
Fault Diagnosis in Mixed-Signal Circuits via Neural-Network
based classification Algorithms

Vivek Kumar Rajan, Krishna R. Pattipati and Jie Luo*

* Vivek Kumar Rajan is at Intel 1 Drive, Portland, Oregon (email: rajan@intel.com)
Krishna Pattipati and Jie Luo are with the Department of Electrical and Systems Engineering, University of Connecticut, Storrs, CT

09269-3157, (email: Krishna@engr.uconn.edu)

ABSTRACT
In this work, we implemented and evaluated several learning
paradigms for general classification and diagnostic problems
arising in mixed-signal circuit testing. The network models
evaluated include Restricted Coulomb Energy (RCE) Neural
Network, Learning Vector Quantization (LVQ), Decision Trees
(C4.5), and Fuzzy Adaptive Resonance Theory (FuzzyArtmap).
A Virtual Test Bench (VTB) was developed to pre-process and
extract the fault-test dependency information used as input
patterns to the various classifiers from a circuit simulator.
Validation techniques, such as N-fold cross-validation and
bootstrap methods, are employed for evaluating the robustness of
network models. The trained networks are evaluated for their
performance using test data on the basis of percent error rates
obtained via cross validation and bootstrap techniques, time
efficiency, memory size, generalization ability to unseen faults.

1. INTRODUCTION
Recently, neural network-based fault diagnosis and testability
analysis of circuits and systems have become significant areas of
research. This is primarily because neural networks excel at
recognition and classification types of problems [1-6]. These
techniques isolate faults by creating classifiers to identify faulty
components or failure modes within components. The classifiers
are trained using data obtained from Monte-Carlo simulations of
the Unit under Test (UUT) under normal and various faulty
scenarios. Moreover, the neural network models render
themselves naturally to built-in self-test and on-line monitoring
of the UUT.

The VTB used to generate fault-test dependency data is based on
the Saber's TESTIFY tool (a fault simulation tool by Analogy
Inc. [23-25]. TESTIFY provides information on the normal
behavior of the UUT, and information on how well the set of
tests specified by a test designer will detect the presence of faults
in the system. The inputs to TESTIFY are: (1) a SPICE
description of the UUT [25], (2) a set of test stimuli applied to
the UUT, (3) a list of test-points where outputs are measured, (4)
a set of test measurement features (such as voltage level, gain,
phase, overshoot, rise time, settling time, etc), and (5) a pre-
defined fault universe of failure modes for the components.
TESTIFY parses the model and subcircuit information from the
netlist and identifies the key model parameters. It, then,
conducts a set of Monte-Carlo runs for all the pre-defined test
stimuli. During these runs, circuit component parameters are
varied randomly within the specified tolerance ranges. The fault
simulation tool then creates a memory queue of all possible faults
in the UUT. These faults are inserted, sequentially, in the original

UUT's SPICE description and simulated against all tests. The
concomitant fault signatures are then stored in a database for
processing via the neural models.

The network models evaluated include Restricted Coulomb
Energy (RCE) Neural Network, Learning Vector Quantization
(LVQ), Decision Trees (C4.5), and Fuzzy Adaptive Resonance
Theory (FuzzyArtmap). The N-fold cross-validation and
bootstrap methods are used to evaluate the robustness of network
models. The trained networks are evaluated for their
performance using test data on the basis of percent error rates,
time efficiency, memory size, and generalization ability to unseen
faults. Studying and rating the performance of the neural
network models for various classification types of problems is
the primary focus of this research.

The rest of the paper is organized as follows. Section 2 briefly
discusses the four learning algorithms. Section 3 provides an
assessment of the four algorithms on a set of benchmark datasets
from the UCI Repository of Machine Learning Databases and
Domain Theories. Section 4 presents the results of applying the
learning algorithms to three mixed-signal circuits. Section 5
concludes with a summary and future research directions.

2. MACHINE LEARNING ALGORITHMS
A. The RCE Neural Network

The RCE neural network [7],[8],[28] consists of three layers of
“neuron cells” with a full set of connections between the first and
second layers, and a partial set of connections between the
second and third layers, as shown in Fig. 1.

Figure 1. Three Layered RCE Network Structure
Each input layer cell represents a feature (a measurable
characteristic) of an incoming pattern (an input signal) that the
network assigns to some pattern class. The middle layer cells are
called prototype cells, each of which contains information about
an example of a learned pattern class that occurred in the training

2

data. Each cell on the output layer corresponds to a different
pattern class represented in the training data set.

An RCE network cell is characterized by five elements: its class
χ , its weight vector, ω , its cell threshold, λ , its pattern count,

κ , and its smoothing factor, σ . During training, all but the
smoothing factor play a role in prototype cell development. The
prototype cell weight vector ω represents the set of weighted
connections between the prototype cell and each of the input
layer cells. In response to a signal on the input layer, each
prototype cell computes a distance (Euclidean), id , between the

input signal and the prototype vector stored in its weights via

()
2

1

1 












−= ∑

=

DN

j
jiji xd ω (1)

where
=ijω weight connecting thi prototype cell and thj input cell.
=jx activity of thj input cell (i.e., the thj feature value of

vector x)
=DN number of input cells (i.e., dimension of feature space)

During training, a prototype cell becomes active, if the prototype-
to-pattern distance d is less than the cell threshold, λ . This is
called the activation rule and the prototype is said to fire. The
network is trained through a sequence of input signals, each
presented with its correct classification (a labeled training set).
The supervised training procedure makes use of three
mechanisms: prototype cell commitment, prototype threshold
modification and prototype pattern count modification. The
details are provided in [7,8,28].

To illustrate the RCE classifier, we use the well-known Iris
dataset. There are three varieties of Iris: Setosa, Versicolor and
Verginica. The length and width of both petal and sepal were
measured on 50 flowers of each variety. The original problem is
to classify a new Iris flower into one of these three types based
on four attributes (petal and sepal lengths and widths). To keep
this example simple, we will look for a classification rule by
which the varieties can be distinguished purely on the basis of
two measurements: Petal Length and Width. We have 50 pairs of
measurements (see Figure 2 (a)) of each variety from which to
learn the classification. The results of applying the RCE
network to the Iris dataset are shown in Fig. 2 (-b).

B. Learning Vector Quantization

Learning vector quantization (LVQ) [9],[10] is a pattern
classification method in which each output unit represents a
particular class or category (several output units are used for each
class.) The weight vector for an output unit is often referred to as
a codebook vector for the class that the unit represents. During
training, the output units are positioned (by adjusting their
weights via supervised training) to approximate the decision
surfaces of the classifier. The initial distribution of codebook
vectors is also assumed to be known or is determined using
traditional clustering algorithms (e.g., K-Means [11] or Class
clustering [12]). After training, the LVQ net classifies an input
vector by assigning it to the same class as the output unit whose
weight vector (codebook vector) is closest to the input vector.
The details of LVQ algorithm may be found in [9,10,28]. The

results of applying the LVQ algorithm to the Iris dataset are
shown in Fig. 3.

C. Decision Trees (C4.5)

A classification tree partitions the space of possible observations
into sub-regions corresponding to the leaves and the label of the

(a) Original distribution of Iris dataset

(b) Classification result
Figure 2. Classification by RCE neural network: Iris dataset

Figure 3. Classification by LVQ neural network: Iris dataset

leaf will classify each example. The decision tree structure
generated is either:

• a leaf, indicating a class, or

3

• a decision node that specifies some test to be carried
out on a single attribute value, with a branch (and the
concomitant subtree) for each possible outcome of the
test.

The process of constructing a decision tree from a set T of
training cases is simple. Let the classes be denoted by
{ }kCCC ,,, 21 L . There are three possibilities:

• T contains one or more cases, all belonging to a single
class jC : The decision tree for T is a leaf identifying

class jC

• T contains no cases: The decision tree is again a leaf,
but the class to be associated with the leaf must be
determined from information other that T. For example,
the leaf might be chosen in accordance with some
background knowledge of the domain, such as the
overall majority class. Usually, the most frequent class
is selected.

• T contains cases that belong to a mixture of classes: In
this situation, T is partitioned into subsets that are, or
seem to be heading towards, single-class collection of
cases. A test is chosen, based on a single attribute that
has one or more mutually exclusive outcomes
{ }nOOO ,,, 21 L . T is partitioned into subsets

nTTT ,,, 21 L , where iT contains all the cases in T

that have outcome iO of the chosen test. The decision

tree for T consists of a decision node identifying the
test, and one branch for each possible outcome. The
same tree-building mechanism is applied recursively to
each subset of training cases, so that the ith branch
leads to the decision tree constructed from the subset

iT of training cases

The algorithms for constructing decision trees are based on the
concept of information gain and may be found in [27, 28]. The
results of applying the C 4.5 algorithm to the Iris dataset are
shown in Fig. 4.

D. Fuzzy Adaptive Resonance Theory (Fuzzy Artmap)

ARTMAP performs incremental supervised learning of
recognition categories and multidimensional maps in response to
input vectors presented in an arbitrary order. The fuzzy
ARTMAP learns to classify inputs by a fuzzy set of features, or a
pattern of fuzzy membership values between 0 and 1 indicating
the extent to which each feature is present. This generalization is
achieved by replacing the ART 1 modules [13],[14] of the binary
ARTMAP system with fuzzy ART modules [15],[16]. Here, the
ARTMAP system is trained several times on input sets with
different orderings. Fuzzy ARTMAP has a small number of
parameters and requires no problem-specific system crafting or
choice of initial weight values. It learns each input as it is
received on-line, rather than performing off-line optimization of
a criterion function. The architecture of fuzzy ARTMAP is
shown in Fig. 5. The details of fuzzy ARTMAP may be found in

Figure 4. Classification by decision tree: Iris dataset

[15-17, 28]. The results of applying the fuzzy ARTMAP
algorithm to the Iris dataset are shown in Fig. 6.

Figure 5. Fuzzy ARTMAP architecture. The aART complement
coding preprocessor transforms the aM vector a into the aM2
vector ()caaA ,= at the aART field aF0 . A is the input vector
to the aART field aF1 . Similarly, the input to bF1 is the bM2
vector ()cbb, . When a prediction by aART is disconfirmed at

bART , inhibition of map field activation induces the match
tracking process. Match tracking raises the AART search, which
leads to activation of either an aART category that correctly
predicts b or to a previously uncommitted bART category node.

Figure 6. Classification by FuzzyArtmap neural network: Iris
dataset

4

E. Methods of Comparison

In testing the accuracy of classification models, it is widely
known that the error rates tend to be biased if they are estimates
from the same set of data as that used to construct the network
models [18]. The accepted procedures for predicting the error
rates are described briefly in the following.

E.1 Cross-Validation

In its most elementary form, cross-validation divides data into m
subsamples. Each sub-sample is predicted via a classification
model trained with the remaining (m-1) sub-samples. The
estimated error rate is the average error rate from these m
subsamples. The leave-one-out method is an m-fold cross-
validation with m set to the number of example datasets (Q).

E.2 Bootstrap

In statistical terms, the bootstrap is a non-parametric procedure
for estimating parameters, and error-rates in particular. The basic
idea is to re-use the original dataset (of size Q) to obtain new
datasets (also of size Q) by sampling with replacement. Thus, to
estimate the error rate in a small sample (of size Q), a large
number B of bootstrap replicate samples are created, each sample
being randomly chosen from the original sample. Sampling with
replacement means that some data points may be omitted (on
average about %8.361 =−e of data will not appear in the
bootstrap sample). In addition, some data points will appear at
least once in the bootstrap sample (on average %2.631 1 =− −e
chance). Each bootstrap sample is used to construct a
classification model which is then used to predict the classes of
those original data that were unseen in the training set. This gives
one estimate of the error rate for each bootstrap sample. The
average error rate of the original sample is then given by

settrainingsettestEFRON eee −− ×+×= 632.0368.0 (32)

where EFRONe [18] is the average error rate of the original
sample, setteste − is the error rate of the test-set and settraininge −
is the error rate of the bootstrap sample.

E.3 Cross-Validation and Bootstrap - Application to Iris Dataset

We use Iris dataset to evaluate the error rates using cross-
validation and bootstrap methods. Table I shows the ten-fold
cross-validation results for iris dataset. Average Error rate is
shown in the second column of Table I for each neural network.
Figure 7 shows the boxplot for the iris dataset with B=200
bootstrap samples.

RCE 0

LVQ 0.0778

DT 0.0333

FuzzyARTMAP 0.0222
Table I

10-FOLD CROSS-VALIDATION FOR IRIS DATASET

Figure 7. Boxplot for iris dataset

3. VALIDATION OF NEURAL MODELS
VIA BENCHMARK DATASETS

A. Introduction

In the following, we consider several benchmark datasets
downloaded from the archive at UCI Repository of Machine
Learning Databases and Domain Theories. Some of these
datasets have been described as being ``difficult categorization
problems". The data sets are: (1) Wisconsin breast cancer (bcw),
(2) Contraceptive method choice (cmc), (3) StatLog heart disease
(hea), (4) Boston housing (bos), (5) BUPA liver disorders (bld),
(6) StatLog vehicle silhoutte (veh), (7) Congressional voting
records (vot), and (8) TA evaluation (tae). A summary of
attribute features of the datasets is given in Table II.

Set Size
No. of

Classes
No. of

Attributes
Noise

Attributes

bcw 683 2 9 9 UI(1,10)

cmc 1473 3 9 6 N(0,1)

hea 270 2 13 7 N(0,1)

bos 506 3 13 12 N(0,1)

bld 345 2 6 9 N(0,1)

veh 846 4 18 12 N(0,1)

vot 435 2 16 14 C(3)

tae 151 3 5 5 N(0,1)
Table II:

CHARACTERISTICS OF THE DATASETS. THE LAST COLUMN
GIVES THE TYPE OF ADDED NOISE ATTRIBUTES FOR EACH
DATASET. THE NOTATION “N(0,1)” DENOTES THE STANDARD
NORMAL DISTRIBUTION, “UI(m,n)” A UNIFORM DISTRIBUTION
OVER THE INTEGERS m THROUGH n INCLUSIVE. THE
ABBREVIATION C(k) STANDS FOR UI(1,k)

B. Experimental Setup

The attributes for each dataset are assumed to be continuous
values for all neural models. In order to increase the number of
datasets and to study the effect of noise attributes on each
algorithm, we created eight new datasets by adding independent
noise attributes. The numbers and type of noise attributes added
are given in the right most column of Table II. The name of each
new dataset is the same as the original dataset except for the
addition of a ‘+’ symbol. For example, the bcw dataset with

5

noise added is denoted by bcw+. For each dataset, we used ten-
fold cross-validation scheme to estimate the error rates of an
algorithm.

C. Results

The mean error rates of each algorithm over the datasets are
shown in Table III. The minimum and maximum error rates are
given for each dataset in the second last two columns of Table
IV. Let p denote the smallest observed error rate in each row
(i.e., dataset). If an algorithm has an error rate within one
standard error of p, we consider it to be close to the best and
indicate it by a * in Table III. The standard error rate is

estimated as
()

Q

pp −1
, where p is the error rate from a cross-

validation estimate, and Q denotes the size of the training set.
The bootstrap results show similar trends [28].

D. Analysis of Training Time and Memory Size

An analysis of training time and memory requirements of the four
algorithms showed the following:

• Training time required by RCE neural network
increases significantly with increases in the training set
size. This can be explained as follows. Several training
passes are required because a reduction in the size of a
prototype's influence field during training

Dataset RCE LVQ DT
Fuzzy-
Artmap

bcw 0.04384* 0.04975* 0.04246* 0.05263

bcw+ 0.07006 0.06005 0.04834* 0.04981*

cmc 0.42469* 0.54871 0.47185 0.5451

cmc+ 0.59525 0.54595 0.48951* 0.58661

hea 0.3625 0.44444 0.2* 0.28519

hea+ 0.39167 0.46667 0.21852* 0.41852

bos 0.32943 0.34777 0.2234* 0.28811

bos+ 0.32521 0.34973 0.26704* 0.35478

bld 0.41917 0.43238 0.32905* 0.43333

bld+ 0.44417 0.43238 0.32905* 0.43333

veh 0.3625 0.37733 0.27692* 0.32728

veh+ 0.3626 0.37503 0.27216* 0.40186

vot 0.07226 0.09575 0.03409* 0.10058

vot+ 0.20477 0.17756 0.05484* 0.11708

tae 0.38929* 0.41708* 0.4375 0.34458*

tae+ 0.52238* 0.51708* 0.53583* 0.54917*
TABLE III

ERROR RATES FOR EACH DATASET FOR THE FOUR NEURAL
MODELS

may result in its failure to identify patterns which,
when initially presented, fell within its larger influence
field. Eventually, however, a training pass will occur in
which no new prototypes are committed and no
prototypes have their influence fields reduced. This

accounts for the relatively longer training times
required by the RCE neural network for larger datasets;

• Training times for decision trees and fuzzy artmap
network are similar;

• LVQ neural model requires the least training time for a
given sample size. This is because no new codebook
vectors are formed during the training phase; only their
relative positions in the feature space are modified;

• Codebook vectors required to store a fully trained LVQ
network does not depend on sample size, and remains
constant with increase in sample size. This can be
explained as follows. During training phase, LVQ
network only modifies the relative positions of
codebook vectors and does not add any new codebook
vectors to the network. The initial set of codebook
vectors fed to LVQ network is obtained from a
clustering algorithm (K-Means or Class clustering);

• Number of nodes required to store a decision tree
grows linearly with increases in sample size. For large
training sets, a larger number of nodes is required to
form a decision tree with high classification accuracy;

• Number of weights needed to store a fully trained
fuzzyartmap network increases with increase in sample
size. A large number of representative weights is
required to construct a trained network for a larger
training set.

Dataset Min Max Std. Err

bcw 0.04246 0.05263 0.0077

bcw+ 0.04834 0.7006 0.0082

cmc 0.42469 0.54871 0.0129

cmc+ 0.48951 0.59525 0.013

hea 0.2 0.44444 0.0243

hea+ 0.21852 0.46667 0.0251

bos 0.2234 0.34777 0.0185

bos+ 0.26704 0.35478 0.0197

bld 0.30762 0.44619 0.0253

bld+ 0.32905 0.44417 0.0253

veh 0.27692 0.37733 0.0154

veh+ 0.27216 0.40186 0.0153

vot 0.03409 0.10058 0.0087

vot+ 0.05484 0.20477 0.0109

tae 0.38929 0.4375 0.0397

tae+ 0.51708 0.54917 0.0407
Table IV

MINIMUM, MAXIMUM AND STANDARD ERROR RATES FOR
EACH DATASET, A’√’ INDICATES THAT THE ALGORITHM HAS
AN ERROR RATE WITHIN ONE STANDARD ERROR OF THE
MINIMUM FOR THE DATASET.

4. APPLICATION TO CIRCUIT TESTING

A. Description of Circuits used for Validation

• Brake: This application is a brake-by-wire system, and
includes a proportional solenoid valve and other

6

hydraulic and mechanical elements, as well as
electrical and electronic devices for sensing and control
(see Figure 8). The schematic of this circuit shows the
simulation representation of an electronically
controlled hydraulic braking system. The battery
powered DC motor and hydraulic pump provide system
pressure. A check valve, in series with a solenoid
controlled two-way valve, establishes the controlled
braking pressure at the midpoint. The solenoid valve is
configured with pressure feedback on the spool,
through a damping orifice. This inner feedback loop
provides simple pressure regulation. The actual
operating pressure is then adjustable with solenoid
current, because the valve spool and the solenoid
armature are rigidly connected. An outer pressure
control loop uses an electronic sensor to measure the
actual brake pressure. This measurement is compared
with a commanded reference voltage

Figure 8. Schematic diagram of electrohydraulic brake system.

presumably coming from a brake pedal position sensor.
The difference signal drives the base of a dual-
transistor amplifier, which controls the solenoid
current. The brake assembly is modeled as a single
acting cylinder with spring return, plus attached load
mass and a mechanical hard stop or travel limit. The
hard stop models the contact point and compliance
between the brake shoe and the rotor. A sinusoidally
varying position source represents the instantaneous
rotor transverse displacement. This allows simulation
of the effects of rotor wobble on brake pressure
regulation. Pressure is applied to the brake through a
long rigid line, as well as a short flexible hose;

• OscMos: A pure analog hierarchical circuit that
includes MOS level for the inverters, a “NAND” gate,
several resistor-capacitor-diode (RCD) and RC circuits
(see Figure 9). The proper loop delay characteristics
are achieved using resistor-capacitor (RC) networks on
the top level schematic. This schematic represents a
relaxation oscillator which can be used as a clock to a
analog-to-digital converter; and

Figure 9. Schematic diagram of mos oscillator system.

• AvgFwdConv: This configuration contains the
averaged model for the two switch forward converter
and is used to design the feedback compensation (see
Figure 10). This circuit is used to perform several
simulations/analyses.

Figure 10. Schematic diagram of average forward converter
system.

E. Mixed-Signal Fault Analysis

We present the mixed-signal fault analysis with the help of
“Electrohydraulic Brake” system shown in Figure 8. The system
is activated at 10msec and pressure builds to its maximum in
approximately 200msec. At 400msec, the control voltage is
reduced and the pressure falls to its operational level. After
approximately 300msec of ``static" operation, the control voltage
is increased, corresponding to activation of the brake pedal.
System pressure rises accordingly. Figure 11 shows the transient
analysis response of the circuit in the nominal mode. Figure 12
shows the same response with the diode shorted. The signals
shown in Figures 11 and 12 are:

• Pump outlet pressure (p_pump),
• Brake pressure seen at the wheel cylinder (p_brake),
• Drive circuit input voltage (op_out), and
• Drive circuit output voltage (collector).

Nominal fault patterns for each circuit are obtained by
performing 500 Monte-Carlo runs, and the fault patterns are
obtained by performing 50 Monte-Carlo runs for each test. The

7

details of dataset obtained for each circuit are shown in Table V.
Figure 13-15 shows the details of fault analysis performed using
the TESTIFY tool for each circuit. The boxplot analyses for the
above circuits with 200 bootstrap samples are shown in Figures
16-18.

Figure 11. Nominal simulation plot for electrohydraulic brake
system. Transient analysis is performed on the circuit during the

first second in one micro second time steps.

Figure 12. Failure mode simulation plot for electropydraulic
brake system. The free wheeling diode across the motor is in

short failure mode.
Circuit
Name

Size of
Dataset

No. of
Classes

No. of
Attributes

Brake System 1200 15 11

OscMos System 1450 20 9

AvgFwdConv System 1000 11 15
Table V

CHARACTERISTICS OF CIRCUIT DATASETS

Tests DC operating point analysis; and Transient
analysis during the first second in one micro
second time steps.

Measurements Drive circuit input voltage during system
startup and pressure recovery (op_out);
Brake pressure as seen at the wheel cylinder
during system startup and pressure recovery
(p_brake);

Risetime of brake pressure as seen at the
wheel cylinder (p_brake);
Drive circuit output voltage during system
startup and pressure recovery (collector);
Pump outlet pressure during system startup
and pressure recovery (p_pump);
Solenoid armature position during system
startup and pressure recovery (armature).

Faults Diode Open, Short;
Op-amp Input open, Input short to

CCV , Output Open;

Transistor Base open, Base short to
emitter, Base open,
collector open, emitter
open;

Resistor Open, Short.

Figure 13. Electrohydraulic brake system: analysis details

Tests DC operating point analysis; and Transient
analysis for 100 micro seconds in 10 nano
second time steps.

Measurements Oscillator output voltage (out);
Nand gate input voltage (rc1);
Inverter 2 input voltage (rc2);
Buffer output voltage (rc3);
Nand output voltage (ndout);
Inverter 1 output voltage (i1out);
Nand gate input voltage (start);
Risetime of oscillator output (out); and
Risetime of Buffer output (rc3).

Faults Capacitor Open, short;
Diode Open, Short; and
Inverter (MOS) Source open, Source

short to ground, drain
short to source, ground
open, drain open, ground
short to drain;

Nand (MOS) Source open, Source
short to ground, drain
short to source, ground
open, drain open, ground
short to drain;

Figure 14. OscMos system: analysis details

Tests DC operating point; and Transient analysis
for 500 micro seconds in 1 micro second
time steps.

Measurements Peak-to-peak output voltage of compensation
circuit (vout);
Amplitude of output voltage of compensation
circuit (vout);
Minimum value of output voltage of
compensation circuit (vout);
Slewrate of output voltage of compensation
circuit (vout);
Slope of output voltage of compensation
circuit (vout);
Average input voltage to the breakpoint
switch (v_tr);

8

RMS value of output voltage of
compensation circuit (vout);
Highpass 3dB point of output voltage of
compensation circuit (vout);
Peak-to-peak control output voltage (vc_c);
Amplitude of control output voltage (vc_c);
Upper value of control output voltage (vc_c);
RMS value of control output voltage (vc_c);
Slewrate of Pulse-Width-Modulator (PWM)
output (c);
Middle value of output voltage of
compensation circuit (vout); and
Risetime of Pulse-Width-Modulator (PWM)
output (c);

Faults Capacitor Open, Short;
Op-amp Input open, Input short to

CCV , Input short to

EEV , Output Open; and

Resistor Open, Short
Figure 15. Averaged forward converter system: analysis

details

Figure 16. Boxplot diagram for electrohydraulic brake system.

Figure 17. Boxplot diagram for mos oscillator system

Figure 18. Boxplot diagram for forward converter system

Following conclusions can be drawn from Figures 16-18:

• The neural network models have consistent
performance in identifying unseen faults provided the
parameter variations are within certain limits (usually

%20±). All the models are also consistent in
identifying novel patterns which were unseen during
the training phase. This establishes the generalization
ability of the network models;

• FuzzyArtmap shows the best performance in
identifying novel patterns during the test phase. The
Fuzzyartmap network was trained with complement
coding option being “on”, which means that, both the
on cell and off cell response for each feature were
stored in the weight vectors of the network;

• Decision trees also show good performance in
identifying novel patterns during the test phase;

• LVQ network has relatively higher error rates, which
can be due to the lack of sufficient number of
codebook vectors to represent each fault (class) in the
feature space; and

• RCE network has the maximum error rates among all
the four network models. This is because of the lack of
sufficient number of prototypes for proper
representation of each fault (class) in the feature space.

5. CONCLUSIONS
The neural network toolbox, even with its limited capabilities,
provides an object-oriented simulation environment for neural
network-based fault diagnosis. Our results show that the accuracy
of diagnostic models is a strong function of the fidelity of the
data extraction tool and the range of data in modeling various
nominal and failure modes. The neural network models lend
themselves naturally to on-line monitoring of systems, where
measurement data from various sensors is continuously available.

With care, neural networks perform very well as measured by
error rates. The observed differences in error rates can arise from:

• Suitability of the basic neural models for given
datasets;

9

• Sophistication of default procedures for parameter
settings; and

• Sophistication of the user in the selection of options
and tuning of parameters.

A number of research issues need to be addressed to enhance the
features of neural network toolbox. The enhancements include:

• Inclusion and rigorous testing of other neural networks
(e.g., Multi-layer perceptrons, Radial basis functions,
Probabilistic neural network, etc.);

• Parallel fault simulations, training and validation; and
• Committees of networks using the techniques of

decision fusion [1,2, 29].

6. REFERENCES
[1] Bishop, C.M., Neural Networks for Pattern

Recognition, Clarendon Press, Oxford, 1997.
[2] Haykin S., Neural Networks: A Comprehensive

Foundation, New York: Macmillan College
Publishing, 1994.

[3] Spina, R, Upadhyaya, S., “Linear Circuit Fault
Diagnosis Using Neuromorphic Analyzers,” IEEE
Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, Vol. 44, No. 3, March
1997, pp. 188-196.

[4] Spina, R, and, Upadhyaya, S., “Fault Diagnosis of
Analog Circuits using Artificial Neural Networks as
Signature Analyzers,” Proc Rochester Int. ASIC Conf,
Sept. 1992, pp. 357-362.

[5] Srinivasan, A, and, Batur, C., “Hopfield/ART-1 Neural
Network-Based Fault Detection and Isolation,” IEEE
Trans. on Neural Networks, Vol 5, No 6, Nov. 1994.

[6] Yan, L, and Xiangying, W., “On Fault Diagnosis of
Analog Circuits and Tolerance using Simulated
Annealing Optimization Algorithm,'' Proc 1992
International Conference on Industrial Electronics,
Control, Instrumentation and Automation, IEEE 1992.

[7] Reilly, D. L., “The RCE Neural Network,” in J.D.
Irwin (Ed.), CRC Press Industrial Electronics
Handbook, pp. 1025-1037, 1997.

[8] Michael J. Hudak, “RCE Classifiers: Theory and
Practice,” Cybernetics and Systems: An International
Journal, pp 483-515, Vol. 23, 1992.

[9] Kohonen, T., Self-Organizing Maps, Berlin: Springer.
1995.

[10] Kohonen, T., Jari Kangas, Jorma Laaksonen, Kari
Torkkola, “LVQ_PAK: A program package for the
correct application of Learning Vector Quantization
algorithms,” Proc. of the Int. Joint Conf. on Neural
Networks, pp 725-730, Baltimore, June 1992. IEEE.

[11] MacQueen J., “Some methods for classification and
analysis of multivariate data,” Proc. 5th Berkeley
Symposium on Probability and Statistics, University of
California Press, Berkeley, 1967.

[12] Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B.
and Hummels, D. M., “On the Training of Radial Basis
Function Classifiers,” Neural Networks, Vol. 5, pp.
595-603, 1992.

[13] G. A. Carpenter, S. Grossberg, “A massively parallel
architecture for a self-organizing neural pattern
recognition machine,” Computer Vision, Graphics and
Image Processing, Vol. 37, pp. 54-115, 1987.

[14] G. A. Carpenter, S. Grossberg, Pattern Recognition by
Self-Organizing Neural Networks, Cambridge, MA:
MIT Press, 1991.

[15] G. A. Carpenter, S. Grossberg and D. B. Rosen, “Fuzzy
ART: An Adaptive Resonance Algorithm for rapid,
stable classification of analog patterns,” Proc. Int. Join
Conf. Neural Networks, Vol. II, pp. 411-420.

[16] G. A. Carpenter, S. Grossberg and D. B. Rosen, “Fuzzy
ART: Fast Stable Learning and categorization of
analog patterns by an adaptive resonance system,”
Neural Networks, Vol. 4, pp. 759-771, 1991.

[17] G. A. Carpenter, S. Grossberg, N. Markuzon, J. H.
Reynolds and D. B. Rosen, “Fuzzy ARTMAP: A
Neural Network Architecture for Incremental
Supervised Learning of Analog Multidimensional
Maps,” IEEE Trans. on Neural Networks, Vol. 3, No.
5, Sept. 1992.

[18] J. David Irwin, The Industrial Electronics Handbook,
CRC Press, 1996.

[19] Bradley Efron, The Jackknife, the Bootstrap and Other
Resampling Plans, SIAM, 1982.

[20] C. J. Merz and P. M. Murphy, UCI Repository of
Machine Learning Databases, Department of
Information and Computer Science, University of
California, Irvine, CA, 1996.

[21] Linda S. Milor, “A Tutorial Introduction to Research
on Analog and Mixed-Signal Circuit Testing,” IEEE
Transactions on Circuits and Systems-II: Analog and
Digital Signal Processing, Vol. 45, No. 10, Oct. 1998.

[22] J. W. Bandler and A. E. Salama, “Fault diagnosis of
analog circuits,” Proc. IEEE, Vol. 73, Aug 1985.

[23] Analogy Inc., “Behavioral Fault Simulation of Large
Mixed-Signal UUT's Using the Saber Simulator,”
Technical Conference Paper, http://www.analogy.com/
test/literature/ATC98Final.doc, 1998.

[24] Analogy Inc., “Using Simulation to Improve Fault
Coverage of Analog and Mixed-Signal Test Program
Sets,” Tech. Conference Paper, http://www.analogy.
com/test/literature/ATCpress97.doc, 1997.

[25] Analogy Inc., “TESTIFY - Data Sheet,” Data Sheets,
http://www.analogy.com/test/literature/TestifyDataShe
et.pdf, 1999.

[26] Rashid, M. H., “SPICE for Circuits and Electronics
Using PSpice,” Second Edition, Printice Hall,
Englewood Cliffs, NJ 07362, ISBN 0-13-124652-6.

[27] Quinlan, J.R., C4.5: Programs for machine Learning, :
San Mateo: Morgan Kaufmann, 1993.

[28] Rajan, V., A Neural Network Toolbox for
Classification Problems, MS Thesis, Dept. of ESE,
Univ. of Connecticut, Storrs, CT, July 1999.

[29] Dasarathy, B. (Ed.), Decision Fusion, Los Alamitos,
CA: IEEE Computer Society Press, 1994.

