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Abstract—This paper extends the channel coding theorems
of [1][2] to time-slotted random multiple access communication
systems with a generalized problem formulation. Assume that
users choose their channel codes arbitrarily in each time slot.
When the codeword length can be taken to infinity, fundamental
performance limitation of the system is characterized using an
achievable region defined in the space of channel code index
vector each specifies the channel codes of all users. The receiver
decodes the message if the code index vector happens to locate
inside the achievable region and reports a collision if it falls
outside the region. A generalized system error performance
measure is defined as the maximum of weighted probabilities of
different types of communication error events. Upper bounds on
the generalized error performance measure are derived under
the assumption of a finite codeword length. It is shown that
“interfering users” can be introduced to model not only the
impact of interference from remote transmitters, but also the
impact of channel uncertainty in random access communication.'

I. INTRODUCTION

Users in a distributed wireless network often have bursty
short messages that must be disseminated in a timely manner
over time-varying and non-stationary channels. Full user co-
ordination such as joint channel coding in these cases can be
infeasible or expensive in the sense of excessive overhead.
Communication parameters, such as whether a transmitter
will send a packet or not, can even be unknown to the
corresponding receiver. Although coding redundancy is still
needed to improve communication reliability, channel coding
investigation for distributed and random communication sys-
tems requires a problem formulation that is quite different from
the classical ones.

In [1], we proposed a new channel coding model for time-
slotted random multiple access communication systems. We
focused on communication and coding within one time-slot
or one packet. Each transmitter is equipped with a randomly
generated codebook that supports multiple communication
rate options [1]. Communication rate of each transmitter is
determined arbitrarily, with the rate information being shared
neither among the transmitters nor with the receiver. An
achievable rate region was defined in the following sense. As
the codeword length is taken to infinity, if the communication
rate vector, which contains the rates of all users, happens
to locate inside the rate region, the receiver will decode the
messages with a diminishing error probability, while if the
rate vector falls outside the region, the receiver will report
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a packet collision with a probability approaching one. We
showed that the achievable rate region coincides with the
Shannon information rate region of the multiple access channel
without a convex hull operation [1]. The asymptotic result was
then extended in [2] to a rate and error probability tradeoff
bound under the assumption of a finite codeword length.

Compared with a classical channel coding model, the
system models of [1][2] extended the definition of “communi-
cation error” from its classical meaning of erroneous message
decoding to the new meaning of failing to give the expected
outcome, whose definition should be specified in the physical
layer module. Such an extension enabled the relaxation of
joint channel coding constraint and consequently established a
bridge toward the development of rigorous coding theorems for
distributed communication systems. Note that in the channel
coding models of [1][2], a transmitter is provided with multiple
transmission options that can correspond to different input
distributions, which consequently imply different communi-
cation parameters. When the parameters of interest are not
limited to the communication rate, it is easy to argue that
using a rate region to characterize the system performance
may no longer be appropriate. A distributed communication
system has multiple types of communication error events, e.g.,
decoding error and collision miss detection error [2]. Using
one probability variable to represent error performance in the
tradeoff bound, as given in [2], cannot give the full tradeoff
picture that may be needed for system design. Furthermore,
system models of [1][2] assume that state of the wireless
communication channel is known at the receiver. Such an
assumption is reasonable in a classical system where message
transmission is carried out continuously over a long time
interval. With bursty short transmissions in a random access
system, however, obtaining a precise estimate of the time-
varying channel state at the receiver can be difficult.

In this paper, we extend the channel coding theory of
[1][2] to address the concerns raised above. As in [1][2], we
consider a time-slotted random multiple access system and
focus on communication within one time slot. Each transmitter
is equipped with a randomly generated codebook containing a
finite number of codeword classes. Each codeword class is de-
fined as a code which, if chosen, implies the values of a set of
communication parameters that include but are not limited to
the communication rate. Channel code and its implied commu-
nication parameters are determined arbitrarily and individually
by the transmitters within the available choices. We consider
an elementary decoder that is only interested in decoding the
message of one user but can choose to decode other user
messages if necessary. As shown in [1], performance of an



elementary decoder can be used to derive the performance of
a general receiver that is interested in decoding the messages
of multiple users. As the codeword length (which is also the
length of a time slot) is taken to infinity, we characterize the
fundamental performance limitation of the system using an
achievable region defined in the space of the code index vector,
which specifies the coding choices of all users, in a sense
similar to [1]. In the case of finite codeword length, we define
a generalized error performance measure that assigns different
exponential weights to different types of error events. Assume
that the system chooses an operation region (defined in the
paper) which is a subset of the achievable region. Performance
bounds on the tradeoff between the operation region and the
generalized error performance measure are derived. We also
show that a class of “interfering users” can be introduced
in the problem formulation to model not only the impact of
remote interfering transmitters, but also the impact of channel
uncertainty at the receiver. Furthermore, in the channel coding
models introduced in [1][2] and in this paper, the receiver
needs to consider both tasks of message decoding and collision
detection. When the receiver is not interested in decoding the
messages of all users, we show that the collision detection
task requires a thoughtful specification on the expected system
outcome (or equivalently the communication error events)
corresponding to each of the code index vectors. Discussions
on this issue and on channel code estimation are presented.

II. PROBLEM FORMULATION

Consider a (K + M)-user random multiple access system
over a symbol-synchronous discrete-time memoryless channel,
where the users are indexed from 1 to K + M. Time is slotted
with each slot equaling /N symbol durations, which is also the
length of a packet or a codeword. We assume that channel
coding is applied only within each time slot. The channel
is characterized by a conditional distribution Py|x, ... x Y
where, for £ € {1,---,K + M}, X}, € X is the channel
input symbol of user k£ with X being the finite input alphabet,
and Y € )Y is the channel output symbol with ) being the
finite output alphabet. Assume that at the beginning of a time
slot, each user, say user k, chooses an arbitrary2 channel code,
specified by a code index parameter g; € Gi, from a finite
set G = {gr1, -, gr|g,|} With cardinality |Gx|. The code
index parameter is shared neither among the users nor with
the receiver. Assume that g;, determines a communication rate
parameter r(gy) for user k in nats per symbol. The user
then encodes N7 data nats, denoted by a message wyg, into
a packet (codeword) of N symbols, using a random coding
scheme specified in the following. Forall k € {1,---, K+ M},
we assume that user k is equipped with a codebook library
Ly, = {Ckep,, : 0 € O} in which codebooks are indexed by a
set ©. Each codebook has |G| classes of codewords, and each
codeword class is termed a code. The i*" (i € {1,---,|Gk|})
code has |eN" | codewords with the same length of N
symbols, where r; is the communication rate corresponding
to code gi;. Note that in this coding scheme, each codeword
in the codebook is mapped to a message and code index pair
(wg, gk)- Let Cro, (W, gr); be the 5" symbol of the codeword
corresponding to message and code index pair (wg,gx) in

2Here “arbitrary” means the parameter is determined randomly with its
statistical information possibly unavailable at the physical layer.

codebook Cg, . User k first selects the codebook by generating
0y according to a distribution ¥;, such that random variables
Xwign)i @ O — Cro, (W, gx); are iid. according to an
input distribution P/, . The codebook Cro, is then used to

map (wg, gx) into a codeword, denoted by (., g, )-

We use a bold font vector variable to denote the corre-
sponding variables of all users. For example, w and g denote
the messages and the code indices of all users. Px g denote
the input distributions of all users, etc. Given a vector variable
g, we use gi to denote its element corresponding to user k.
We use gy; to denote a particular value in the alphabet of
g Let S € {1,---, K + M} be a user subset, and S be its
complement. We use gg to denote the vector that is extracted
from g with only elements corresponding to users in S.

We categorize users with indices {1,---, K} as “regular
users” and other users as “interfering users”. For each regular
user k € {1,---,K}, we assume that the receiver knows

the randomly selected codebook Cyg,. Codebook information
can be conveyed by sharing the random codebook generation
algorithm with the receiver [1][2]. For each interfering user
ke {K+1,---,K + M}, we assume that the receiver
knows the set of input distributions {Px 4, [gr € Gi}, but
not the codebook Cip,. In other words, messages of the
interfering users are not decodable at the receiver. There
are two reasons why we include interfering users in the
system model. First, for reasons such as decoding complexity
constraint, the receiver may not have the capability to fully
process the codebook information of all users. Regarding some
of the users as interfering users still allows the receiver to take
advantage of their input distribution information to improve
coding performance. Second, interfering user can be used
to model channel uncertainty at the receiver. For example,
if the compound channel has |G| possible realizations, one
can introduce an interfering user whose code index takes |G|
possible values each corresponding to a channel realization.
When the interfering user chooses a specific code index, which
is unknown to the receiver, the conditional channel distribution
is set to match the corresponding channel realization.

We consider an elementary decoder that is only interested
in decoding the message of User 1, although the decoder
can choose to decode the messages of some other regular
users if such joint decoding is beneficial. As explained in [1],
performance bound of an elementary decoder can be used to
derive the corresponding bound of a general decoder that is
interested in decoding messages from multiple users. Note that
whether the message of User 1 can be decoded reliably or not
may depend on the channel codes of all users. We assume
that, before packet transmission, the receiver pre-determines
an “operation region” R, which is a set of code index vectors.
Determination of the operation region R depends on the
performance objective of the receiver. Let g be the actual
code index vector with the corresponding rate vector being
r. We assume that the receiver intends to decode the message
of User 1 if g € R. The receiver intends to report a collision
for User 1 if g ¢ R. Note that g is unknown at the receiver.
In each time slot, upon receiving the channel output symbols
y, the receiver estimates the code index vector, denoted by g.
The receiver outputs the estimated message and code index of
User 1, denoted by (w1, §1), if § € R and a pre-determined
decoding error probability requirement is satisfied. Otherwise,



the receiver reports a collision for User 1.

Given the operation region R, and conditioned on g and w
being the actual code index and message vectors, communica-
tion error probability as a function of g is defined as follows.

maxy, Pr{(i1,§1) # (w1, 91)|(w,g)},Vg € R
P.(g) = { maxy 1 — Pr{“collision” or

(w1,91) = (w1,91)[(w,9)} Vg &R

Note that, according to (1) when g ¢ R, although we expect
that the receiver should output a collision, we do not regard
correct message decoding as a communication error. Such a
definition is chosen based on the assumption that the primary
objective of the decoder is to guarantee the reliability of its
message output. In other words, whether code indices of the
other users are correctly detected or not is of no interest to
the elementary decoder. We will maintain this communication
error definition in Sections II, III when deriving the basic
coding results, and then discuss its extension in Section IV.

We define the system error probability as P,y =
maxg P.(g). Furthermore, let 0 < a(g) < 1 be an arbitrary
function of g, we define “generalized error performance” of
the system as

GEP(a) = max P,(g)*9). )

g
A generalized error performance measure allows the system
to assign different exponential weights to different types of
communication error events (corresponding to different code
index vectors). We can also get GEP(«) = P, by choosing

alg) = 1.

III. BAsic CHANNEL CODING THEOREMS

Given a random multiple access system described in Sec-
tion II. Let us fix the coding parameters® that are not functions
of the codeword length. We say that an operation region is
achievable if there exits a set of decoding algorithms whose
system error probability converges to zero as the codeword
length is taken to infinity, i.e., limy_, o P.s = 0. The follow-
ing theorem gives an achievable region for the random multiple
access system with an elementary decoder.

Theorem 1: Consider a (K + M)-user random multiple
access system described in Section II. Let r be the com-
munication rate vector corresponding to code index vector g,
and r(gy) be the element of 7 corresponding to user k. The
following region defined in the space of g is achievable.

vScC{l,...,K},1€8,3§C S, 1€,
g | such that, >, _s7r(gr) )
<Ig(Xye5: Y[ Xkeqr, . k1\s) 4

where the ml.Jtual. informatipn {'g(XkES; Y X e, kp\s) is
computed using input distribution Px,. B

R =

Theorem 1 can be proved by following the proof of [1,
Theorem 3] with only minor revisions. Note that, although the
interfering users do not show up explicitly in the expression
of R, their code indices do affect the conditional channel
distribution and the mutual information terms in (3).

3Such as rate functions, alphabets of code indices and input distributions.

Because both collision report and correct message decoding
are included in the set of expected outcomes for g ¢ R, the
following theorem follows immediately from the achievable
region definition.

Theorem 2: For the random multiple access system con-
sidered in Theorem 1, any subset of an achievable region is
also achievable.

Next, we will consider the case when the codeword length
is finite. As shown in [1], depending on the actual code index
vector, which is unknown to the receiver, the receiver may need
to jointly decode the messages of multiple users in order to
recover the message of User 1. Therefore, we will first need to
analyze the performance of a “(D, Rp)-decoder” that targets
at decoding the messages of a particular user subset specified
by D C {1,---,K}. Let Rp be the operation region of the
(D, Rp)-decoder. When the code index vector g € Rp is
inside the operation region, the (D, Rp)-decoder intends to
decode the messages of all users and only the users in D. When
the code index vector g € Rp is outside the operation region,
the (D, Rp)-decoder intends to report collision for all users
in D. Let g be the actual code index vector. Let (tp, gp) be
the decoding output. Error probability of the (D, Rp)-decoder
is defined as

Pep(g) =
max,, Pr{(p,gp) # (wp,gp)|(w,g)},

Vg S R'D (4)
max,, 1 — Pr {“collision” or :

(’a’D>gD) = (w'D7gD)|(w7g>} VQ ¢RD
Similar to the definition in (1), when g € Rp, we do not regard

correct message decoding as an error event, even though we
expect that the receiver should report a collision.

Given 0 < a(g) < 1 as an arbitrary function of g, the
generalized error performance is defined by

GEPp(a) = max P,p(g)*@. )
g
The following theorem gives an upper bound on the achievable
generalized error performance of a (D, Rp)-decoder.

Theorem 3: Consider a (K + M)-user random multiple
access system described in Section II. There exists a decoding
algorithm for the (D, Rp)-decoder, such that

max E
gERD

Sc{1l, -, K+M}
D\ S

GEPp(a) < max

£ 0
Z exp{—Na(g)E.np(S,9,9)}
{:] € Rp,
9s =9s
+ max exp{—-Na(g)Ep(S,g9,9")}| ,
HI,QRD
ds =9s
max
max Y >
Sc{l,---, K+ M} gcRp
D\S#0 9s =9s
max exp{—Na(g")En(S,9.9')} ¢ - (©6)
Q/QRD



E.p(S,g9,9) and E;p(S,g,g’) in the above equation are
given by,

EmD(Sagvg) =

+max —log > ] Prjo(Xi)

Y Xs keSND

< | > ] Pxia(X0)P(Y|XD,gp)
Xp\s keD\S

% Z H P\, (Xk)P (Y|XD7QD)% ,

X p\s keD\S

~—

a(g

a(g)] +alg)
logd >, [ PralX)

E, "=
0(S5.9.9) 05521 0<351—p sla(g’) —

X{—P Z rr(gk) —

keD\S Y Xs keSND
s+p
<\ > Il Pxia(X0)P(Y|XD,95)77
XD\SkGD\S
1-s

x| > II Pxig(X0)P(Y|Xp,95) },(7)
Xp\s keED\S
where 74(gx), 7r(gr) are the communications rates corre-
sponding respectively to g and gx, and P(Y|Xp,gp) is
defined as
PY|Xp,gp) = Z H Pxg, (Xi) Py x (Y]X). ()

Xp keD

The proof of Theorem 3 is given in [3, Appendix Al].

Let us now come back to the system with an elementary
decoder that is only interested in decoding the message of User
1 but can choose to decode the messages of other regular users
if necessary. Assume that the elementary decoder is composed
of many (D, Rp)-decoders, each corresponds to a user subset
D C{1,---,K} with 1 € D and an operation region Rp.
After receiving the channel output symbols, the elementary
decoder first carries out all the (D, Rp)-decoding operations.
If at least one (D, Rp)-decoder outputs an estimated message
and code index pair, and the estimation outputs (i.e., not in-
cluding the collision reports) of all the (D, Rp)-decoders agree
with each other, then the receiver outputs the corresponding
estimate (w1, g1) for User 1. Otherwise, the receiver reports a
collision for User 1.

Let R be the operation region of the elementary decoder.
Since the decoder intends to decode the message of User 1 if
g € R, we must have R C UD:DC{L...,K},leD Rp. On the
other hand, for a given (D, RD)-deEoder, since we do not re-
gard correct message decoding as a communication error event
for g ¢ Rp, shrinking the operation region of a (D, Rp)-
decoder will not hurt its generalized error performance. Con-
sequently, it does not cause any performance degradation to
assume that the operation regions of the (D,Rp)-decoders

form a partitioning of R. In other words,

R = U Rop,
D:DC{1,---,K},1€D
VD, D' C{l,---,K},D'#D,1€D,D. (9

Rp NRp =0,

The following theorem gives an upper bound on the achiev-
able generalized error performance of the elementary decoder.

Theorem 4: Consider a (K + M )-user random multiple
access system described in Section II. Assume that the receiver
chooses an operation region R. Let o denote a partitioning of
the operation region R satisfying (9). There exists a decoding
algorithm such that the generalized error performance of the
elementary decoder with 0 < a(g) < 1 is upper-bounded by,

> GEPp(a),  (10)

D:DC{1,,K},1€D

GEP(a) < min

where GEPp(«) is the generalized error performance of the
(D, Rp)-decoder, which can be further bounded by (6). B

Theorem 4 is implied by Theorem 3.

IV. COLLISION DETECTION AND OPERATION MARGIN

In the communication error definition specified in Section
II, given an operation region R, we do not regard correct
message decoding as an error event for g € R. Consequently,
even if the receiver decodes the message of User 1, it still
cannot conclude with high probability that the actual code
index vector is inside the operation region. In this section,
we present extended coding theorems to support a stricter re-
quirement on collision detection, as it is an important function
for communication adaptation in the upper layer.

Let us assume that, in addition to choosing the operation
region R, the receiver chooses another region R, termed the
“operation margin”, that is non-overlapping with the operation
region, i.e., R N R = (. The elementary decoder intends to
decode the message of User 1 for g € R, and to report a
collision for g ¢ R U R. While for g € R, both correct
message decoding and collision report are accepted as expected
outcomes. The purpose of introducing the operation margin is
to create a buffer zone between the operation region R, where
correct message decoding should be enforced, and the region

R U R, where collision report should be enforced. Providing
the receiver with the option of moving some of the code index
vectors into the operation margin R can help to avoid the ill-
posed collision detection problem illustrated in [3]. Note that
the revised system model is an extension to the one considered
in Sections II and III since the latter can be viewed as choosing
R as the compliment of R, i.e., R = R.

Given R and 7%, communication error probability as a
function of g is given by

maxy, Pr{(@, g1) # (w1, 91)|(w,g)},Vg € R
max,, 1 — Pr {“collision” or

(uA}hgl) = (wla gl)l(w7g)} )
max,, 1 — Pr {“collision”}

Pe(g): vge’]/?\/

Vg€ RUR
(11

Define the system error probability and the generalized error

performance measure as in (2). Let us fix the communication



parameters that are not functions of the codeword length. We
say an operation region and operation margin pair (R, R) is
achievable if there exits a set of decoding algorithms whose
system error probability converges to zero as the codeword
length is taken to infinity. The following theorem is an exten-
sion of Theorem 1 for the revised system model.

Theorem 5: Consider a (K + M)-user random multiple
access system with the revised system model described in
Section IV. Let the operation region R be given by (3). Any
operation region and operation margin pair (R,R) with an
arbitrary choice of R is achievable. B

Theorem 5 can be proved by following the same proof of
Theorem 1.

Similar to Theorem 2, the following theorem is implied
directly by the achievable region definition.

Theorem 6: For the random multiple access system con-
sidered in Theorem 5, if an operation region and operation
margin pair (R, R) is achievable, then any other operation re-
gion and operation margin pair (R1, R1) that satisfies Ry C R
and R;{ UR; D RUR is also achievable. B

When the codeword length is finite, given the operation
region R and the operation margin R of the elementary de-
coder, we again decompose the decoder into a set of “(D, Rp)-
decoders” for all D C {1,---,K} with 1 € D. For each
(D, Rp)-decoder, we denote its operation region by Rp and
set its operation margin as Rp = (R UR) \ Rp. Decoding
procedure of the (D, Rp)-decoder is the same as described
in Section III, with the communication error probability being
defined as,

P.p(g) =
maXay Pr {(ﬁjpng) 7& (wDa gD)|(w’g)} 5
Vg € Rp
max,, 1 — Pr {“collision” or (12)
(wp,gp) = (wp,gp)|(w,g)} Vg€ Rp
max,, 1 — Pr {“collision”} Vg & RpURp

The following theorem gives an upper bound on the achievable
generalized error performance of a (D, Rp)-decoder.

Theorem 7: Consider a (K + M)-user random multiple
access system with a (D, Rp)-decoder whose operation region
and operation margin are denoted by Rp and Rp respectively.
There exists a decoding algorithm to achieve the following
generalized error performance bound.

GEP <
p(a) < max{ max 37 [
sc{i,---,K+ M}
D\NS %0
> exp{-Na(g)Emwp(S,9.9)}
QERD’
9s =9s
+ max exp{—Na(g')Ein(S,g,9")}
9/€RD
9s =9s

+ > [
K+ M}

Sc{L,---,
D\ S =

exp{—Na(g')Ein(S,9,.9)} |,

maXA
g ¢ Rp URp,
95 =9s
max E E
g¥¢R
9FRD o Tk geRp,
D\S #0 9s =9s
/ !
max exp{—Na(g')Eip(S,9,9')},
9" € Rp,
9s=30s

max_ > >

GE¢RDURD s {1,..., K+ M} geRrp,
D\NS#0 gds =9s

max  exp{—Na(g)Ein(S. 9,9}
gle Rp,
9s =9s
DY >
Sc{l, -, K+M} gemRp,
D\S=0 9ds =9s
max_ exp{~Na(g')Ep(S.g.9)} p(13)

g’ ¢ RDYRD,

95 =29s

Enp(S,9,9) and Eip(S,g,g’) in the above equation are
given by (7). E;p(S,g,g’) is given by

7 AN a(g)
Ein(S.9.9) = 108% T0r0 a(e)] T alg)
{—logzz I Pxio. (X)P(Y|XD,95)°
Y Xop keD
xP(YIXD,g’D)“}, (14)

where 7 (gy) is the communications rates corresponding g,
and P(Y|X p,gp) is defined as in (8). W

The proof of Theorem 7 is given in [3, Appendix B].

With Theorem 7, a performance bound of the elementary
decoder can be derived in a way similar to that in Section
III. Let the operation region and the operation margin of the
elementary decoder be given by R and R. Assume that the
elementary decoder is composed of many (D Rp)-decoders,
each corresponds to a user subset D C {1,---, K} with1 € D.
Given the operation region Rp of an (D, RD) decoder, we set
its operation margin as Rp = (R UR) \ Rp. By following
the same decoding algorithm and the same discussion as
presented in Section III, we can see that it does not cause any
performance degradation to let the operation regions of the
(D, Rp)-decoders form a partitioning of R. Consequently, an
upper bound on the achievable generalized error performance
of the elementary decoder can be obtained, as stated in the
following theorem.

Theorem 8: Consider a (K + M)-user random multiple
access system. Assume that the receiver with an elementary
decoder chooses an operation region R and an operation
margin R with RNR = 0. Let o be a partitioning of the
operation region R satisfying (9). There exists a decoding
algorithm such that the generalized error performance of the
elementary decoder with 0 < «(g) < 1 is upper-bounded by
(10) with GEPp(«) being further bounded by (13). B



Theorem 8§ is implied by Theorem 7.

Note that the generalized error performance bounds pro-
vided in Theorems 4 and 8 are implicit since the optimal
partitioning scheme o that maximizes the right hand side
of (10) is not specified. To find the optimal partition, one
needs to compute every single term on the right hand side
of (10), (6) and (13) for all code index vectors and all user
subsets. Because each term in the definitions of E,,p(S,g,9).
Ep(S,g9,9') and E;p(S,g,g’) involves the combinations of
one user subset and two code index vectors, the computational
complexity of finding the optimal partitioning scheme is there-

2
fore in the order of O <2K ( ,fle \gk|)

V. CoODING COMPLEXITY AND CHANNEL CODE
ESTIMATION

Because random access communication often deals with
packets (and therefore codewords) that are short in length,
coding complexity concern in the new coding model is quite
different from the classical ones. According to the decoding
algorithms presented in [3], upon receiving the channel output
symbols, the receiver needs to compute the likelihood values
of all codewords corresponding to all code index vectors in the
operation region. The complexity of such a decoding algorithm

is in the order of O (den exp (N (Zszl rk(gk))» It

is important to note that the number of code index vectors
in the operation region can be huge. First, a random access
receiver does not necessarily know which users will be active
in the area. By taking potential transmitters into decoding
consideration, the number of users in the channel coding model
can be much larger than the number of active transmitters.
Second, random access coding needs to equip a transmitter
with multiple transmission options. If the system should be
prepared for a wide range of communication environments,
then the set of channel codes of each user can have a large
cardinality. A simple way to avoid calculating the likelihood
values of too many codewords in channel decoding is to
first let the receiver estimate the code index vector using
only the channel input and output distribution information,
and then process only the codewords corresponding to the
estimated channel codes. Even if the channel code estimation
is not precise, meaning that the receiver may output a set
of possible code index vectors, the outcome can still help to
significantly reduce the number of codewords that should be
further processed by the receiver. In addition to complexity
reduction, channel code estimation is also useful for other
system functions such as communication adaptation in the
upper layer.

Let us assume that the receiver partition the space of code
index vectors into L regions, denoted by C4,---,Cp. Let
g € C; be the actual code index vector. Given the channel
output y and the distribution information of the codebooks,
the receiver wants to detect the region to which the code index
vector belongs. Let the maximum likelihood estimate of the
code index vector be g. In other words, g = argmax; P(y|g).
The region detection is successful if § € C;. The following
theorem gives an upper bound to the detection error probability
as a function of g.

Theorem 9: Consider a (K + M )-user random multiple
access system with the code index region detection described
above. Let g be the actual code index vector, which belongs
to region C;. The probability that the maximum likelihood
estimate g does not belong to C; is upper-bounded by

Pr{g ¢ C;} < maxexp(-NE.(g,9)), (15)
gZC;

where (g, §) = maxo<,<1 —log Xy P(YV]g)* P(Vg) ().
|

The proof of Theorem 9 is given in [3, Appendix C].

Assume that a receiver first detect the region to which
the code index vector belongs, and then search decoding
output among codewords corresponding to code index
vectors within the detected region. Performance bound of
such a receiver can be easily derived by combining the
results of Theorems 3, 7 and 9. Computational complexity
of the decoding algorithm is reduced to the order of

0] (maxie{L__.,L} EgeCmR exp (N (Zle rk(gk)))>.
Note that, the complexity reduction due to channel code
estimation may not appear to be significant in the above
expression. However, such a picture can change easily if the
complexity scaling law in the codeword length can be reduced
from exponential to polynomial. Similar to the collision
detection problem, the channel code estimation problem can
also become ill-posed [3]. The solution to such an issue
is to follow the idea of “operation margin” definition and,
for every code index region, to mark some other regions as
its detection margin. In stead of distinguishing code index
vectors between different regions, one can relax the detection
problem and only require the receiver to distinguish code
index vectors inside a region from those outside the region
and the detection margin.

VI. CONCLUSION

We presented a generalized channel coding model for
random multiple access communication systems and derived
its performance limitations and tradeoff bounds. The key idea
behind these results is the extension of communication error
definition beyond the classical meaning of decoding failure.
Our results demonstrated that, by matching the communication
error definition with that of the unexpected system outcome,
classical channel coding theorems can potentially be extended
to a wide range of communication modules, especially those
in distributed wireless network. It is our hope that the results
and the analytical framework presented in this paper can serve
as a bridge toward rigorous understandings on the impact of
channel coding to the organization and operation of distributed
wireless systems.
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