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Abstract—The group decision feedback (GDF) detector is
studied in this letter. Given the maximum group size, a grouping
algorithm is proposed. It is shown that the proposed grouping
algorithm maximizes the symmetric energy of the multiuser
detection system. Furthermore, based on a set of lower bounds on
asymptotic group effective energy (AGEE) of the GDF detector, it
is shown that the proposed grouping algorithm, in fact, maximizes
the AGEE lower bound for every group of users. The theoretical
analysis of the grouping algorithm enables the offline estimation
of the computational cost and the performance of a GDF detector.
The computational complexity of a GDF detector is exponential
in the largest size of the groups. Simulation results are presented
to verify the theoretical conclusions. The results from this letter
can be applied to the decision feedback detector by setting the
maximum group size to one.

Index Terms—Code-division multiple access (CDMA), decision
feedback (DF), multiuser detection, optimization methods.

I. INTRODUCTION

I N SYNCHRONOUS code-division multiple access
(CDMA) communication systems, the near–far problem

caused by the multi-access interference (MAI) has been widely
studied. With the additive white Gaussian noise (AWGN)
assumption and when the source signal is binary valued or
integer valued, the conventional detector does not produce
reliable decisions for the CDMA channel [1]. The computation
of the optimal detector, however, is generally NP-hard, and
thus, is exponential in the number of users [2], unless the sig-
nature waveform correlation matrix has a special structure [3].
Several new algorithms have been proposed to provide reliable
solutions with relatively low computational cost. Among the
suboptimal algorithms, the decision-driven detection methods,
including decision feedback (DF) [4], [5], group detection [6],
and multistage detection [7] are popular. Although the DF
method is simple and performs well, there are situations when
a marginal increase in computation can provide significant
improvement in performance [8].

The main drawback of DF is that detections are made one
user at a time; the decision on the strong user is obtained by
treating the weak users as noise. However, when user signature
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sequences are correlated, this noise becomes biased, and thus,
is naturally harmful to the userwise detection. The idea of se-
quential group detection was first introduced by Varanasi in [6]
and can be viewed as the group decision feedback (GDF) de-
tector. GDF detector divides users into several groups. The users
with relatively high correlations are assigned to the same group,
and the correlation between users in different groups are rela-
tively low. Similar to the DF detector, the GDF detector makes
decisions sequentially based on successive cancellation. How-
ever, instead of making decisions on a single user at a time, in
GDF detection, the decisions on users in the same group (the
correlated users) are made simultaneously. The computational
expense for a GDF detector is approximately exponential in the
largest group size, and this is expected to be small if the largest
group size is small.

In [6], the sizes of the groups are design parameters. How-
ever, in practice, given a user signal set, it is not easy for one
to find the correlated users and assign them to groups. Since
the largest group size is closely related to the overall compu-
tational cost, in this letter, we consider the largest group size
as the only design parameter. A grouping and ordering algo-
rithm is proposed to find the optimal size and users for each
group. Theoretical results are given to show its optimality in
terms of the symmetric energy (SE). Together with a fast com-
putational method modified from [8], the proposed GDF detec-
tion method provides an efficient way to improve DF detection
with a marginal increase in computational cost. Simulation re-
sults on small- and large-size problems are presented to verify
the theoretical conclusions.

II. PROBLEM FORMULATION AND PERFORMANCEMEASURE

OF THE GDF DETECTOR

A discrete-time equivalent model for the matched-filter out-
puts at the receiver of a CDMA channel is given by the-length
vector [2]

(1)

where denotes the vector of bits transmitted by
the active users. Here, is a nonnegative definite
signature waveform correlation matrix,is the symmetric nor-
malized correlation matrix with unit diagonal elements,is a
diagonal matrix whoseth diagonal element, , is the square
root of the received signal energy per bit of theth user, and
is a real-valued zero-mean Gaussian random vector with a co-
variance matrix . It has been shown that this model holds
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for both baseband [2] and passband [5] channels with additive
Gaussian noise.

When all the user signals are equally probable, the optimal
solution of (1) is the output of a maximum-likelihood (ML) de-
tector [2]

(2)

which is generally NP-hard and exponentially complex to
implement.

Sequential group detection, based on the idea of successive
cancellation, was first introduced by Varanasi in [6]. Sup-
pose users are partitioned into an ordered set ofgroups,

. The number of users in group is denoted by
, and naturally, . The decisions on group

is made by

(3)

where denotes the part of vectorthat corresponds to users
in group , and denotes the complement of , i.e., the
union of . The decisions of (3) are then used to
subtract the MAI due to users in from the remaining decision
statistics . The detector for the next group is designed
under the assumption that the MAI cancellation is perfect. This
process of interference cancellation and group detection is car-
ried out sequentially for users in groups , with the
group detector for group taking advantage of the decisions
made by group detectors for . Denote the channel
model for the user-expurgated channel that only has users in
groups by

(4)

The decisions on group can be represented as

(5)

In multiuser detection, the asymptotic effective energy (AEE)
is an important performance measure. Similar to the definition
of AEE [5], for a GDF detector, we can define the asymptotic
group effective energy (AGEE) for each user group. Define the
probability that not all users in group are detected cor-
rectly in a GDF detector as . Then, the AGEE for
group is given by

(6)

where is the additive noise variance [see (1)], and
. Although an exact performance analysis

of the GDF detector is intractable [6], one can obtain upper and
lower bounds for the AGEE of all groups. In the above descrip-
tion of the GDF detector, define , and denote

to be the submatrix of that only contains the columns

and rows corresponding to users in. Define to be the min-
imum distance of matrix , i.e.

(7)

where “ ” denotes the set subtraction. The AGEE for group
can be bounded by

(8)

The upper bound in (8) is reached when all decisions on the
users in group through group are correct.

III. OPTIMAL GROUPING AND DETECTION ORDER

FOR GDF DETECTOR

It is known that the performance of the decision-driven
multiuser detector is significantly affected by the order of the
users [1]. Since the overall computation for the GDF detector
is exponential in the maximum group size, which is defined by

, in this section, we develop
a grouping and ordering algorithm that maximizes the SE of
the GDF detector given as a design parameter. In the
DF detector case, i.e., when for the GDF detector,
the optimal user ordering is proposed in [5] and the proof of its
asymptotic optimality can be found in [9].

Denote the Cholesky decomposition of by ,
where is a lower triangular matrix. Multiply both sides of (1)
by to obtain the white noise model [4]

(9)

Define , , and partition the matrices
and vectors according to and to obtain

(10)

Since is a full-rank matrix by assumption, the decisions
on group in (3) can be written as

(11)

Therefore, the AGEE of group is determined by the min-
imum distance of matrix . Since , we
have

(12)

A similar result can be obtained for group. In the description
of GDF detector in Section II, if we let , then

. Since is the southeast sub-
diagonal matrix of , it is easy to see that is the southeast
subdiagonal matrix of and . Hence

(13)

The above result shows that is determined by the diag-
onal block matrix of . Now, given all the decisions on
group to group are correct, denote the probability
that not all the users in group are detected correctly by
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TABLE I
CHOICES OFGROUPG AND THE CORRESPONDINGd

. The probability that not
all the users are detected correctly can be represented as

(14)

Therefore, the SE of the GDF detector is given by

(15)

Since is given as a design parameter, the problem is then
to find an optimal partition and detection order that maximizes

. Notice that different GDF detectors may
have the same , but different numbers of groups, since
is not a design parameter.

A. Grouping and Ordering Algorithm

Find the optimal grouping and detection order via the fol-
lowing steps.

Step 1) Partition the users into two groups and
with . Among these partitions

( and are not fixed), select the one that
maximizes (which is the minimum distance of
matrix ).

Step 2) Partition the remaining users into two
groups and with . Among
these partitions, select the one that maximizes.

Step 3) Continue this process until all the users are assigned
to groups.

Example 1: The algorithm is illustrated by the following
four-user example. Suppose thematrix is given by

(16)

Assume that the desired maximum group size is . In
Step 1 of the algorithm, the possible choices for groupand
the resulting are shown in Table I. The best choice for group

is {user 0}. Then, for the user-expurgated channel, we have

(17)

The possible choices for group and the resulting are
shown in Table II. We can see that the best choice for group
is {user 1, user 2}. Naturally, {user 3} will be the last group.
The resulting SE for this partitioning and ordering is .

Note that the above example has four users and .
One may think that partitioning users into two groups with two

TABLE II
CHOICES OFGROUPG AND THE CORRESPONDINGd

users in each group is a good choice. However, since user 0 is
a strong user, this user has to be detected first. And since user
1 and user 2 are strongly correlated, they have to be assigned
to the same group. If, for example, we assign two groups as
{user 0, user 3} and {user 1, user 2}, then, as a penalty for
detecting the weak user (user 3) as part of the first group, we
obtain .

Proposition 1: The proposed grouping and ordering algo-
rithm maximizes the SE in (15).

See the Appendix for the proof.
The grouping and ordering algorithm is also optimal in the

following sense.
Proposition 2: The proposed grouping and ordering algo-

rithm maximizes the performance lower bound in (8) for every
group. In other words, supposeis the grouping and ordering
result obtained from the proposed algorithm, andis one of
the groups in . Further suppose there is another group and de-
tection sequence with being one of the groups in , and

. The following result holds:

(18)

See the Appendix for the proof.
In addition to the above two propositions, we can derive a fast

computational method for the GDF detector, which is a modified
version of the method proposed in [8]. We suggest the following
steps for the group detection.

B. Computational Method for GDF Detector

Suppose the GDF detector hasgroups, .

1) Initialize , . Let .
2) Form the white-noise system model for the user-ex-

purgated channel, partition the vectors and matrices
according to group and its complement as

(19)

Find the decisions on group by

(20)

3) Compute by

(21)

Let (22)

4) Let . If , go to Step 2; otherwise, stop the
computation.
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Fig. 1. Performance of various methods (four users, 1 000 000 Monte-Carlo
runs).

The computational cost for Step 1 is multipli-
cations and additions. Assume the computational
cost for Step 2 can be bounded by

`` '' `` '' (23)

where “ ” denotes the number of multiplications and “”
denotes the number of additions. In Step 3, sincecan only
take known discrete values, can be precomputed and stored.
Thus, only additions are needed. Therefore,
the overall computational cost is bounded by

`` ''

`` ''

(24)

IV. SIMULATION RESULTS

Example 1-Continued:In the previous four-user example,
. The SE for the optimal decorrelating

DF detector and the ML detector can be obtained from [5]
as and . The simulation
results are shown in Fig. 1, which are consistent with the
theoretical analysis.

Example 2: In this example, we compare the computational
loads for different multiuser detectors. We fix the signal-to-
noise ratio at 12 dB and fix the maximum group size at 5. The
square roots of the powers of the user signals are generated by

represents the Gaussian distribution) and
are limited within the range [2], [7] . The signa-
ture sequences are randomly generated and the ratio between
the spreading factor and the number of users is fixed at 1.2.
Let the number of users vary from 5 to 60. Fig. 2 shows the
worst-case computational complexity measured in terms of the
number of multiplications plus number of additions of different

Fig. 2. Comparison of worst-case computational cost (random signature
sequences, 10 000 Monte-Carlo runs).

detectors. Note that for the GDF detector, although the compu-
tation for finding the optimal user partitioning and user ordering
is , this needs be done only once, offline. When

is small, as can be seen from the figure, the increase
in the online computational cost of the GDF detector compared
to D-DF detector is marginal. The computational methods used
for the D-DF detector, the ML detector, as well as the search
inside the groups of the GDF detector in this example, may be
found in [8].

V. CONCLUSION

An optimal grouping and ordering algorithm for the GDF de-
tector is proposed. Together with a fast computational method
based on the idea of branch and bound, the proposed algorithm
provides a systematic way of improving the DF detector, es-
pecially when strong correlation exists among the users. In the
meantime, when the maximum group size is relatively small, the
increase in online computational cost of the proposed method
compared to that of the DF detector is marginal. The theoretical
results can be easily extended to finite-alphabet signals instead
of binary ones.

APPENDIX

VI. K EY LEMMAS

Before proving the propositions in this letter, we present the
following three lemmas that will be used in the proof.

Lemma 1: Suppose is partitioned on an arbitrary
diagonal element as

(25)

For any permutation matrix of the same size as , if

(26)

the following results hold.

(27)
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The proof is quite straightforward and is, therefore, omitted
in this letter.

Lemma 2: Suppose is an symmetric and positive
definite matrix. Suppose is the Cholesky decompo-
sition. Partition and on the last (southeast) diagonal com-
ponent as

(28)

Now move up the last user to the first, and denote the action and
the new Cholesky decomposition matrix by

(29)

Then matrix is nonnegative definite.
Proof: Substituting (28) into (29) yields

(30)

Lemma 3: Suppose and are two lower triangular ma-
trices of size , assume that . Partition

on an arbitrary diagonal component, and partitionaccord-
ingly as

(31)

We have

(32)

Proof: Since , we can find a lower trian-
gular matrix which satisfies

(33)

According to (31), partition as

(34)

Substitute (31) and (34) into (33) to obtain

(35)

where is a symmetric nonnegative definite matrix. The proof
is complete.

Note that inLemma 3, we can continue partitioning the subdi-
agonal block matrices, and applyLemma 3iteratively to obtain
a result similar to (32) for an arbitrary partition.

VII. PROOF OFPROPOSITION1

Denote the optimal group and detection sequence deter-
mined by the proposed algorithm as, which has groups

. Denote the GDF detector using detection
sequence by . The idea of the proof can be
summarized as follows. Suppose there is another group and
detection sequence , which has groups .

Without loss of generality, assume

(the superscript means that the first groups in are
identical to the first groups in ).

Now construct a new group and detection sequence .
The groups of are defined by

j=i

j>i.

(36)

To simplify the notation, in the above construction, if

, we still keep group and define .

Evidently, has one more group than . The following
result holds for .

Proposition 3: If is constructed according to the
above definition, then:

1) , ;

2) ;

3) , .

Proof:

1) For any , the decision for group is made by

treating the signal corresponding to
as noise and minimizing the probability of error in the ML
sense. Therefore, any swapping of users within groups of
index larger than will not affect the performance of .
This result can be formally proved usingLemma 1.

2) Since , this result can be directly
obtained from the definition of the optimal grouping and
ordering algorithm.

3) The proof for this part is relatively tricky. In fact, the con-
struction of from can be divided into three
stages. Define the users in groupas .
For the convenience of discussion, we first consider user

.
Stage 1: Suppose, in , user belongs to group

. Define the action “take out user from group

,” which converts to , as

k<j

k=j

k=j+1

k>j+1.

(37)

Stage 2: Now in , we have . De-

fine the action “move up user to follow group ,” which
converts to , as follows:

k<i

k=i

k>j.

(38)

Continue performing the above two stages on all users
. Denote the resulting group and detection

sequence as . Denote the number of groups in by
.
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Stage 3: In , combine groups
, which converts to , as

k<i

k=i

k>i.

(39)

In the first stage, without loss of generality, suppose user
is the first user in group . The “take out” action does not
change the order of the users, thus, the Cholesky decomposition
matrix remains unchanged. This shows that is the

southeast diagonal subblock of . Therefore

(40)

In the second stage, since the “minimum distance” of a subblock
is the performance measure for the corresponding user group,
given all the user groups with smaller indexes are correctly de-
tected, putting more users into the detected user list will result in
a better performance and a larger “minimum distance.” In fact,
from Lemma 2andLemma 3, for any groups ,

, we have

(41)

Hence, in , for any , , which proves

part (3) ofProposition 3. .
Proposition 3shows that

(42)

By iteratively using the above construction procedure in the
proof of Proposition 1, we will finally get and

(43)

which completes the proof.

VIII. PROOF OFPROPOSITION2

In the above proof forProposition 1, let . Construct
using the same procedure. Note that ,

and . Therefore, in , we have
. And

(44)

By iteratively using the construction procedure, we will finally
get , which satisfies

(45)

Hence, the proof is complete.
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