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Optimal Grouping Algorithm for a Group Decision Feedback
Detector in Synchronous CDMA Communications
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Abstract—The group decision feedback (GDF) detector is sequences are correlated, this noise becomes biased, and thus,
studied in this letter. Given the maximum group size, a grouping is naturally harmful to the userwise detection. The idea of se-
algorithm is proposed. It is shown that the proposed grouping 4 ential group detection was first introduced by Varanasi in [6]
algorithm maximizes the symmetric energy of the multiuser d be Vi d th decision feedback (GDE) d
detection system. Furthermore, based on a set of lower bounds on and can be viewe as_ - € group _eC'S'On eedback ( ) de-
asymptotic group effective energy (AGEE) of the GDF detector, it t€ctor. GDF detector divides users into several groups. The users
is shown that the proposed grouping algorithm, in fact, maximizes - with relatively high correlations are assigned to the same group,
the AGEE lower bound for every group of users. The theoretical and the correlation between users in different groups are rela-
analysis of the grouping algorithm enables the offline estimation tively low. Similar to the DF detector, the GDF detector makes

of the computational cost and the performance of a GDF detector. decisi tially based . llati H
The computational complexity of a GDF detector is exponential ecisions sequentially based on successive canceliation. How-

in the largest size of the groups. Simulation results are presented €ver, instead of making decisions on a single user at a time, in
to verify the theoretical conclusions. The results from this letter GDF detection, the decisions on users in the same group (the
can be applied to the decision feedback detector by setting the correlated users) are made simultaneously. The computational
maximum group size to one. expense for a GDF detector is approximately exponential in the

Index Terms—Code-division multiple access (CDMA), decision largest group size, and this is expected to be small if the largest

feedback (DF), multiuser detection, optimization methods. group size is small.
In [6], the sizes of the groups are design parameters. How-
|. INTRODUCTION ever, in practice, given a user signal set, it is not easy for one

o ) to find the correlated users and assign them to groups. Since

I N SYNCHRONOUS  code-division multiple ~accesshe largest group size is closely related to the overall compu-
(CDMA) communication systems, the near—far problemytional cost, in this letter, we consider the largest group size
caused by the multi-access interference (MAI) has been widely the only design parameter. A grouping and ordering algo-
studied. With the additive white Gaussian noise (AWGNjthm is proposed to find the optimal size and users for each
assumption and when the source signal is binary valued gup. Theoretical results are given to show its optimality in
integer valued, the conventional detector does not produg®ms of the symmetric energy (SE). Together with a fast com-
reliable decisions for the CDMA channel [1]. The computatiogutationm method modified from [8], the proposed GDF detec-
of the optimal detector, however, is generally NP-hard, afn method provides an efficient way to improve DF detection
thus, is exponential in the number of users [2], unless the Sigith a marginal increase in computational cost. Simulation re-

nature waveform gorrelation matrix has a special str_ucture_ [Blits on small- and large-size problems are presented to verify
Several new algorithms have been proposed to provide reliafl@ theoretical conclusions.

solutions with relatively low computational cost. Among the

suboptimal algorithms, the decision-driven detection methods,

including decision feedback (DF) [4], [5], group detection [6],

and multistage detection [7] are popular. Although the DFIl. PROBLEM FORMULATION AND PERFORMANCEMEASURE

method is simple and performs well, there are situations when OF THE GDF DETECTOR
a marginal increase in computation can provide significant
improvement in performance [8]. A discrete-time equivalent model for the matched-filter out-

The main drawback of DF is that detections are made opats at the receiver of a CDMA channel is given by iidength
user at a time; the decision on the strong user is obtained \®ctor [2]
treating the weak users as noise. However, when user signature
y=Hb+n )
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for both baseband [2] and passband [5] channels with additi@ed rows corresponding to usergin Defined, to be the min-

Gaussian noise. imum distance of matriXngGi)—l, ie.
When all the user signals are equally probable, the optimal ’ .
solution of (1) is the output of a maximum-likelihood (ML) de- 4% = min el (Jg)G ) e (7)
tector [2] T ee{-10,1}1% N\ {0}/ o
s . T T where *\” denotes the set subtraction. The AGEE for gra@up
$mL b= arg be{ﬂl,iux(b Hb —2y7b) ) ¢an be bounded by
which is generally NP-hard and exponentially complex to min (dg,, ..., dg,) < Eg,(¢) < dg,. ®)
implement.

i ) . The upper bound in (8) is reached when all decisions on the
Sequential group detection, based on the idea of succes§)

¥‘érs in grougy; through group&,;_; are correct.
cancellation, was first introduced by Varanasi in [6]. Sup- grouf?, gh groupC.—y

pose users are partitioned into an ordered sePajroups, Hl. OPTIMAL GROUPING AND DETECTION ORDER

Gy, -..,Gp_1. The number of users in group; is denoted by FOR GDE DETECTOR
|G|, and naturally>>" " |G;| = K. The decisions on group N .
{Go} is made by It is known that the performance of the decision-driven

multiuser detector is significantly affected by the order of the
users [1]. Since the overall computation for the GDF detector
is exponential in the maximum group size, which is defined by
|G|max = max(|Gol,...,|Gp-1]), in this section, we develop
wherebg, denotes the part of vectbithat corresponds to usersa grouping and ordering algorithm that maximizes the SE of
in group Gy, and G, denotes the complement 6f;, i.e., the the GDF detector givelG|,.., as a design parameter. In the
union of Gy, ..., Gp_;1. The decisions of (3) are then used t®F detector case, i.e., whé@|,,.x = 1 for the GDF detector,
subtract the MAI due to users (& from the remaining decision the optimal user ordering is proposed in [5] and the proof of its
statisticsyg,,. The detector for the next grou, is designed asymptotic optimality can be found in [9].

under the assumption that the MAI cancellation is perfect. ThisDenote the Cholesky decomposition Hf by L”L = H,
process of interference cancellation and group detection is catiereL is a lower triangular matrix. Multiply both sides of (1)
ried out sequentially for usersin groups, . .., Gp_1,withthe by (L™")7 to obtain the white noise model [4]

group detector for grougr; taking advantage of the decisions

I;Go = arg min min(bTHb — 2¢y"b) ©)
be,e{-1,+1}I%0| | bs,

—INT, _ —I\T
made by group detectors {6k, . .., G;_1. Denote the channel (L7) y=Lb+ (L) n. ©)
model for the user-expurgated channel that only has userspgfineg = (L YTy, n = (L~ 1)"n, and partition the matrices
groupsGi,...,Gp—1 by and vectors according 16, andG|, to obtain
y = HOBO + a0, (4) [@Go} _ [LGOGO 0 } [bGO} + {ﬁGO} (10)
Y, Ly, Lé,a, bGo ng,

The decisions on grou@; can be represented as ) ) ) ) o
R SinceL¢, ¢, is a full-rank matrix by assumption, the decisions
bg, = arg  min [f(bg,)] on groupGy in (3) can be written as

b(c:ie{_l7+1}‘("i‘ R 5
, o o bg, = arg min Lg,c,ba, — ¥ . (11
f(bg,) = n}1§1 (b(z)TH(z)b(l) _ 2y(z) b(z)) . ) 0 bo, €{—1,+1} 1%l || 0GoYGo Gon
b . . .
G Therefore, the AGEE of groufr, is determined by the min-
In multiuser detection, the asymptotic effective energy (AEENUM distance of matrid(;, . La,c,- SinceH = L" L, we
is an important performance measure. Similar to the definitidtave
of AEE [5], for a GDF detector, we can define the asymptotic

T _ 1 -1 _ [ 40 !
group effective energy (AGEE) for each user group. Define the Lé,coLGoco = [(H )GOGO] - [JGOGO]

probability that not all users in groufG;} are detected cor- Eg,(¢cpFp) = déo. (12)
rectly in a GDF detectop as Pg, (0, ¢). Then, the AGEE for o , -
group@; is given by A similar result can be obtained for grodfy. In the description

of GDF detector in Section Il, if we leff ) = LO' LD then
_ Pe.(0,9) LY 6, L9¢, = (J% )1, sinceH™ is the southeast sub-
Eg.(¢) = sup e 2> 0; } m \/;) < (6) diagonal matrix o, it is easy to see thdt” is the southeast

—0 > :
Q (7 subdiagonal matrix of. andL);, = L¢;,. Hence

whereo? is the additive noise variance [see (1)], a@¢) = T (4@ 7t
[2°(1/v/2m)e=*"/2dz. Although an exact performancga)nalysis Le.cleia: = (JGiGi) ' (13)
of the GDF detector is intractable [6], one can obtain upper aitie above result shows thdt;, is determined by the diag-
lower bounds for the AGEE of all groups. In the above descripnal block matrixLg, of L. Now, given all the decisions on
tion of the GDF detector, defing®) = [H]~1, and denote group G, to groupG,_, are correct, denote the probability
nggi to be the submatrix of ¥ that only contains the columnsthat not all the users in grou@; are detected correctly by
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TABLE | TABLE I
CHOICES OFGROUP g AND THE CORRESPONDINGA; CHOICES OFGROUP 1 AND THE CORRESPONDINGA?; |
User(s) | 0 1 2 3 0,1 User(s) | 1 2 3 1,2 11,3 | 23
dg, [3.96|162|1.14|1.67|1.69 dz, 169 |1.14|1.68|1.78 | 1.68 | 1.24

User(s) | 0,2 | 0,3 | 1,2 | 1,3 | 2,3

d%, |114]168|174|162]|1.24 users in each group is a good choice. However, since user 0 is
a strong user, this user has to be detected first. And since user
1 and user 2 are strongly correlated, they have to be assigned
to the same group. If, for example, we assign two groups as
{user 0, user 3} and {user 1, user 2}, then, as a penalty for

P.(G;|Go,...,Gi—1) = Q(dg, /o). The probability that not

all the K users are detected correctly can be represented as

pP—1 da. detecting the weak user (user 3) as part of the first group, we
Plo,¢)~1-[] {1 -Q <—)} (14)  obtainE = 1.68 < 1.78.
=0 Proposition 1: The proposed grouping and ordering algo-
Therefore, the SE of the GDF detector is given by rithm maximizes the SE in (15).
) ) ) See the Appendix for the proof.
E(¢aprp) = min (dG07 e defl) . (15) The grouping and ordering algorithm is also optimal in the

Since|G| is given as a design parameter, the problem is thg%llowing Sense. : .
max ' Proposition 2: The proposed grouping and ordering algo-

to find an optimal partition and detection order that maximize“sthm maximizes the performance lower bound in (8) for ever
min(dg, ,...,d, ). Notice that different GDF detectors may P y

. . group. In other words, supposgis the grouping and ordering
ga;]/gttge dzasrigfégar:n?gttedrlﬁerent numbers of groups, sinte result obtained from the proposed algorithm, @#dis one of

the groups irGG. Further suppose there is another group and de-
tection sequencé&’ with G, being one of the groups i¥, and

A. Grouping and Ordering Algorithm |
1 = G§. The following result holds:

Find the optimal grouping and detection order via the folc-y
lowing steps. N _ min (déo, e dék) > min (déo b ,dél) . (18)
Step 1) Partition the users into two groupgG,} and
{Go} with |Go| < |G|max- Among these partitions ~ See the Appendix for the proof.
({Go} and|Gy| are not fixed), select the one that Inaddition to the above two propositions, we can derive a fast
maximizesdg, (which is the minimum distance of computational method for the GDF detector, which is a modified
matrix [J(C?gGO]—l)_ version of the method proposed in [8]. We suggest the following
Step 2) Partition the remaining — |G| users into two Steps for the group detection.
groupsG; and Gy with |G| < |G|max. Among _
these partitions, select the one that maximizgs. B- Computational Method for GDF Detector
Step 3) Continue this process until all the users are assigne&uppose the GDF detector hBgroups,Gy, ..., Gp_1.

togroups. _ 1) Initializeg = (L=1)Ty, LY = L. Leti = 0.
Example 1: The algorithm is illustrated by the following  2) Form the white-noise system model for the user-ex-
four-user example. Suppose tHematrix is given by purgated channel, partition the vectors and matrices
4.30 1.00 0.60 0.30 according to grougs; and its complement; as
_ | 1.00 3.00 170 0.50 @) @) @) ()
H=1060 170 220 070" (16) F’G?} I R [be} rc’?}. (19)
030 0.50 0.70 1.90 g | BY, LY, | 2] A
Assume that the desired maximum group SiZé&ilg,.x = 2. In Find the decisions on groug; by
Step 1 of the algorithm, the possible choices for gréigpand ‘
L . ; . 112
tcr;e.resultmgig0 are shown in Table I. The best choice for group bg, = arg min )LGiGi ba, — f/(é) : (20)
o is {user 0}. Then, for the user-expurgated channel, we have bo, e{—1,41}/G:! 2
3.00 1.70 0.50 - (i+1)
HY = | 170 220 0.70|. a7 ) Computey by
0.50 0.70 1.90 gt — y<G> _ ngGiqu 1)
The possible choices for grou@; and the resultingls, are
shown in Table Il. We can see that the best choice for g@up
is {user 1, user 2}. Naturally, {user 3} will be the last group. Let LGt — o (22)
The resulting SE for this partitioning and orderingids= 1.78. GiGi
Note that the above example has four users|éfid.. = 2. 4) Leti =i+ 1.1f i < P, go to Step 2; otherwise, stop the

One may think that partitioning users into two groups with two computation.
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Fig. 2. Comparison of worst-case computational cost (random signature

Fig. 1. Performance of various methods (four users, 1000000 Monte-Casgauences, 10000 Monte-Carlo runs).
runs).

detectors. Note that for the GDF detector, although the compu-

The computational cost for Step 1i§(K + 1)/2 multipli-  tation for finding the optimal user partitioning and user ordering
cations andk (K — 1)/2 additions. Assume the computationais O(K /™), this needs be done only once, offline. When

cost for Step 2 can be bounded by |G|max IS small, as can be seen from the figure, the increase
in the online computational cost of the GDF detector compared
Tx"<M((G]), T+"<S(G)) (23) to D-DF detector is marginal. The computational methods used

for the D-DF detector, the ML detector, as well as the search

where “x” denotes the number of multiplications ane-" jnside the groups of the GDF detector in this example, may be
denotes the number of additions. In Step 3, sib@an only foynd in [g].

take known discrete valuekp can be precomputed and stored.
Thus, only|G;| 3, ~..1 |Gx| additions are needed. Therefore, V. CONCLUSION

the overall computational cost is bounded by ] ] ) ]
An optimal grouping and ordering algorithm for the GDF de-

w . _KKE+1) b1 tector is prop(_)sed. Together with a fast computational metr_lod
X" ———+ > M (1Gk))] based on the idea of branch and bound, the proposed algorithm
k=0 provides a systematic way of improving the DF detector, es-
.. _KK+1) X Pl pecially when strong correlation exists among the users. In the
+"< 9 + S (|1Gk])+|Gxl Z 1G5l - meantime, when the maximum group size is relatively small, the
k=0 j=k+1 increase in online computational cost of the proposed method

(24) compared to that of the DF detector is marginal. The theoretical
results can be easily extended to finite-alphabet signals instead

of binary ones.
IV. SIMULATION RESULTS

Example 1-Continuedin the previous four-user example, APPENDIX
E(écprp) = 1.78. The SE for the optimal decorrelating
DF detector and the ML detector can be obtained from [5] VI. KEY LEMMAS

asE(¢p-prp) = 1.69 and E(¢ui) = 1.8. The simulation  Before proving the propositions in this letter, we present the
results are shown in Fig. 1, which are consistent with thg|lowing three lemmas that will be used in the proof.

theoretical analysis. _ Lemma 1: Suppose = L” L is partitioned on an arbitrary
Example 2: In this example, we compare the computationgliagonal element as

loads for different multiuser detectors. We fix the signal-to- T

noise ratio at 12 dB and fix the maximum group size at 5. The [Hu Hle} _ [Lu 0 ] [Ln 0 ] (25)
square roots of the powers of the user signals are generated by | Ha1  Ha: Ly Ly Ly Lo |-

w; ~ N(4.5,4) (N(.) represents the Gaussian distribution) anflor any permutation matri® of the same size a2, if

are limited within the range [2], [72 < w; < 7. The signa- ~ -

ture sequences are randomly generated and the ratio betweiean H P } _ [@11 0 ] [Ln 0 ] (26)
the spreading factor and the number of users is fixed at 1.2.PTHyy PTHyy P Lyy Ly Ly; Ly

Let the number of users vary from 5 to 60. Fig. 2 shows thge following results hold.

worst-case computational complexity measured in terms of the ) o .

number of multiplications plus number of additions of different Ly =Ly, LyLy = PTL22L22P. 27)
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The proof is quite straightforward and is, therefore, omitteihe superscripti) means that the first groups inG® are
in this letter. [0 identical to the first groups inG).

Lemma 2: SupposeH is anm x m symmetric and positive  Now construct a new group and detection sequegcée?).
definite matrix. Suppos® = L’ L is the Cholesky decompo- The groups ofZ(:*1) are defined by
sition. PartitionH andL on the last (southeast) diagonal com-

(i+1) _ ~@) _ . i<
ponent as Gj‘ =G;'=G;, 0<j<i
. . it = gy, j=i (36)
Hyy hyp|  |(Lin O L; O (i+1) _ ~G) s
el [ L] e GGG P
Now move up the last user to the first, and denote the action aFRisimplify the notation, in the above construction( i+ —
the new Cholesky decomposition matrix by NULL, we still keep groups; (1) and defined? Gty = 00.

hoo hL, | _ [l 01" [la 0 ( Evidently, G*1) has one more group tha®). The following
hi, Hy lio Ly lio Ly result holds forG(+). ,
Proposition 3: If G(+Y is constructed according to the

Then matrixizTQfm — LT, L,; is nonnegative definite. above definition, then:
Proof: Substituting (28) into (29) yields 1) Vj(0 < j < 4), dé(_f+1> = dé(_i);
i:;;iqg — L?lLll = llzl’{; > 0. (30) 2) d2 (H—l) 2 d2 alt )
o dVili<j< P ), 2, w2 g -
Lemma 3: SupposeL and L are two Iov%/er triangular ma- Proof:
trices of sizem x m, assume that” L — L' L > 0. Partition 1) For anyj < i, the decision for groupﬂ(i) is made by
#]oln an arbitrary diagonal component, and partitloaccord- treating the signal corresponding ®(+1» ng‘)_l
gly as as noise and minimizing the probability of error in the ML
Ly, O . L, o sense. Therefore, any swapping of users within groups of
L= [Lm Ln] = [fm j,22] (31) index larger than will not affect the performance cﬁgf‘)
We have This res(u)lt can(bflg‘ormally proyed usihgmma 1 .
- . - o 2) SinceG;"’ = G (V) < i), this result can be directly
LyyLyy — Ly Ly 20, LygLoy — Ly, Ly > 0. (32) obtained from the definition of the optimal grouping and

ordering algorithm.
The proof for this part is relatively tricky. In fact, the con-
struction of GU+1) from G() can be divided into three

Proof: SinceL”L — L' I > 0, we can find a lower trian- 3)
gular matrixC which satisfies

L = iF (I—|— CTC) i (33) stages. Define the users in groipasKo, - .., K|g,|—1-
For the convenience of discussion, we first consider user
According to (31), partitiorC as K.
Cu 0 _ Stage 1: Suppose, inG¥), user K, belongs to group
C= [021 022] (34 @Y(j > 4). Define the action “take out usdf, from group
. : . G\ which tsG() to G(SY),
Substitute (31) and (34) into (33) to obtain j o Which conver ° as
(s1) _ (z i
~T ~ G G k<
L3, Loy = Ly, (I +C3,C2) Lo G<51> ( K N k_;
T =T T - L = userKy =
Li;Li1 =Ly (I~|— CHCH) Ly + A (35) G(Sl) G(z \ {userKO} k=j+1 37)
whereA is a symmetric nonnegative definite matrix. The proof G(Sl) G,(j) . k>j+1.
is complete. O . (s1)

Note that in_Lemma 3we can continue partitioning the subdi- ~ Stage 2: Now in G5), we have;”"’ = {userK,}. De-
agonal block matrices, and applgmma Jteratively to obtain fine the action “move up uséf, to follow groquzs?,” which
a result similar to (32) for an arbitrary partition. convertsG(SY) to G(52), as follows:

(52) _ (Sl) i
VIl. PROOF OFPROPOSITIONL Gk52 Gy k<i
i , Gk ) = {userKg} k=i

Denote the optimal group and detection sequence deter- (s2) _ ~(s1) S (38)
mined by the proposed algorithm &8, which has groups G’fsg) - Gl(vs—ll)'/ i<k<j
Go,...,Gp_1. Denote the GDF detector using detection Gy =G, k>j.

sequenceG by ¢g-cprp- The idea of the proof can becontinue performing the above two stages on all users
summarized as follows. Suppose there |s another group aygrd .K|g,|_1. Denote the resulting group and detection

i (i)
detection sequenag(?), which has groups(’ »Gpi_1- sequence a€(5%). Denote the number of groups (5% by
Without loss of generality, assunvg (0 < j < z)G() =G; PG,
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Stage 3:In G(°¥ combine groups{K g, -1}, -,
{Ky}, which converts7(53) to G(+1) | as

Gél—"_l) G(S3) k<i

G("H) = {userKy, ..., Kig, -1}, k=i (39)
(z+1) (53) i

Gk G B/RIRE k>i.

In the first stage, W|thout Ioss of generality, suppose usgr
is the first user in groupi?

change the order of the users, thus, the Cholesky decompos@@ﬁ G

matrix L remains unchanged. This shows tﬁgpsma (51 isthe
southeast diagonal subblockb[7 g Therei‘ore a

Hence, the proof is complete.

02 0y > d2) (40)

j+1
In the second stage, since the “minimum distance” of a subblo
is the performance measure for the corresponding user groﬁ?
given all the user groups with smaller indexes are correctly de-
tected, putting more users into the detected user list will resultin
a better performance and a larger “minimum distance.” In fact, [l

from Lemma 2andLemma 3 for any group£(52) G,(Cﬂl), 2]
i < k < j, we have

3

Lfongpon Lo — Dgongen Lingen 2 0. (41

. [4]
Hence, inG¢*Y foranyj > 1, d ) > dG() which proves

Jj—1

part (3) ofProposition 3 . [5]
Proposition 3shows that
[6]
E(¢aurn_aprp) 2 E(¢ao) —aprp)- (42)

(71
By iteratively using the above construction procedure in the

proof of Proposition 1 we will finally get G*) = G and (8]

E(¢gr —aprp) 2 E(¢a)_aprDp) (43)

[9]

which completes the proof. O

In the above proof foProposition 1 let G() =
GU+1) ysing the same procedure. Note th}‘:ﬁt) =G =
andG,NG; = NULL. Therefore, irG(+D we haveGE_‘:Ll) =
G. And

. 2
min <ngi+1), ey

The “take out” action does not BY |terat|vely using the construction procedure, we will finally
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VIIl. PROOF OFPROPOSITIONZ

G. Construct
Gy,

dé(iJrl)) > min (dG d2 ) . (44)

+1

= @, which satisfies
Jd2.) > min (dG L ) (45)

O

min (déw .
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