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Abstract—This letter considers the average complexity of maximum-like-
lihood (ML) decoding of convolutional codes. ML decoding can be mod-
eled as finding the most probable path taken through a Markov graph. In-
tegrated with the Viterbi algorithm (VA), complexity reduction methods
often use the sum log likelihood (SLL) of a Markov path as a bound to dis-
prove the optimality of other Markov path sets and to consequently avoid
exhaustive path search. In this letter, it is shown that SLL-based optimality
tests are inefficient if one fixes the coding memory and takes the codeword
length to infinity. Alternatively, optimality of a source symbol at a given
time index can be testified using bounds derived from log likelihoods of the
neighboring symbols. It is demonstrated that such neighboring log likeli-
hood (NLL)-based optimality tests, whose efficiency does not depend on the
codeword length, can bring significant complexity reduction. The results
are generalized to ML sequence detection in a class of discrete-time hidden
Markov systems.

Index Terms—Coding complexity, convolutional code, hidden Markov
model, maximum-likelihood (ML) decoding, Viterbi algorithm (VA).

I. INTRODUCTION

Forney showed that maximum-likelihood (ML) decoding of convo-
lutional codes is equivalent to finding the most probable path taken
through a Markov graph [1]. Denote the codeword length by � and
the coding memory by � . For each time index, the number of Markov
states in the Markov graph is exponential in � . The total number of
Markov states is, therefore, exponential in � but linear in � . Define
the complexity of a decoder as the number of visited Markov states
normalized by the codeword length � . Practical ML decoding is often
achieved using the Viterbi algorithm (VA) [1], whose complexity does
not scale in� but scales exponentially in � . Well-known decoders such
as the list decoders, the sequential decoders, and the iterative decoders
are able to achieve near optimal error performance with low average
complexity. However, these decoders do not guarantee the output of the
ML codeword [2]. If obtaining the ML codeword is strictly enforced,
to avoid exhaustive path search, the decoder must develop certain opti-
mality test criterion (OTC) [3] to test whether the ML path belongs to
a Markov path set.

Two major OTCs have been used in the ML decoding of convolu-
tional codes. The first one is the “path covering criterion” (PCC) [4]
used in the VA [1]. VA visits all Markov states in chronological order
[1]. For each time index, the decoder maintains a set of “cover” Markov
paths each passing one of the Markov states [1]. According to the PCC,
the “cover” Markov path passing a Markov state disproves the opti-
mality of all other Markov paths passing the same state. The second
OTC is the SLL-based OTCs used extensively in the sphere decoder
[6], [5]. Sphere decoder models ML decoding as finding the lattice
point closest to the channel output in the signal space [5]. Hence, the
distance between the channel output and an arbitrary lattice point upper
bounds the distance from the channel output to the ML codeword. Such
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distance bound is based on the SLL of the corresponding codeword, and
is used in the sphere decoder [6], [5] as well as other ML decoders [3]
as the key means to avoid exhaustive codeword search.

Assume PCC-based optimality test is always implemented. In this
letter, we first show that additional complexity reduction brought by the
SLL-based optimality test diminishes as one fixes the coding memory �
and takes the codeword length � to infinity. We then show whether the
ML message contains a particular symbol at a given time index can be
tested using an OTC that depends only on the log likelihood of channel
output symbols in a fixed-sized time neighborhood. We call such test
the NLL-based optimality test, and show its efficiency does not depend
on the codeword length. We theoretically demonstrate that NLL-based
optimality test can bring significant complexity reduction to ML de-
coding when the communication system has a high signal-to-noise ratio
(SNR). Complexity of the decoder using SLL-base optimality test, on
the other hand, remains the same as the VA for all SNRs if the code-
word length is taken to infinity. The results are also generalized to ML
sequence detection in a class of discrete-time hidden Markov systems.

II. PROBLEM FORMULATION

Let � be an ��� �� convolutional code over GF��� defined by a min-
imal [7] polynomial generater matrix ����	� [7]

����	� � ������ �������	 � � � ������� � ��	���

where 	 is the delay operator; ����
�� � � 
 � � , are � � � matrices
over GF���.

Denote the message by a sequence of vector symbols

����	� � ����
�	� � ����
� ��	��� � 	 	 	

where 
 is the time index, possibly negative; ����
�� �
, are row vectors
of dimension � over GF���. The corresponding codeword is given by

����	� � ����	�����	� �
�

���

���

����
� 
�����
�	�
�

We assume ����
� � � for 
 � � and 
 � � . We term � the code-
word length. Define a function ����� that maps � from GF��� to �
(the set of real numbers) in one-to-one sense. If ����	� is a vector se-
quence, �������	�� applies the mapping to each element of ����	�. As-
sume the codeword is transmitted over a memoryless Gaussian channel.
The channel output is given by

����	� � �������	�� � ����	�

� �������	�����	�� � ����	�

where ����	� � ����
�	� � ����
 � ��	��� � � � � is the noise sequence
with ����
� � ���� ������ being i.i.d. Gaussian. Define the scaled SNR
of the system as 
�� � �

�
. In Section V, we show that the results

are generalizable not only to other channel models, but also to a class
of hidden Markov systems.

Given the channel output, for any message ����	� and its corre-
sponding codeword ����	� � ����	�����	�, we define the “negative
SLL” as

�������	�� � �������	�� �

�����

���

	����
�� �������
��	
�
�

The objective is to find the ML message ������	�

������	� � 
�����
�����		���
�

�������	���
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III. INEFFICIENCY OF SUM LOG LIKELIHOOD-BASED

OPTIMALITY TEST

For ML decoders using SLL-based optimality test, the decoder first
obtains a quick guess of the message without solving the ML decoding
problem [3]. SLL of the obtained message is then used to help dis-
proving the optimality of certain Markov path sets. We make an ideal
assumption that the “guessed” message equals the transmitted mes-
sage, which is denoted by ������, and ������ � ������������. The corre-
sponding negative SLL is given by

���������� �

�����

���

�������� �����������
�

�

�����

���

�			�����


Consider a subset of time indices ��
� � ��� ��. Let ���������� � ��

��
be a partial message defined only at ��

� . Denote by ��������
��� the set

of messages satisfying

��������
��� � ���������������� � �������� �� � �

�
� � ������� 	� �������


Suppose the decoder wants to test whether it can disprove the opti-
mality of ��������

���, i.e., whether �������� 	� ��������
���. A common

practice [3] is to find a lower bound, ��� �������
�
���, such that

����������� 
 �
�
� �������

�
���� � ������� � ��������

���


If the lower bound ��� �������
�
��� is larger than ����������, then we have

����������� 
 ��� �������
�
��� 
 ���������� for all ������� � ��������

���,
which means �������� 	� ��������

���.
We skip the proof that the SLL lower bounds appeared in the litera-

ture satisfy the following assumption.

Assumption 1: Given ��������
���, let ��

� � ��� � � �� be the max-
imum time index set, over which we can find a partial codeword �������

��
such that for all ������� � ��������

��� with ������� � �������������, we
have ������� � ������� for all � � �

�

� . We also have ���

� � � ���
� � � � .

We assume the existence of a positive constant � � ��� 	�, whose value
does not depend on � , such that

�
�
� �������
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�������� ������������
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� ���	� ��	��


As demonstrated in [3], if we fix� , using��� �������
�
��� 
 ����������

as the OTC to disprove the optimality of message set ��������
��� can

bring significant complexity reduction to ML decoding, especially
under high SNR. However, if we define �	 � �

�

� as the subset of
time indices corresponding to the erroneous codeword symbols, i.e.

�	 � ���� � �
�

� � ������� 	� ������� (1)

the following proposition shows that SLL-based optimality tests be-
come inefficient if � � ���

� � is taken to infinity while ��	� is kept
finite.

Lemma 1: Assume the generater matrix ������ is fixed, and, there-
fore, the constraint length � is fixed. Consider message sets character-
ized by ��������

��� for arbitrary ��
� under the constraint of a fixed �	,

where �	 � �
�

� is defined in (1) and the derivation of ��

� is specified
in Assumption 1. If we fix SNR and take � � ���

� � � 
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If we first take � � ���
� � � 
 and then take 
��� 
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 ����������� � �
 (2)

Proof: Since ���

� � � ���
� � � �� � � ���

� � � 
 implies � �
���

� � � 
. According to Assumption 1, we have
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 (3)

Denote the right-hand side (RHS) of (3) by ��, we have with proba-
bility one, 
������ ��� �� � ��	�� � �. Hence
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 �� � �
 (4)

Since (4) holds for all SNR, it remains true if we first take � ����
� �

to infinity and then take SNR to infinity.1

With the help of Lemma 1, inefficiency of SLL-based optimality
tests is characterized by the following lemma, the proof of which is
skipped.

Lemma 2: Let ���� be the complexity of an ML decoder that only
uses PCC- and SLL-based optimality tests for complexity reduction.
Let �
� be the complexity of the Viterbi decoder, in which, only PCC-
based optimality test is used. For any � 
 �, we have
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���

������ 
 �	� ���
�� � 	
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�	
��


��
���

������ 
 �	� ���
�� � 	


IV. NEIGHBORING LOG LIKELIHOOD-BASED OPTIMALITY TEST

We first propose in Theorem 1 a class of NLL-based optimality tests.

Theorem 1: Define ��
��� �
�

�� by

�
�

�� � ���

��� �����
���������� ���������

�

�
�

�� � ���

��� �����
���������� ���������

�

where ����� ���� are 	-dimensional vectors over �� ���. Let � be an arbi-
trary constant, � be an arbitrary integer

� � � �
��
��

�
� � 


���
��

��

 (5)

1Note that the order in which limits are taken in (2) is important. If we fix �
and take SNR to infinity first, we can get

��� ��� ��� ������� �� � � ��������� � ��
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Let ������� be a message whose corresponding codeword is �������.
For any time index �, if the following inequality is satisfied for all
� � �� � ����� � ����

�			���� 
����������� �
�����

�
� � (6)

and the following inequalities hold:
�������	���

�
�����

�			���� 
�����������
� ��� � ��

�
���

�������

�
�������	�

�			���� 
�����������
� ��� � ��

�
��� (7)

then we must have ����� ��� � ���
�� ���� � �� � ����� ��.
Theorem 1 is implied by Theorem 3 in Section V.
Note that, as long as 
��� and � are given, the values of � and� can

be fixed, e.g., � �
�

�
and � � �

���

��
�. Given � , the optimality

test presented in Theorem 1 testifies the optimality of ����� ���	 �� �
�������
 using the log likelihood of channel output symbols within
a fixed-sized time interval �������	���������	���. It is quite
intuitive to see, efficiency of the test does not depend on the codeword
length if all other parameters are fixed.

Efficiency of the OTC proposed in Theorem 1 is characterized by the
following lemma.

Lemma 3: Assume � and � are chosen to satisfy (5). Let � be an
arbitrary time index. Let ������� equal the transmitted codeword within
time interval �� � ��� � 	���� � ��� � 	���. Define OPT� as
the event that (7) is satisfied and (6) holds for all � � ��� ������
����. Fix all other parameters and take SNR � � yields


��
�����


�OPT�
 � 	� (8)

The same conclusion holds if we first take � to infinity


��
�����


��
���


�OPT�
 � 	� (9)

Proof: If ������� equals the transmitted codeword within time in-
terval �������	���������	���, for � � �������	�����
��� �	���, we have 			���� 
���������� � ������. Consequently, (8) and
(9) hold because ��������� are i.i.d. ��, whose mean and variance con-
verge to 
 as SNR��.

Lemma 3 implies, if there is a suboptimal decoder whose probability
of symbol detection error (as opposed to sequence detection error) is
low under high SNR, then NLL-based optimality tests can help trans-
forming the suboptimal detector to an ML detector with only marginal
increase in average decoding complexity. Such transformation can be
achieved by the following three-step ML decoding framework.

• Step 1: The decoder uses a suboptimal algorithm (denoted by
����) to obtain a quick guess of the codeword ������� and its cor-
responding message �������.

• Step 2: An NLL-based optimality test (specified in Theorem 1) is
applied to each symbol of �������. The decoder maintains a source
symbol set sequence ����, with ���� being the source symbol
set of time index �. If ������� � ���
���� can be confirmed by the
optimality test, we let ���� � ��������
; otherwise, we let ���� be
the set of all possible source symbol vectors at time index �.

• Step 3: The decoder uses a modified VA to search for the ML
source message. The modified VA visits a Markov state only if all
source symbols corresponding to the Markov state belong to the
source symbol sets ���� of the corresponding time indices.

Implementing the modified VA is quite straightforward. Hence, its
further description is skipped.

Theorem 2: Let 
������
 be the probability of symbol detection
error of ����. Assume, while fixing all other parameters,


��
�����


������
 � 
� 
��
�����


��
���


������
 � 
� (10)

Let ���� be the average number of Markov states per time unit visited
by the modified VA in the third step of the ML decoder. For any � � 
,
we have


��
�����


����� � 	 � �
 � 	


��
�����


��
���


����� � 	 � �
 � 	�

Proof: Let ������� ������ be the actual source message and the
transmitted codeword, respectively. Let �������� ������� be the message
and the codeword output by����. According to (10), for any time index
�, we have


��
�����



������� � �������

�� � ��� ��� � 	����� ��� � 	���
� 	�

(11)
where � is the parameter of the NLL-based optimality test speci-
fied in Theorem 1. According to (11), Lemma 2, and Theorem 1, for
any �, if ������� � ������� �� � �� � ��� � 	���� � ��� � 	���,
then the probability that the NLL-based optimality test can confirm
������� � ���
����� �� � ���� � �� converges to one as SNR � �.
Consequently, letting ���� be the source symbol set maintained by the
ML decoder in the second step, we have


��
�����


 �	����	 � 	��� � ����� ��
 � 	� ��� (12)

Since the worst case complexity of the modified VA is bounded,
(12) implies, for any � � 
� 
������� 
����� � 	 � �
 � 	.
Since all derivations hold if we first take � � �, we also have

������� 
����� 
����� � 	 � �
 � 	.

Note that the three steps of the ML decoder can be implemented
in parallel in the sense that each step can process some of the source
symbols without waiting for the previous step to completely finish its
work [8].

V. MAXIMUM-LIKELIHOOD SEQUENCE DETECTION IN A CLASS OF

HIDDEN MARKOV SYSTEMS

In this section, we generalize the results of Section IV to ML se-
quence detection (MLSD) in a class of first order discrete-time hidden
Markov systems.

Let ������ � ���������������	������ 
 
 
 be a first-order Markov
sequence, where ������ represents the Markov state (at time �), which is
a �� -dimensional row vector defined over GF���. We assume������ � �

for � � 
 and � � � , with� being the sequence length. Define ������ �
����������� as the “processed state,” which is a deterministic function of
������. ������ is a �-dimensional row vector defined over�� ���. We term
������ � �������� � ������ 	����� � 
 
 
 the processed state sequence.
Let 			��� � 			������			���	������
 
 
 be the observation sequence,
where 			��� is a �-dimensional row vector with real-valued elements.

Denote the state transition probability of the hidden Markov system
by


������	����� � 
������� 	� � ����	������ � ����
�

Define the transition probability ratio bound ��	 by

��	 � ���

������	�����


������	�����
�

We assume the Markov chain is ergodic and homogeneous. Therefore,
there exists a positive integer � , such that


������� �� � ����	������ � ����
 �� 
� ������ ����� (13)
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Denote the observation distribution function by

������������ � �������� � ���������� � ������

Let the corresponding probability density function (or probability mass
function) be ������������.

We also make the following two key assumptions.

Assumption 2: We assume state processing ������ � ����������� does
not compromise the observability of the Markov states in the sense that
there exists a positive integer 	 satisfying the following property. Given
two Markov state sequences ����
� and �����
�. For any time index �, if
������ �� �������, then we can find a time index � � ��� 	� �� 	�, such
that ����������� �� ������������.

Note that it is valid to assume the same constant 	 in (13) and in
Assumption 2.

Assumption 3: Assume the existence of two functions: 
������ �����
and 
������ �����. Assume 
������ ����� and 
������ ����� possess the following
two properties. First, the following inequalities hold for all ��� and ����:


������ ����� � �	

��� ���� �����

�� ��
�������������� � ��
���������������


������ ����� � ���
��� �����

�� ��
�������������� � ��
���������������� (14)

Second, the complexity of evaluating 
������ ����� and 
������ ����� is low
in the sense that they do not require the search of any processed state
other than ����.

Given the observation sequence ����
�, the negative SLL of a state
sequence ����
� is obtained by

�������
�� � �

�

���

��
���������������������������������� �����

The objective of MLSD is to find the ML sequence that minimizes the
negative SLL

������
� � ��
�	

�����	����	�

�������
���

The following theorem gives a class of NLL-based optimality tests.

Theorem 3: Assume the discrete-time Markov system satisfies As-
sumptions 2 and 3. Let � � � be a positive constant. Given a Markov
state sequence ����
� and the corresponding processed states ����
�. Let
��
 be defined by (13). For any time index �, if there is an integer
� � � such that for all � � �� � ��	�� � ��	�


��������� ������� � �	��� ��
 �
��� (15)

and

����
��

�������
��



������ �������

� ��	� � 	 ��
 �
�

then ������ 	 � �� � ������� � 	 � �� must be true.

The Proof of Theorem 3 is given in Appendix A.
For communication systems following a discrete-time hidden

Markov model, ������������ often belongs to an ensemble of density (or
probability) functions, with the actual realization determined by the
SNR. In words, ������������ SNR� is a function of the SNR. Assume
the discrete-time Markov system satisfies Assumption 3, where both
functions 
������ ����� and 
������ ����� can be functions of the SNR. We
make the following assumption.

Assumption 4: Assume the observation density (or probability)
������������ ���� is a function of the SNR. Assume the discrete-time
Markov system satisfies Assumption 3. Let the actual state sequence

and the processed state sequence be ����
� and ����
�, respectively.
Define two positive numbers ����� and ����� as follows:

�����

�
� ��� � � �� �	�

�����
��
��������� ������� � �SNR� � �

�
�
��� � 	
� � � �� �	�

�����
��
��������� ������� � �SNR� � � �

We assume ����� � �� ����� � 	.
The following lemma characterizes the efficiency of the OTC pro-

posed in Theorem 3.

Lemma 4: Assume the discrete-time Markov system satisfies As-
sumptions 2 and 4. Let the state sequence be ����
�. Let � be an arbi-
trary constant, � be an arbitrary integer, satisfying

� � � �
�����

�
� � �

	�����

�
� (16)

Let � � ����
�


. Given an arbitrary time index �, define OPT� as
the event that (16) is satisfied and (15) is satisfied for all � � �� �
��	�� � ��	�. If we fix all other parameters except the SNR, we
have

�	�
�����

��OPT�� � �� (17)

If we fix all other parameters except the SNR and the sequence length
� , we have

�	�
�����

�	�
���

��OPT�� � �� (18)

The Proof of Lemma 4 is skipped.
Note that in Lemma 4, when we take � and SNR to infinity, �

can be fixed at a constant. This indicates that, when testing the opti-
mality of a Markov state at a given time index, the NLL-based opti-
mality test only uses observation symbols in a fixed-sized time neigh-
borhood. Based on Theorem 3 and Lemma 3, a three-step ML sequence
detector similar to the one presented in Section IV can be developed to
transform a suboptimal sequence detector to a low complexity ML se-
quence detector.

APPENDIX

A. Proof of Theorem 3

Proof: Let �����
� be an arbitrary Markov state sequence with cor-
responding processed state sequence being �����
�. Assume

������� 	 � �� �� ������ 	 � ��� (19)

Theorem 3 holds if we can prove that any �����
� satisfying (19) cannot
be the ML state sequence.

Let � denote a positive integer. Define two integers �� and �
 as
follows:

�� � ��
�	

���

�������� 	 � �� �	�

� ������ 	 � �� �	��

�
 � ��
�	

���

�������� 	 � � � �	�

� ������ 	 � � � �	���

We consider the following four cases based on the values of �� and
�
 .

Case 1: �� � �� � �� �
 � �� � �.
Case 2: �� � �� � �� �
 � �� � �.
Case 3: �� � �� � �� �
 � �� � �.
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Case 4: �� � �� � �� �� � �� � �.
It can be shown that, for all cases, ������� cannot be the ML sequence.

Since the proofs of the four cases are not essentially different, we only
present the proof for Case 4.

We construct a Markov state sequence ������� as follows:
������� 	 ������� for �� ��	 � � 
 �� ��	

������� 	 �������� for � � �� ��� � ��	

������� 	 �������� for � 
 �� ��� � ��	�

Let the processed state sequence corresponding to ������� be ���
�
���.

Since �������	���
	� �	 �������	���
	� for all����� � 
 �
�� � �, according to Assumption 2, ������� and ������ differ at no less
than � ����

�
� time indices in the time interval �����	�����	�.

According to (14) and (15), we have

�

�������

�������


��
�������������������	���������������� ���

�������������������	���������������� ���

�

� � �

�
�	��� 
�� �	�� � 
�	 
�� �	� � ��	��

Meanwhile, it is easily seen that the following inequalities hold:

�

���������

�������


��
�������������������	���������������� ���

�������������������	���������������� ���

� �

�����������

�������

�
�������� �������

� �	 � �� 
�� �	� � ���	��

�

�������

�����������


��
�������������������	���������������� ���

�������������������	���������������� ���

� �

�������

�����������

�
�������� �������

� 	 
�� �	� � ���	��

Consequently

�

���������

�����������


��
��������������������	���������������� ���

�������������������	���������������� ���

� ���	� � ��	� � ��	� 	 �� (20)

(20) implies that ������� “covers” �������. According to the PCC [4],
������� cannot be the ML sequence.
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Clifford Code Constructions of Operator
Quantum Error-Correcting Codes

Andreas Klappenecker, Member, IEEE, and Pradeep Kiran Sarvepalli

Abstract—Recently, operator quantum error-correcting codes have been
proposed to unify and generalize decoherence free subspaces, noiseless sub-
systems, and quantum error-correcting codes. This correspondence intro-
duces a natural construction of such codes in terms of Clifford codes, an
elegant generalization of stabilizer codes due to Knill. Character-theoretic
methods are used to derive a simple method to construct operator quantum
error-correcting codes from any classical additive code over a finite field,
which obviates the need for self-orthogonal codes.

Index Terms—Clifford codes, operator quantum error-correcting codes,
quantum codes, stabilizer codes, subsystem codes.

I. INTRODUCTION

One of the main challenges in quantum information processing is
the protection of the quantum information against various sources of
errors. A possible remedy is given by encoding the quantum informa-
tion in a subspace � of the state space � of the quantum system. If
such a quantum error-correcting code � is well chosen, then many er-
rors can be corrected through active recovery operations. A more recent
development is the encoding of quantum information into a subsystem
� of the state space [13], [14]. This means that � is further decom-
posed into a tensor product of vector spaces � and � such that

� 	 � � �
� 	 ��	��� �

�
�

One refers to � as an operator quantum error-correcting code with
subsystem � and co-subsystem �. Some authors refer to the co-sub-
system as the gauge subsystem. One advantage is that errors affecting
the co-subsystem � alone do not require any active error-correction.
Furthermore, one can detect all errors that map the encoded informa-
tion into the orthogonal complement �� of � .

The operator quantum error-correcting codes generalize and unify
the main methods of passive and active quantum error-correction: deco-
herence free subspaces, noiseless subsystems, and quantum error-cor-
recting codes. More background on operator quantum error-correcting
codes can be found, for example, in [2], [11], [13], [14], [12], and [15].
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