=

No − L(1 − ε2
2 ) implies

α̃ · xm > No − L = No(ro + ε1). (22)

3Note that the value of p cannot be 0. Because if p = 0, i.e.,
αiNo(1−ro−ε1) = 0, then there are at least No(1 − ro − ε1)

zeros in vector α. Consequently, α · xm ≤ No(ro + ε1) <
No

( ε2
2

+ (ro + ε1)
(
1 − ε2

2

))
, which contradicts the assumption that α ·

xm > No
( ε2

2
+ (ro + ε1)(1 − ε2

2
)
)
.
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If pk · xm ≤ No − L for all pk’s, then

α̃ · xm =
p+No−L∑

k=0

λkpk · xm

≤ (No − L)
p+No−L∑

k=0

λk

= No − L, (23)

which contradicts (22). Therefore, there must be some pk that
satisfies

pk · xm > No − L = No(ro + ε1). (24)

Since for k ≥ p, pk has no more than No − L number of
1’s, which implies pk ·xm ≤ No −L, the vectors that satisfy
(24) must exist among pk with 1 ≤ k < p. In words, for some
k, qk · xm > No − L = No(ro + ε1).

Theorems 1 and 2 indicate that, if xm is transmitted and
α · xm > No

(
ε2
2 + (ro + ε1)(1 − ε2

2 )
)
, for some 0 ≤ k <

1/ε2, errors-and-erasures decoding specified by qk (where
symbols with qk(αi) = 0 are erased) will output xm. Since
the total number of qk vectors is upper bounded by a constant
1/ε2, the outer code carries out errors-and-erasures decoding
only for a constant number of times. Consequently, a GMD
decoding that carries out errors-and-erasures decoding for all
qk’s and compares their decoding outputs can recover xm

with a complexity of O(No). Since the inner code length Ni

is fixed, the overall complexity is O(N).
The following theorem gives an error probability bound for

one-level concatenated codes with the revised GMD decoder.
Theorem 3: Assume inner codes achieve Gallager’s error

exponent given in (2). Let the reliability vector α be generated
according to Forney’s algorithm presented in [4, Section 4.2].
Let xm be the transmitted outer codeword. For large enough
N , error probability of the one-level concatenated codes is
upper bounded by

Pe ≤ P
{
α · xm ≤ No

(ε2

2
+ (ro + ε1)

(
1 − ε2

2

))}
≤ exp [−N (Ec(R) − ε)] , (25)

where Ec(R) is Forney’s error exponent given by (4) and ε
is a function of ε1 and ε2 with ε → 0 if ε1, ε2 → 0.

The proof of Theorem 3 follows an idea similar to For-
ney’s analysis presented in [4, Section 4.2]. The decoding
failure condition in [4, Section 4.2], α · xm ≤ Noro (which
is supported by [4, Theorem 3.2]), should be replaced by
α · xm ≤ No

(
ε2
2 + (ro + ε1)(1 − ε2

2 )
)

(which is supported
by Theorem 2 in this letter). Since the introduced losses, ε1

and ε2, can be made arbitrarily small, it is straightforward to
combine them into ε in (25), and to show that ε can also be
made arbitrarily small.

The difference between Forney’s and the revised GMD
decoding schemes lies in the definition of errors-and-erasures
decodable vectors qk, the number of which determines the
decoding complexity. Forney’s GMD decoding needs to carry
out errors-and-erasures decoding for a number of times linear
in No, whereas ours for a constant number of times. Although
the idea behind the revised GMD decoding is similar to
Justesen’s GMD algorithm [7], Justesen’s work has focused on
error-correction codes where inner codes forward Hamming

distance information (in the form of an α vector) to the
outer code. The number of outer code decodings performed in
Justesen’s GMD depends on the the number of possible values
elements of α can take, which is upper-bounded by the inner
codeword length for the BSC case. However, such a bound
does not hold for a general memoryless channel.

Applying the revised GMD algorithm to multi-level con-
catenated codes [5][6] is quite straightforward. Achievable
error exponent of an m-level concatenated codes is given in
the following Theorem.

Theorem 4: For a discrete-time memoryless channel with
capacity C, for any ε > 0 and any integer m > 0, one can
construct a sequence of m-level concatenated codes whose
encoding/decoding complexity is linear in N , and whose error
probability is bounded by

lim
N→∞

− log Pe

N
≥ E(m)(R) − ε,

E(m)(R) = max
pX ,ro∈[R

C ,1]

R
ro

− R

R
rom

∑m
i=1

[
EL

(
( i

m ) R
ro

, pX

)]−1 .

(26)

The proof of Theorem 4 can be obtained by combining
Theorem 3 and the derivation of E(m)(R) in [5][6].

Note that limm→∞ E(m)(R) = E(∞)(R), where E(∞)(R)
is the Blokh-Zyablov error exponent given in (5). Theorem 4
implies that, for discrete-time memoryless channels, Blokh-
Zyablov error exponent can be arbitrarily approached with
linear encoding/decoding complexity.

III. CONCLUSIONS

We proposed a revised GMD decoding algorithm for con-
catenated codes over general discrete-time memoryless chan-
nels. By combining the GMD algorithm with Guruswami and
Indyk’s error correction codes, we showed that Forney’s and
Blokh-Zyablov error exponents can be arbitrarily approached
by one-level and multi-level concatenated coding schemes,
respectively, with linear encoding/decoding complexity.
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