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Optimal Grouping Algorithm for a Group Decision
Feedback Detector in Synchronous CDMA
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Abstract|The Group Decision Feedback (GDF) detector
is studied in this paper. The computational complexity of a
GDF detector is exponential in the largest size of the groups.
Given the maximum group size, a grouping algorithm is
proposed. It is shown that the proposed grouping algo-
rithm maximizes the Asymptotic Symmetric Energy (ASE)
of the multiuser detection system. Furthermore, based on
a set of lower bounds on Asymptotic Group Symmetric En-
ergy (AGSE) of the GDF detector, it is shown that the
proposed grouping algorithm, in fact, maximizes the AGSE
lower bound for every group of users. Together with a fast
computational method based on branch-and-bound, the the-
oretical analysis of thegrouping algorithm enables the o²ine
estimation of the computational cost and the performance of
GDF detector. Simulation results on both small and large
size problems are presented to verify the theoretical con-
clusions. All the results in this paper can be applied to
the Decision Feedback (DF) detector by simply setting the
maximum group size to 1.

Keywords| Multiuser detection, decision feedback, opti-
mization methods, code division multiple access.

I. Introduction

IN synchronous Code Division Multiple Access (CDMA)
communication systems, the near-far problem caused by

the interuser interference has been widely studied. With
the additive white Gaussian noise assumption and when
the source signal is binary- or integer-valued, the conven-
tional detector does not produce reliable decisions for the
CDMA channel [?]. The computation of the optimal detec-
tion, however, is generally NP-hard and thus is exponential
in the number of users [2], unless the signature wave form
correlation matrix has a special structure [10] [9]. Several
new algorithms have been proposed to provide reliable so-
lutions with relatively low computational cost. Among the
sub-optimal algorithm groups, the decision-driven detec-
tion methods, including decision feedback (DF) [5] [11],
group detection [6], and multistage detection [3] [4],
are popular. Although the DF method is simple and per-
forms well, there are situations when a marginal increase
in computation can provide signi¯cant improvement in per-
formance [12].

The main drawback of DF is that detections are made
for one user at a time; the decision on the strong user
is obtained by treating the weak users as noise. However,
when user chip sequences are correlated, this noise becomes
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biased, and thus is naturally harmful to the userwise de-
tection. The idea of sequential group detection was ¯rst
introduced by Varanasi in [6] and can be viewed as the
Group Decision Feedback (GDF) detector. GDF detector
divides users into several groups. The users with relatively
high correlations are assigned to the same group, and the
correlation between users in di®erent groups are relatively
low. Similar to DF detector, GDF detector makes decisions
sequentially based on successive cancelation. However, in-
stead of making decisions on single user at a time, GDF
detector makes decisions groupwise, i.e., the decisions on
users in the same group (the correlated users) are made
simultaneously. The computational expense for a GDF de-
tector is approximately exponential in the largest group
size, and this is expected to be small if the largest group
size is small.

In [6], the sizes of the groups are design parameters.
However, in practice, given a user signal set, it is not easy
for one to ¯nd the correlated users and assign them to
groups. Since the largest group size is closely related to the
overall computational cost, in this paper, we consider the
largest group size as the only design parameter. A group-
ing and ordering algorithm is proposed to ¯nd the optimal
size and users for each group. Theoretical results are given
to show the optimality in terms of the Asymptotic Sym-
metric Energy (ASE). Together with a fast computational
method modi¯ed from [12], the proposed GDF detection
method provides an e±cient way to improve the DF detec-
tion with marginal increase in computational cost. Simula-
tion results on small and large size problems are presented
to verify the theoretical conclusions.

The rest of the paper is organized as follows. In section
II, we review the problem model and the theoretical results
on the performance measure given in [6]. In section III,
given the largest group size, a grouping and ordering al-
gorithm is proposed to maximize the ASE of the system.
Proof of optimality is given in the appendix. A fast com-
putational method is proposed for the GDF detector and a
theoretical upper bound on computational cost is derived.
Simulation results on a small example as well as on a sys-
tem of 100 users are presented in section IV. Conclusions
are provided in section V.

II. Problem Formulation and Performance
Measure of GDF Detector

A discrete-time equivalent model for the matched-¯lter
outputs at the receiver of a CDMA channel is given by the
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K -length vector [2]

y = Hb + n (1)

where b 2 f¡1;+1gK denotes the vector of bits transmit-
ted by the K active users. Here H is a nonnegative de¯nite
signature waveform correlation matrix, n is a real-valued
zero-mean Gaussian random vector with a covariance ma-
trix ¾2H. It has been shown that this model holds for both
baseband [2] and passband [11] channels with additive
Gaussian noise.

When all the user signals are equally probable, the opti-
mal solution of (1) is the output of a Maximum Likelihood
(ML) detector [2]

ÁML : b̂ = arg min
b2f¡1;+1gK

¡
bT Hb ¡ 2yT b

¢
(2)

which is generally NP-hard and exponentially complex to
implement.

The sequential group detection based on the idea of suc-
cessive cancellation was ¯rst introduced by Varanasi in
[6]. Suppose users are partitioned into an ordered set of
P groups, G0; : : : ; GP¡1. The number of users in group
Gi is denoted by jGij, and naturally

PP¡1
i=0 jGij = K. The

decision on group fG0g is made by

b̂G0 = arg min
bG02f¡1;+1gjG0j

"
min
b ¹G0

¡
bTHb¡ 2yTb

¢
#

(3)

where bG0 denotes the part of vector b that corresponds
to users in group G0, and ¹G0 denotes the complement of
G0, i.e., the union of G1; : : : ; GP¡1. The decisions of (3)
are then used to subtract the multiple-access interference
due to users in G0 from the remaining decision statistics
y ¹G0

. The detector for the next group G1 is designed un-
der the assumption that the multiple-access interference
cancelation is perfect. This process of interference cance-
lation and group detection is carried out sequentially for
users in groups G2; : : : ;GP¡1, with the group detector for
group Gi taking advantage of the decisions made by group
detectors for G0; : : : ; Gi¡1. Denote the channel model for
the user expurgated channel that only has users in groups
Gi; : : : ; GP¡1 by

y(i) = H(i)b(i) + n(i) (4)

The decisions on group Gi can be represented as

b̂Gi = arg min
b(i)
Gi
2f¡1;+1gjGij

2
4min

b(i)
¹Gi

³
b(i)T H(i)b(i)¡ 2y(i)T b(i)

´
3
5

(5)
In multi-user detection, the Asymptotic Symmetric En-

ergy (ASE) is an important performance measure. De¯ne
the probability that not all users are detected correctly as
P (¾; Á), then the ASE for the detector Á [11] is given by

´(Á) = sup

8
<
:e ¸ 0; lim

¾!0

P (¾; Á)

Q
³p

e
¾

´ <1

9
=
; (6)

where ¾2 is the additive noise variance (see (1)), and
Q(x) =

R1
x

1p
2¼
e¡

x2
2 dx. The ASE for the optimal detector

ÁML is given by

´(ÁML) = d2
min = min

e2f¡1;0;1gKnf0gK
eTHe (7)

where dmin is known as the minimum distance of matrix
H [8] and \n" is the set subtraction.

Similarly, we can de¯ne the Asymptotic Group Symmet-
ric Energy (AGSE) for each user group. For a group detec-
tor, de¯ne the probability that not all users in group fGig
are detected correctly as PGi(¾; Á), and correspondingly we
have

´Gi(Á) = sup

8
<
:e ¸ 0; lim

¾!0

PGi(¾; Á)

Q
³p

e
¾

´ <1

9
=
; (8)

as the AGSE for group fGig. Although an exact perfor-
mance analysis of GDF detector is intractable [6], one
can obtain upper and lower bounds for the AGSE of all
groups. In the above description of the GDF detector, de-
¯ne J(i) =

h
H(i)¡1

i
, and denote J(i)

GiGi to be the sub-matrix

of J(i) that only contains the columns and rows correspond-
ing to users in Gi. De¯ne dGi ;min to be the minimum dis-

tance of matrix
³
J(i)
GiGi

´¡1
, i.e.,

d2
Gi ;min = min

e2f¡1;0;1gjGijnf0gjGi j
eT
³
J(i)
GiGi

´¡1
e (9)

Then the AGSE for group Gi can be bounded by

min(d2
G0;min; : : : ; d

2
Gi;min) · ´Gi(Á) · d2

Gi;min (10)

A similar result can be found in [6]. The upper bound in
(10) is reached when all decisions on the users in group G1
through group Gi¡1 are correct.

III. Optimal Grouping and Detection Order for
GDF Detector

It is known that the performance of the decision-driven
multi-user detector is signi¯cantly a®ected by the order of
the users [?]. Since the overall computation for GDF de-
tector is exponential in the maximum group size, which
is de¯ned by jGjmax = max(jG0j; : : : ; jGP¡1j), in this sec-
tion, we develop a grouping and ordering algorithm that
maximizes the ASE of the GDF detector given jGjmax as
a design parameter.

Denote the Cholesky decomposition of H by LT L = H,
where L is a lower triangular matrix. Multiply both sides
of (1) by (L¡1)T to obtain the white noise model [5]

(L¡1)T y = Lb + (L¡1)Tn (11)

De¯ne ~y = (L¡1)Ty, ~n = (L¡1)T n, partition the matrices
and the vectors according to G0 and ¹G0 to obtain
·

~yG0

~y ¹G0

¸
=
·

LG0G0 0
L ¹G0G0 L ¹G0 ¹G0

¸ ·
bG0

b ¹G0

¸
+
·

~nG0

~n ¹G0

¸
(12)
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Since L ¹G0 ¹G0 is a full rank matrix by assumption, the deci-
sion on group G0 in (3) can be written as

b̂G0 = arg min
bG02f¡1;+1gjG0j

°°LG0G0bG0 ¡ ~yG0

°°2
2

(13)

Therefore, the AGSE of group G0 is determined by the
minimum distance of matrix LTG0G0

LG0G0 . Since H = LT L,
we have

LTG0G0LG0G0 =
£
(H¡1)G0G0

¤¡1
=
h
J(0)
G0G0

i¡1

´G0(ÁGDFD ) = d2
G0;min (14)

A similar result can be obtained for group Gi. In the de-
scription of GDFD in section II, if we let H(i) = L(i)T L(i),

then L(i)T
GiL

(i)
Gi =

³
J(i)
GiGi

´¡1
. Since H(i) is the south-

east sub-diagonal matrix of H, L(i) is the south-east sub-
diagonal matrix of L and L(i)

Gi = LGi . Hence,

LTGiGiLGiGi =
³
J(i)
GiGi

´¡1
(15)

The above result shows that dGi;min is determined by the
diagonal block-matrix LGi of L. Now, given all the deci-
sions on group G0 to group Gi¡1 are correct, denote the
probability that not all the users in group Gi are detected
correctly by Pe(GijG0; :::; Gi¡1)¼ Q

³
dGi;min

¾

´
. The prob-

ability that not all the K users are detected correctly can
be represented as

P (¾; Á) ¼ 1 ¡
P¡1Y

i=0

·
1 ¡Q

µ
dGi;min
¾

¶¸
(16)

Therefore, the ASE of GDF detector is given by

´(ÁGDFD ) = min(d2
G0;min; :::; d

2
GP¡1;min) (17)

Since jGjmax is given as a design parameter, the problem is
then to ¯nd an optimal partition and detection order that
maximizes min(d2

G0;min ; :::;d2
GP¡1;min ). Notice that di®er-

ent GDF detectors may have the same jGjmax but di®erent
numbers of groups since P is not a design parameter.

Grouping and Order Algorithm : Find the optimal
grouping and detection order via the following steps.
Step 1: Partition the K users into two groups fG0g and
f ¹G0g with jG0j · jGjmax . Among these partitions
(fG0g and jG0j are not ¯xed), select the one that maxi-
mizes dG0;min (which is the minimum distance of matrixh
J(0)
G0G0

i¡1
).

Step 2: Partition the remaining K ¡ jG0j users into two
groups G1 and ¹G1 with jG1j · jGjmax . Among these par-
titions, select the one that maximizes dG1;min.
Step 3: Continue this process until all the users are as-
signed to groups.

Example 1 : The algorithm is illustrated by the follow-
ing 4-user example. Suppose the H matrix is given by

H =

2
4

4:30 1:00 0:60 0:30
1:00 3:00 1:70 0:50
0:60 1:70 2:20 0:70
0:30 0:50 0:70 1:90

3
5 (18)

Assume that the desired maximum group size is jGjmax =
2. In step 1 of the algorithm, the possible choices for group
G0 and the resulting d2

G0;min are shown in Table I. The

User(s) 0 1 2 3 0,1
d2
G0 ;min 3.96 1.62 1.14 1.67 1.69

User(s) 0,2 0,3 1,2 1,3 2,3
d2
G0 ;min 1.14 1.68 1.74 1.62 1.24

TABLE I
Different choices of group G0 and the corresponding

d2G0;min

best choice for group G0 is fuser 0g. Then, for the user
expurgated channel, we have

H(1) =

"
3:00 1:70 0:50
1:70 2:20 0:70
0:50 0:70 1:90

#
(19)

The possible choices for groupG1 and the resulting dG1 ;min
are shown in Table II. We can see that the best choice for

User(s) 1 2 3 1,2 1,3 2,3
d2
G1;min 1.69 1.14 1.68 1.78 1.68 1.24

TABLE II
Different choices of group G1 and the corresponding

dG1;min

group G1 is fuser 1, user 2g. Naturally fuser 3g will be
the last group. The resulting ASE for this partitioning and
ordering is ´ = 1:78.

Note that the above example has 4 users and jGjmax = 2.
One may think that partitioning users into 2 groups with
2 users in each group is a good choice. However, since user
0 is a strong user, it has to be detected ¯rst. And since
user 1 and user 2 are seriously correlated, they have to
be assigned to the same group. If, for example, we assign
two groups as fuser0; user3g and fuser1; user2g. As a
punishment of detecting the weak user (user 3) ¯rst, we
get ´ = 1:68 < 1:78.

Proposition 1 : The proposed grouping and ordering
algorithm maximizes the ASE in (17).

See Appendix for the proof.
The proposed grouping and ordering algorithm is also

optimal in the following sense.
Proposition 2 : The proposed grouping and ordering

algorithm maximizes the performance lower bound in (10)
for every group. In other words, suppose G is the grouping
and ordering result obtained from the proposed algorithm,
and Gk is one of the groups in G. Further suppose there
is another group and detection sequence Ĝ with Ĝl being
one of the groups in Ĝ, and Ĝl = Gk . Then the following
result holds,

min(d2
G1;min; : : : ;d2

Gk;min) ¸ min(d2
Ĝ1 ;min

; : : : ; d2
Gl;min)

(20)
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See Appendix for the proof.
In addition to the above 2 propositions, we can derive

a fast computational method for GDF detector, which is
a modi¯ed version of the method proposed in [12]. We
propose the following steps for the group detection.

Computational Method for GDF Detector: Sup-
pose the GDF detector has P groups, G0, ..., GP¡1
1) Initialize ~y(1) = (L¡1)T y, L(1) = L. Let i = 1;
2) Form the white noise system model for the userexpur-
gated channel, and partition the vectors and matrices ac-
cording to group Gi and its complement ¹Gi as
"

~y(i)
Gi

~y(i)
¹Gi

#
=

"
L(i)
GiGi 0

L(i)
¹GiGi

L(i)
¹Gi ¹Gi

# "
b(i)
Gi

b(i)
¹Gi

#
+

"
~n(i)
Gi

~n(i)
¹Gi

#
(21)

Find the decision on group Gi by

b̂Gi = arg min
bGi2f¡1;+1gjGij

°°°LGiGibGi ¡ ~y(i)
Gi

°°°
2

2
(22)

3) Compute ~y(i+1) by

~y(i+1) = ~y(i)
¹Gi
¡ L(i)

¹GiGi
b̂Gi (23)

Let
L(i+1) = L(i)

¹Gi ¹Gi
(24)

4) Let i = i+1. If i < P , go to step 2; otherwise, stop the
computation.

The computational cost for step 1 is K (K+1)
2 multipli-

cations and K (K¡1)
2 additions. Assume the computational

cost for step 2 can be bounded by

\£ " · M(jGij) ; \ + " · S(jGij) (25)

where \£" denotes the number of multiplications and \+"
denotes the number of additions. In step 3, since b can only
take known discrete values, Lb can be precomputed and
stored. Thus, only jGi j

PP¡1
k= i+1 jGkj additions are needed.

Therefore, the overall computational cost is bounded by

\ £ " · K(K + 1)
2

+
P ¡1X

k=0

[M(jGkj)]

\ + " · K(K ¡ 1)
2

+
P ¡1X

k=0

2
4S(jGk j) + jGk j

P¡1X

j=k+1

jGj j

3
5

(26)

IV. Simulation Results

Example 1 - continued : In the previous 4-user exam-
ple, ´ (ÁGDFD ) = 1:78. The ASE for optimal DDFD and
the ML detector can be obtained from [11] as ´(ÁDDFD) =
1:69 and ´(ÁML) = 1:8. The simulation results are shown
in Figure 1, which are consistent with the theoretical analy-
sis.

Example 2 : Suppose we have 100 users. The signa-
ture sequences for each user are binary and of length 115.
They are generated randomly. The maximum group size

Fig. 1. Performance of various methods (4 users, 10000 Monte-
Carlo runs. ÁD is the conventional decorrelator; ÁD¡DF is the
decorrelation-based decision feedback detector; ÁGDFD is the
group decision feedback detector with jGjmax = 2; and ÁML
is the maximum likelihood detector.)

is assumed to be 3. Figure 2 shows one of the simulation
results. The respective computational costs for the three
detectors are

ÁD \£ " = 10000 \ + " = 9900
ÁD¡DFD \ £ " = 5050 \ + " = 9900
ÁGDFD \ £ " = 5320 \ + " = 10020

(27)

Benī ting from the optimal grouping and the branch-and-
bound-based computational method, GDFD shows a sig-
ni¯cant impreovement on the performance while the com-
putational cost is even less than that of the conventional
decorrelator. Due to the NP-hard nature of the optimal
ML detector, the results on optimal detector could not be
computed.

Fig. 2. Performance of various methods (100 users, 10000 Monte-
Carlo runs. ÁD is the conventional decorrelator; ÁD¡DF is the
decorrelation-based decision feedback detector; ÁGDFD is the
group decision feedback detector with jGjmax = 3)
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V. Conclusion

An optimal grouping and ordering algorithm for Group
Decision Feedback Detector is proposed. Together with a
fast computational method based on the idea of branch and
bound, the proposed algorithm provides a systematic way
of improving the Decision Feedback Detector, especially
when correlation exists among the users. Simulation results
show that GDF detector with the optimal grouping and
ordering algorithm provides a signi¯cant improvement over
DF detector, while the increase in computational cost is
marginal and even negative in some cases. The proposed
method can be easily extended to ¯nite-alphabet signals
instead of binary ones.

Appendix

I. Pre-proved Lemmas

Before proving the propositions in this paper, we present
the following three lemmas that will be used in the proof.

Lemma 1: Suppose H = LTL is partitioned on two
arbitrary diagonal elements as

·
H11 HT

21
H21 H22

¸
=
·

L11 0
L21 L22

¸T ·
L11 0
L21 L22

¸
(28)

For any permutation matrix P of the same size as H22, if
·

I 0
0 P

¸ ·
H11 HT

21
H21 H22

¸ ·
I 0
0 P

¸

=
· ~L11 0

~L21 ~L22

¸T · ~L11 0
~L21 ~L22

¸
(29)

then the following results hold.

~L11 = L11 ; ~LT22~L22 = PLT22L22P (30)

The proof is quite straight forward and is therefore ig-
nored in this paper. 2

Lemma 2: Suppose H is a m £m symmetric and pos-
itive de¯nite matrix. Suppose H = LT L is the Cholesky
decomposition. Partition H and L on the last (south-east)
diagonal component as

·
H11 hT21
h21 h22

¸
=
·

L11 0
l21 l22

¸T ·
L11 0
l21 l22

¸
(31)

Now \move up" the last \user" to the ¯rst, denote the
action and the new Cholesky decomposition matrix by

·
0 1
I 0

¸ ·
H11 hT21
h21 h22

¸ ·
0 I
1 0

¸

=
· ~l11 0

~l21 ~L22

¸T · ~l11 0
~l21 ~L22

¸
(32)

Then matrix ~LT22~L22 ¡ LT11L11 is non-negative de¯nite.
Proof : Substituting (31) into (32) yields

~LT22
~L22 ¡ LT11L11 = lT21l21 ¸ 0 (33)

2
Lemma 3: Suppose L and ~L are two lower triangular

matrices of size m£m, assume that LT L¡ ~LT ~L ¸ 0. Par-
tition L on an arbitrary diagonal component, and partition
~L accordingly as

L =
·

L11 0
L21 L22

¸
; ~L =

· ~L11 0
~L21 ~L22

¸
(34)

We have

LT11L11¡ ~LT11~L11 ¸ 0 ; LT22L22 ¡ ~LT22~L22 ¸ 0 (35)

Proof : Since LTL ¡ ~LT ~L ¸ 0, we can ¯nd a lower
triangular matrix C which satis¯es

LT L = ~LT
¡
I + CTC

¢ ~L (36)

According to (34), partition C as

C =
·

C11 0
C21 C22

¸
(37)

Substitute (34)(37) into (36) to obtain

LT22L22 = ~LT22
¡
I + CT

22C22
¢ ~L22

LT11L11 = ~LT11
¡
I + CT

11C11
¢ ~L11 + 4 (38)

where 4 is a symmetric non-negative de¯nite matrix. The
proof is complete. 2

Note that in Lemma 3, we can continue partitioning
the sub-diagonal block matrices, and apply Lemma 3 it-
eratively to get a result similar to (35) for an arbitrary
partition.

II. Proof of Proposition 1

Denote the optimal group and detection sequence deter-
mined by the proposed algorithm as G, which has groups
G0; : : : ; GP ¡1. Denote the group decision feedback detec-
tor using detection sequence G by ÁG¡GDF D. The idea
of the proof can be summarized as follows. Suppose there
is another group and detection sequence G(i), which has
groups G(i)

0 ; : : : ; G(i)
P (i)¡1. Without loss of generality, as-

sume 8j (0 · j < i) G(i)
j = Gj (The superscript (i) means

that the ¯rst i groups in G(i) are identical to the ¯rst i
groups in G).

Now construct a new group and detection sequence
G(i+1). The groups of G(i+1) are de¯ned by

8
><
>:

G(i+1)
j = G(i)

j = Gj 0 · j < i
G(i+1)
j = Gj j = i

G(i+1)
j = G(i)

j¡1 n Gi j > i
(39)

To simplify the notation, in the above construction, if
G(i+1)
j = NULL, we still keep group G(i+1)

j and de¯ne
dG(i+1)

j ;min = 1. Evidently, G(i+1) has one more group

than G(i). The following result holds for G(i+1).
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Proposition 3: If G(i+1) is constructed according to
the above de¯nition, then
(1) 8j (0 · j < i), d2

G(i+1)
j ;min

= d2
G(i)
j ;min

.

(2) d2
G(i+1)
i ;min

¸ d2
G(i)
i ;min

.

(3) 8j (i < j · P (i)), d2
G(i+1)
j ;min

¸ d2
G(i)
j¡1 ;min

.

Proof :
(1) For any j < i, the decision for group G(i)

j is made by
treating the signal corresponding to G(i)

j+1, ..., G(i)
P (i)¡1

as
noise and minimizing the probability of error in ML sense.
Therefore, any swapping of users within groups of index
larger than j will not a®ect the performance of G(i)

j . This
result can be formally proved by using Lemma 1.
(2) Since G(i)

j = G(i+1)
j (8j < i), this result can be directly

obtained from the de¯nition of the optimal grouping and
ordering algorithm.
(3) The proof for this part is relatively tricky. In fact, the
construction of G(i+1) from G(i) can be divided into three
stages. De¯ne the users in groupGi as K0, ..., KjGij¡1. For
the convenience of discussion, we ¯rst consider user K0.
Stage 1 Suppose, in G(i), user K0 belongs to group G(i)

j
(j ¸ i). De¯ne the the action \take out userK0 from group
G(i)
j ", which converts G(i) to G(S1), as,

8
>>><
>>>:

G(S1)
k = G(i)

k k < j
G(S1)
k = fuserK0g k = j

G(S1)
k = G(i)

j ¡ fuserK0g k = j + 1
G(S1)
k = G(i)

k¡1 k > j + 1

(40)

Stage 2 Now in G(S1), we have G(S1)
j = fuserK0g. De¯ne

the action \move up user K0 to follow group G(S1)
i¡1 ", which

converts G(S1) to G(S2), as follows,
8
>>><
>>>:

G(S2)
k = G(S1)

k k < i
G(S2)
k = fuserK0g k = i

G(S2)
k = G(S1)

k¡1 i < k · j
G(S2)
k = G(S1)

k k > j

(41)

Continue performing the above two stages on all users K0,
..., K jGij¡1. Denote the resulting group and detection se-
quence as G(S3). Denote the number of groups in G(S3) by
P (S3).
Stage 3 In G(S3), combine groups fKjGi j¡1g, ..., fK0g,

which converts G(S3) to G(i+1), as,
8
><
>:

G(i+1)
k = G(S3)

k k < i
G(i+1)
k = fuserK0; :::; KjGij¡1g k = i

G(i+1)
k = G(S3)

k¡jGi j+1 k > i
(42)

In the ¯rst stage, without loss of generality, suppose user
K0 is the ¯rst user in group G(i)

j . The \take out" action
does not change the order of the users, thus the Cholesky
decomposition matrix L remains unchanged. This shows
that LG(S1)

j+1G
(S1)
j+1

is the south-east diagonal sub-block of

LG(i)
j G(i)

j
. Therefore,

d2
G(S1)
j+1 ;min

¸ d2
G(i)
j ;min

(43)

In the second stage, since the \minimum distance" of a
sub-block is the performance measure for the corresponding
user group given all the user groups with smaller indices
are correctly detected, putting more users into the detected
user list will result in a better performance and a larger
\minimum distance". In fact, from Lemma 2 and Lemma
3, for any groups G(S2)

k = G(S1)
k¡1 , i < k · j, we have,

LT
G(S2)
k G(S2)

k
L
G(S2)
k G(S2)

k
¡ LT

G(S1)
k¡1G

(S1)
k¡1

L
G(S1)
k¡1G

(S1)
k¡1
¸ 0 (44)

Therefore,
d2
G(S2)
k ;min

¸ d2
G(S1)
k¡1 ;min

(45)

Hence, in G(i+1), for any j > i, d2
G(i+1)
j ;min

¸ d2
G(i)
j¡1;min

,

which proves part (3) of proposition 3.
2

Based on proposition 3, suppose ´(ÁG(i+1)¡GDF D) =
d2
G(i+1)
j ;min

. Then, we have

´(ÁG(i+1)¡GDFD ) ¸ ´(ÁG(i)¡GDFD ) (46)

By iteratively using the above construction procedure in
the proof of Proposition 1, we will ¯nally get G(P ) = G
and

´(ÁG(P)¡GDF D) ¸ ´(ÁG(i)¡GDF D) (47)

which completes the proof. 2

III. Proof of Proposition 2

In the above proof for proposition 1, let G(i) =
Ĝ. Construct G(i+1) using the same procedure. Note
that G(i)

l = Ĝl = Gk, and Gk \ Gi = NULL.
Therefore, in G(i+1), we have G(i+1)

l+1 = Gk . Sup-
pose min(d2

G(i+1)
0 ;min

; : : : ; d2
G(i+1)
l+1 ;min

) = d2
G(i+1)
j ;min

. From

Proposition 3,
² If j < i, we have d2

G(i+1)
j ;min

= d2
G(i)
j ;min

¸
min(d2

Ĝ0 ;min
; : : : ; d2

Ĝl;min
).

² If j = i, we have d2
G(i+1)
i ;min

¸ d2
G(i)
i ;min

¸
min(d2

Ĝ0 ;min
; : : : ; d2

Ĝl;min
).

² If j > i, we have d2
G(i+1)
j ;min

¸ d2
G(i)
j¡1;min

¸
min(d2

Ĝ0 ;min
; : : : ; d2

Ĝl;min
).

Hence,

min(d2
G(i+1)

0 ;min
; : : : ; d2

G(i+1)
l+1 ;min

) ¸ min(d2
Ĝ0;min

; : : : ;d2
Ĝl;min

)

(48)
By iteratively using the construction procedure, we will
¯nally get G(P ) = G which satis¯es

min(d2
G0;min; : : : ;d

2
Gk;min) ¸ min(d2

Ĝ0 ;min
; : : : ; d2

Ĝl;min
)

(49)
Hence the proof is complete. 2
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