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A Generalized Probabilistic Data Association

Detector for Multiple Antenna Systems
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Abstract

The Probabilistic Data Association (PDA) method for multiuser detection (MUD) over synchronous CDMA

channels is extended to the signal detection problem in V-BLAST systems. Computer simulations show that

the algorithm has an error probability that is significantly lower than that of the V-BLAST optimal order

detector and has a computational complexity of O(8n3
T ), where nT is the number of transmit antennas.

I. Introduction

MULTIPLE antenna systems have attracted considerable attention in the communication com-

munity due to their extraordinary capacity gains, which were revealed in the information

theoretic studies of [2] [3]. A well known approach to realizing the high spectral efficiencies of multi-

antenna systems was proposed by Bell Labs with the introduction of their V-BLAST (Vertical-Bell

Laboratories Layered Space-Time) wireless communications architecture. The optimal solution to the

V-BLAST communications architecture is given by a Maximum Likelihood (ML) detector, whose com-

plexity is exponential in the number of transmit antennas (with a base equal to the size of the complex

signal constellation). Due to the extreme complexity of the ML detector, a suboptimal solution based

on the idea of nulling and interference cancelation was originally proposed for the V-BLAST archi-

tecture [5] [6]. Although the original V-BLAST detector (V-BLAST optimal order detector) can be

said to offer a good trade-off between complexity and performance, there is nonetheless a large gap

between the proability of error of the aforementioned detector and that of the ML detector.

In this paper, we extend the PDA detector, originally for MUD in synchronous CDMA [4], to V-

BLAST systems [5], and propose a Generalized PDA (GPDA) algorithm for complex modulation. The

GPDA detector is presented for the special case of square/rectangular (sqr/rect) QAM, but extension to

other constellations is straightforward and follows the basic PDA implementation of [7] which requires

the computation of q probabilities for each transmit symbol, where q is the size of the constellation.

In the case of sqr/rect q-QAM, the new algorithm differs from the direct PDA approach of [7] by
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reducing the number of probabilities associated with each transmit symbol to a bare minimum; for

sqr/rect QAM, the GPDA detector respectively computes 2
√

q and
√

2q +
√

q/2 probabilities per

transmit symbol. As a consequence of reducing the number of probabilities (hypotheses) for sqr/rect

QAM, the new detector attains an improved error probability over a direct PDA approach which

evaluates q probabilities per symbol. However, the primary difference between the new PDA algorithm

and that of [7] is in the implementation, specifically for the case when the number of receive antennas

is greater than or equal to the number of transmit antennas1. For the aforementioned case, the

complexity of the PDA method is reduced significantly from that of [7] by returning to the formulation

of the original PDA algorithm [4].

Computer simulations show that the proposed algorithm significantly outperforms the V-BLAST

optimal order detector [5] and has a complexity of O(8n3
T ) for the case of sqr/rect QAM.

II. System Model

Consider a symbol-synchronized multiple antenna system with nT transmit antennas and nR receive

antennas where we take nT ≤ nR
2. The total power launched by each transmitter is proportional

to 1/nT , so that the total radiated power is constant and independent of nT . In the V-BLAST

architecture, the input is a single bit stream that is demultiplexed into nT substreams, and each

substream is mapped to a sequence of complex modulation symbols and transmitted by its respective

antenna. It is assumed that the same constellation is used for each substream, and that transmissions

are organized into bursts of L symbol durations over a quasi-static Rayleigh fading channel which

remains constant for the duration of the burst but changes randomly from one burst to the next. The

channel is assumed to be unknown at the transmitters, but is assumed to be estimated accurately at

the receivers through the use of embedded training symbols in each burst. The received baseband

signal at each instant of time is given by

r = Ha + v (1)

where H is the nR ×nT channel matrix whose (i, j)th element, hij, is the fading between transmitter j

and receiver i; a = [a1 a2 · · · anT
]T is the transmit vector of sqr/rect QAM symbols, where each

symbol in the contellation is transmitted with equal probability; and v is an nR × 1 complex-valued

white Gaussian noise vector with zero mean and covariance matrix equal to 2σ2I. Assuming a rich

scattering model, the elements of the channel matrix H are i.i.d. complex Gaussian with zero mean.

1Results from information theory (e.g., [2]) show that this condition is necessary if the capacity of a multi-antenna channel is

to grow at least linearly with the number of transmit antennas.
2Extending the proposed algorithm for nT > nR is a straightforward matter of adapting the overloaded version of the PDA

method (see [8]) to the current problem.
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To obtain the system model for the sqr/rect QAM version of the GPDA detector, we begin by

transforming (1) into the real-valued vector equation

r̃ = H̃ã + ṽ (2)

where

r̃ =
[
�{rT} �{rT}

]T

(3)

H̃ =


 �{H} −�{H}
�{H} �{H}


 (4)

ã =
[
�{aT} �{aT}

]T

(5)

ṽ =
[
�{vT} �{vT}

]T

(6)

Next we multiply (2) from the left by H̃
T

to obtain

y = Gã + n (7)

where y = H̃
T
r̃, G = H̃

T
H̃, and n = H̃

T
ṽ. Note that because the elements of H are modeled as

i.i.d. complex Gaussian, H̃ will almost always have full column rank, and, consequently the symmetric

matrix G will be positive definite with probability nearly one. For this reason, (7) is analogous to the

synchronous CDMA system in [9].

The model for the sqr/rect QAM version of the GPDA detector is obtained by multiplying (7) from

the left by G−1 to yield3

ỹ = ã + ñ = eiãi +
∑
j �=i

ej ãj + ñ (8)

In (8), ỹ = G−1y, ñ = G−1n, and ei is a column vector whose ith element is 1 and whose other

elements are 0.

III. The (Square/Rectangular QAM) GPDA Detector

A. Basic Algorithm

In the reformulated multi-antenna model (8), we treat the elements of ã as independent multivariate

random variables where the ith element, ãi, is a member of one of two possible sets:

ãi ∈



S� = Xi = {xm(i)}, i ∈ [1, nT ]

S� = Xi = {xm(i)}, i ∈ [nT + 1, 2nT ]
(9)

3Note that the choice of (8) as the system model for the GPDA algorithm is only for computational efficiency. At the cost of

raising the complexity, (7) may be used as an alternate model for GPDA.
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In (9), S� and S� are the sets of distinct values that can be assumed by the real and imaginary parts

of the QAM symbols respectively. For any element ãi, we associate a vector p(i) whose mth element,

pm(i), is the current estimate of the posterior probability that ãi = xm(i). Since direct evaluation

of Prob{ãi = xm(i)|ỹ} is computationally prohibitive, the new algorithm attempts to estimate it by

using the Gaussian “forcing” idea [4] to approximate Prob{ãi = xm(i)|ỹ, {p(j)}∀j �=i}, which will serve

as the updated value for pm(i).

An important factor in the performance of the proposed algorithm is the order in which the proba-

bility vectors {p(i)}∀i are updated. As in [4], we use the optimal decision feedback ordering [9] for the

update sequence determined from the matrix G in (7).

Now to estimate the associated probabilities for an arbitrary element ãi, we treat all other elements

ãj (j �= i) as multivariate random variables, and, from (7), we define

Ni =
∑
j �=i

ej ãj + ñ (10)

as the effective noise on ãi, and approximate it as a Gaussian noise with matched mean and covariance:

N̄i =
∑
j �=i

ejE[ãj ]

Ωi =
∑
j �=i

eje
T
j V ar[ãj] + σ2G−1

(11)

where N̄i = E[Ni] and Ωi = Cov[Ni]. In (11), E[ãj ] and V ar[ãj ] are given by

E[ãj ] =
∑
m

xm(j)pm(j)

V ar[ãj] =
∑
m

x2
m(j)pm(j) − (E[ãj ])

2 (12)

Now, defining

θi = ỹ − N̄i (13)

and

αm(i) = (θi − 0.5eixm(i))T Ω−1
i eixm(i) (14)

we obtain

pm(i) =
exp[αm(i)]∑
l exp[αl(i)]

=
exp[αm(i) − α(i)]∑
l exp[αl(i) − α(i)]

(15)
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where α(i) = max ({αm(i)}∀m). The basic procedure for the proposed GPDA detector is as follows.

1. Based on the matrix G in (7), obtain the optimal detection sequence proposed for the decision

feedback detector in [9] (specifically theorem 1 of [9]) and denote the sequence as {ki}2nT
i=1 .

2. Initialize the probabilities as

pm(i) = 1/|Xi| ∀m, ∀i

and set the iteration counter z = 1.

3. Initialize i = 1.

4. Based on the current values of {p(kj)}kj �=ki
, use the Gaussian “forcing” idea to approximate

Prob{ãki
= xm(ki)|ỹ, {p(kj)}kj �=ki

} ∀m

and set the results equal to the corresponding elements of p(ki).

5. If i < 2nT , let i = i + 1 and goto step 4. Otherwise, goto step 6.

6. If ∀i, p(i) has converged, goto step 7. Otherwise, let z = z + 1 and return to step 3.

7. For j = 1, . . . , nT , make a decision âj for aj via

�{âj} = xl(j), l = arg max
d

{pd(j)} (16)

�{âj} = xm(j + nT ), m = arg max
d

{pd(j + nT )}

B. Computational Refinements

The complexity of the new algorithm can be substantially reduced by utilizing the computational

“speed-up” tactics of [4].

B.1 Speed-Up–Matrix Arithmetic

As noted in [4], the inverse of Ωj can be evaluated by applying the Sherman-Morrison-Woodbury

formula [10] twice consecutively. A similar idea can also be applied to avoid direct calculation of N̄j .

Given Ω−1
i and N̄i, Ω−1

j and N̄j are calculated as follows.

1. Define auxillary variables Ω and N̄ as

Ω = Ωi + eie
T
i V ar[ãi]

N̄ = N̄i + eiE[ãi] (17)

2. Compute Ω−1 via

Ω−1 = Ω−1
i − Ω−1

i eie
T
i Ω−1

i V ar[ãi]

1 + eT
i Ω−1

i eiV ar[ãi]
(18)
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3. Compute Ω−1
j and N̄j via

Ω−1
j = Ω−1 +

Ω−1eje
T
j Ω−1V ar[ãj ]

1 − eT
j Ω−1ejV ar[ãj ]

N̄j = N̄ − ejE[ãj ] (19)

B.2 Speed-Up–Successive Cancellation

In our simulations, we have observed that the algorithm generally converges within 3 to 7 iterations

for SNR < 14dB, and within 1 to 3 iterations for SNR > 14dB. However, the overall complexity

can be high if one or two elements of ã exhibit slow convergence. To reduce the complexity in these

instances, successive cancellation [4] is applied after each iteration.

After the zth iteration, define D to be the set of elements that satisfy

max ({pm(i)}∀m) ≥ 1 − ε ∀i ∈ D (20)

where ε is a small positive number. For each ãi ∈ D, fix their values as

ãi = xl(i), l = arg max
d

{pd(i)} ∀i ∈ D (21)

Define D̄ as the complement of D. In the (z + 1)st iteration, we only update the probabilities of the

members of D̄ using

G−1
D̄D̄

(yD̄ − GD̄DãD) = ãD̄ + ñD̄ (22)

as the new system model where GD̄D is the sub-block matrix of G whose rows correspond to the

members of D̄ and whose columns correspond to the members of D. In (22), ñD̄ is the Gaussian noise

for the sub-system model with zero mean and covariance matrix equal to σ2G−1
D̄D̄.

C. Complexity

If we take square q-QAM as an example, the complexity of the proposed algorithm using the af-

forementioned matrix speed-up tactic [4] for one iteration is O(8n3
T + 4

√
qn2

T ) real operations. This is

actually a worst case complexity since the size of the problem can be lowered by employing successive

cancellation [4]. By comparison, the PDA implementation of [7] involves O(nT n2
R + qnT n2

R) complex

operations. For nR ≥ nT , the proposed PDA algorithm is considerably more efficient than that of [7].

IV. Simulation Results

In our simulations, the burst length was set equal to 100 symbol durations. The elements of the chan-

nel matrix H are modeled as i.i.d. complex Gaussian with zero mean and variance 0.5 per dimension

and we generate them randomly from one burst to the next. We adjust σ2 = nT Ēs

2log2(q)
10(−SNR/10), where



7

Fig. 1. Comparison of error probabilities for 4-QAM with nT = nR = 4. 106 Monte Carlo Runs

Fig. 2. Comparison of of error probabilities for 8-QAM with nT = nR = 6. 750000 Monte Carlo Runs

Ēs is the average signal energy of the sqr/rect q-QAM constellation. For the successive cancellation

part of the GPDA detector, we used ε = 0.01σ2

2Ēs
. For each example, we set nT = nR.

In Figure 1, we compare the error probability of the GPDA detector with q = 4 and nT = 4 for the

case when the reduced number of probabilities is computed for each transmit symbol as well as the

case when the full number of probabilities are computed (direct PDA). The results of the (zero-forcing)

optimal order V-BLAST [5] and ML detectors are also included. Note that when the full number of

probabilities are evaluated by the GPDA detector, the complexity per iteration is O(n3
T +qn2

T ) complex

operations, which is still significantly lower than the PDA implementation of [7]. In Figure 2, we show

the results of the afforementioned detectors for the case when q = 8 and nT = 6; figure 3 shows the

results (minus the ML curve) when q = 32 and nT = 14.
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Fig. 3. Comparison of error probabilities for 32-QAM with nT = nR = 14. 50000 Monte Carlo Runs

V. Summary

A low complexity algorithm based on the PDA method of [4] has been proposed for signal detection

in V-BLAST systems which has an error probability that is significantly lower than the V-BLAST

detector. For sqr/rect QAM systems, the GPDA detector shows improved performance over a direct

PDA approach by reducing the number of probabilities associated with each transmit symbol. For

other constellations, such as PSK, where the real and imaginary parts can only be decoupled at the

risk of producing invalid symbols, the full number of probabilities should be evaluated.
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