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ABSTRACT

We consider the communication system that transmits a se-
quence of binary vector symbols over a vector intersymbol
interference (ISI) channels subject to additive white Gaussian
noise . Conventionally, maximum likelihood (ML) sequence
is computed using the Viterbi Algorithm (VA), whose com-
plexity scales exponentially in both the symbol vector length
and the number of ISI channel taps. We show that, as the sig-
nal to noise ratio (SNR) goes to infinity, the ML sequence can
be obtained with an asymptotic complexity scaling linearly in
the number of channel taps and quadratically in the symbol
vector length.

Index Terms— Maximum likelihood, Sequence detec-
tion, Statistical information, Viterbi algorithm

1. INTRODUCTION

Consider the scenario where a sequence of vector symbols,
with each vector having K binary elements, are sent from a
transmitter to a receiver through a vector intersymbol interfer-
ence (ISI) channel, whose number of taps is L, subject to ad-
ditive Gaussian noise. Assume the source vector symbols are
independently generated with all possible values being equal
probable. If the receiver is willing to minimize the probability
of sequence detection error, the optimal decision is given by
the maximum likelihood (ML) sequence that maximizes the
log likelihood function. Finding such sequence is known as
the maximum likelihood sequence detection (MLSD) prob-
lem.

Conventionally, the ML sequence is computed using the
well known Viterbi algorithm (VA) [1], whose complexity
scales linearly in the sequence length, but exponentially in the
source symbol vector length K, and exponentially in the num-
ber of ISI channel taps L. Such complexity can be prohibitive
for systems with large KL values. Throughout the past three
decades, many attempts have been made to find sequence de-
tectors performing about the same as the VA, but less complex
in terms of the scaling law in the Markov states [3][4][5]. The
main idea considered in these algorithms is to update only a
selected number of routes upon the reception of each observa-
tion so that the worst case complexity of the algorithm is un-

der control. However, a consequence of such limited search is
that none of these complexity-reduction methods can guaran-
tee the ML sequence, which is the sequence that maximizes
the log likelihood function. On the other hand, if the length
of the input vector sequence, N , is small, one can regard the
MLSD problem as a maximum likelihood (ML) lattice decod-
ing problem with an input symbol vector of length NK [7].
Consequently, ML sequence can be obtained using various
versions of the sphere decoding algorithm with low average
complexity, under the assumption of high signal to noise ratio
(SNR) [6][7]. Unfortunately, due to the difficulty of handling
a lattice of infinite dimension, these algorithms cannot extend
directly to the situation of stream input where the length of
the source sequence is practically infinity. In summary, most
existing complexity reduction methods for MLSD either can-
not guarantee the ML sequence, or are not suitable for stream
input.

Although the VA is computation efficient in the sense of
exploiting the underlying Markov chain structure, it does not
fully exploit the statistical information of the system. Particu-
larly, the observations of the system are related to the Markov
states through a statistic model, which is usually known to
the receiver. If the observation perturbation is small, the ob-
servation sequence provides a strong inference about the un-
derlying Markov states. Such information can be used to sig-
nificantly reduce the number of routes one should visit in the
VA. For the communication system studied in this paper, we
develop an examination method which guarantees the trun-
cated sequence passing the examination is indeed the trun-
cated ML sequence. As SNR goes to infinity, the proposed
examination method becomes highly efficient in the sense of
passing the actual truncated source sequence with asymptotic
probability one. Together with the help of an asymptotically
efficient sequential detector whose probability of symbol de-
tection error is asymptotically zero, the proposed algorithm
obtains the ML sequence with an asymptotic complexity of
O(LK2) per symbol. This complexity is, in the scaling order
sense, no higher than any of the efficient sequence detectors,
including suboptimal ones, that can achieve diminishing sym-
bol detection error as SNR goes to infinity. In the situation of
finite-length input sequence, the worst case complexity of the
MLSD algorithm is in the same order of the VA.



The proposed MLSD algorithm is presented in a simple
form in order to show clearly the insight of asymptotic com-
plexity reduction. We make no effort in reducing the com-
plexity further as long as the desired asymptotic scaling law
is achieved. The proofs of the theorems are presented in [8].

2. SYSTEM MODEL

Let x(0), x(1), . . . , x(n), . . . , x(N − 1) be a sequence of
source symbol vectors, each of length K, with binary-valued
elements. Let xi(n) be the ith element of x(n). xi(n) ∈
{−1,+1}, ∀i, n. Assume the source vectors are randomly
and independently generated, with all possible values being
equal probable. The sequence of vectors are then transmitted
to the receiver through a vector ISI channel. The nth received
symbol vector, also of length K, is given by,

y(n) =
L−1∑

l=0

F [l]x(n− l) + v(n) (1)

Here F [l], l = 0, . . . , L − 1 are the channel matrices, each
of size K × K with real-valued elements; v(n) is the K
length white Gaussian noise vector with zero mean and vari-
ance σ2I . We assume all the channel matrices are known
to the receiver and are time-invariant throughout the commu-
nication. We assume the input sequence length N is large
enough to be practically considered as infinity. We also as-
sume x(n) = 0 for n < 0 and n ≥ N .

The following is a key assumption required for the deriva-
tion of the results in Section 3. A discussion about this as-
sumption is given at the end of Section 3.

Assumption 1 We assume the channel matrix F [0] is lower
triangular with all its diagonal elements being strictly posi-
tive. Define F (ω) as the vector Fourier transform of the chan-
nel matrices,

F (ω) =
L−1∑

l=0

F [l]e−jω (2)

Define λmin(A) as the minimum eigenvalue of a Hermitian
matrix A. Let F (ω)H be the conjugate transpose of F (ω).
Define

λ0 = min
ω∈[0,2π)

λmin(F (ω)HF (ω)) (3)

We assume λ0 > 0.

Define

Ψi({x(n)}) = −
i∑

n=0

∥∥∥∥∥y(n)−
L−1∑

l=0

F [l]x(n− l)

∥∥∥∥∥

2

(4)

We use Ψ({x(n)}) to refer to the sum log likelihood function
ΨN+L−2({x(n)}) corresponding to the sequence {x(n)}.

Upon the reception of the observation sequence {y(n)},
the optimal detection that minimized the probability of se-
quence detection error is given by the ML sequence.

{xML(n)} = arg max
{x(n)},x(n)∈{−1,+1}K

ΨN+L−2({x(n)})
(5)

We are interested in the complexity of the MLSD per sym-
bol, as σ goes to zero.

3. SEQUENCE DETECTION

We first present in the following theorem the optimality ex-
amination method that can verify whether a particular vector
in a finite-length truncated decision sequence is identical to
the corresponding vector in the ML sequence.

Theorem 1 Given the observation sequence {y(n)}, let {x̂(n)}
be a decision sequences. Define

U0 = max
x(i)∈{−2,0,+2}K ,∀i

L−2∑

i=0

∥∥∥∥∥
i∑

l=0

F [l]x(i− l)

∥∥∥∥∥

2

(6)

Let 0 < δ < λ0
L . Let D be a positive integer satisfying

D >
2U0 + L−1

L λ0

δ
− 3

2
L + 2 (7)

For any M ≥ L+D−1, if the following inequality is satisfied
for all M −D < n < M + D + L− 1,

∥∥∥∥∥y(n)−
L−1∑

l=0

F [l]x̂(n− l)

∥∥∥∥∥

2

<
λ0

L
− δ (8)

then x̂(M) = xML(M) must be true.

The optimality examination method presented in Theorem
1 is asymptotically efficient in the following sense. If {x̂(n)}
is indeed the actual source sequence, for any M ≥ L+D−1,
the probability of (8) being true for all M −D < n < M +
D + L− 1 goes to one as σ goes to zero.

Let xL(n) = [x(n − L + 1)T , . . . , x(n)T ]T be the nth

state vector for the underlying Markov chain. Ψ({x(n)}) can
be computed via the following recursive algorithm.

ΨM ({x(n)}) = ΨM (xL(n ≤ M))

= ΨM−1({x(n)})−
∥∥∥∥∥y(M)−

L−1∑

l=0

F [l]x(M − l)

∥∥∥∥∥

2

= ΨM−1(xL(n ≤ M − 1)) + γM (xL(M − 1),xL(M))
(9)

Here γM (xL(M − 1), xL(M)) is the value of the path con-
necting Markov states xL(M − 1) and xL(M).

γM (xL(M−1), xL(M)) = −
∥∥∥∥∥y(M)−

L−1∑

l=0

F [l]x(M − l)

∥∥∥∥∥

2

(10)



We also define

ΓM (xL(M)) = max
x(n≤M−L)∈{−1,+1}K

ΨM ({x(n)}) (11)

as the value of the Markov state xL(M). Note that when a
state value is obtained, we also obtain the corresponding route
in the Markov graph that achieves this value.

The Simple MLSD Algorithm
Initialize M = 0. Use the decision feedback detector to

obtain {x̂(n)|n ≤ D + L− 2}, where x̂i(n) is given by

sign


yi(n)−

L−1∑

l=1

K∑

j=1

fij [l]x̂j(n− l)−
i−1∑

j=1

fij [0]x̂j(n)




(12)
Initialize a Markov state set X−1, which contains only the
zero state, i.e.,

X−1 = {xL(−1)}, xL(−1) = [0T , . . . ,0T ]T (13)

Let x̂L(L−1) = [x̂(0)T , x̂(1)T , . . . , x̂(L−1)T ]T . Compute
the values of the paths connecting xL(−1) and x̂L(L − 1);
also compute all the values of the Markov states passed by
this path.

The algorithm then performs the following three steps re-
cursively for each M .

In step 1, we compute x̂(M+D+L−1) using the decision
feedback algorithm (12).

In step 2, we carry out the optimality examination for
x̂(M). The truncated observation sequence and the decision
sequence involved in the examination are {y(n)|M − D <
n < M + D + L − 1} and {x̂(n)|M − D − L + 1 < n <
M + D + L− 1}, respectively. We say x̂(M) passes the ex-
amination if and only if M ≥ L + D − 1 and Inequality (8)
holds for all M −D < n < M + D + L− 1.

If x̂(M) does pass the examination, we construct a Markov
state set XM as follows: for all Markov states xL(M − 1) =
[x(M −L)T , x(M −L+1)T , . . . , x(M − 1)T ]T in XM−1,
we let xL(M) = [x(M−L+1)T , . . . , x(M−1)T , x̂(M)T ]T

be a Markov state in XM . We then compute the state value
ΓM+L(x̂L(M + L)).

If x̂(M) does not pass the examination, in step 3, we con-
struct the Markov state set XM as follows: for each Markov
state xL(M−1) = [x(M−L)T ,x(M−L+1)T , . . . , x(M−
1)T ]T in XM−1, we add the Markov states xL(M) = [x(M−
L+1)T , . . . , x(M−1)T ,x(M)T ]T corresponding to all pos-
sible values of x(M) into the Markov state set XM . We then
compute the values of all the paths connecting the states in
XM−1 and the states in XM . We also compute values of all
the paths connecting the states in XM to the Markov state
x̂L(M + L). The values for the states in XM and the state
value ΓM+L(x̂L(M + L)) are computed.

Let M = M + 1 and repeat the three steps for M . ♦
Since if x̂(M) passes the optimality examination, we know

xML(M) = x̂(M), the ML route must pass one of the Markov
states in Markov state set XM at time index M .

In step 3, when we compute the state value ΓM+L(x̂L(M+
L)), all values of the Markov states along the pathes from the
states in XM to x̂L(M +L) are also obtained. Consequently,
in step 2, we do not need extra computation to obtain the val-
ues of the states in XM since they are all on the paths from
states in XM−1 to x̂L(M + L− 1). Since the simple MLSD
algorithm always compute the values of the Markov states in
XM , the values of all the states on the ML path must have
been enclosed.

The computation of the simple MLSD algorithm contains
three parts.

The first part is the computation to obtain the suboptimal
decision sequence {x̂(n)}. This complexity is in the order of
O(LK2) per symbol.

The second part is to carry out the optimality examina-
tion for x̂(n) (for each n) and update the path values and
state values if x̂(n) passes the examination. Since we do not
perform the examination on any sequence other than {x̂(n)},
by sharing temporary results among successive examinations,
the complexity of running the examination is in the order of
O(LK2) per symbol. If x̂(n) passes the examination, we
need to compute the state value Γn+L(x̂L(n + L)). Fortu-
nately, since all paths connecting the states in Xn and x̂L(n+
L) pass the Markov state x̂L(n+L− 1), whose value has al-
ready been obtained in previous steps corresponding to time
index n− 1. To obtain the state value of x̂L(n + L), we only
need to compute the value of the path connecting x̂L(n+L−
1) and x̂L(n + L). The overall complexity of the second part
is then in the order of O(LK2) per symbol vector.

The third part is the path values and state values updates
when x̂(n) does not pass the examination. This part of com-
plexity is in the order of O(2LK) per symbol.

Theorem 2 Assume the probability of symbol detection error
of the decision feedback detector goes to zero as σ → 0. If
the input sequence is of infinite length, the complexity of the
simple MLSD is in the order of O(LK2) per symbol as σ →
0. If the input sequence has a finite length, then the worst case
complexity per symbol of the simple MLSD algorithm is in the
order of O(2LK).

We can conceptually think the MLSD algorithm contains
three components. We have an asymptotically efficient sub-
optimal sequence detector, whose symbol detection error goes
to zero as σ → 0. We also developed an asymptotically effi-
cient optimality examination method, that can check whether
each vector of the obtained sequence is identical to its ML
sequence correspondence. If we are unable to tell whether
a particular vector is in the ML sequence or not, we use a
backup search plan similar to the VA to make sure we do not
miss the ML route.

Note that in the VA, a Markov route is eliminated only
when it passes the same state at a particular time index with
another Markov route, who achieves a lower state value. There-
fore, a route comparison in the VA can only disprove, rather



than verify, the optimality of a Markov route. In other words,
no matter how small the state value is, we cannot say a route
indeed gives the truncated ML sequence unless all the survival
routes merge naturally. The optimality examination used in
the simple MLSD algorithm, on the other hand, can verify,
rather than disprove, the optimality of a vector in a truncated
decision sequence.

Fig. 1. Illustration of the optimality examination in the simple
MLSD algorithm.

The idea of designing the optimality examination method
can be explained using the Markov graph illustrated in Fig-
ure 1. Suppose the Markov states corresponding to the actual
source sequence are given by the solid dots. We term these
Markov states and the paths connecting them the actual states
and the actual paths, respectively. We want to check wether
the particular state at time index M is optimal, i.e., whether
the ML route passes the Markov state illustrated by the solid
dot at time index M . Since when the noise power is small, the
values of the actual paths are close to zero, while the values
of other erronic paths are, in general, significantly lower than
zero. If a route does not pass the actual state at time index M ,
we say it makes a decision error at time index M . Suppose the
erronic route merges with the actual route after making sev-
eral decision errors, as shown by “erronic route 1” in Figure
1. Due to the fact that all the values of the actual routes are
close to zero, the sum log likelihood of the erronic route are
usually lower than the sum log likelihood of the actual route.
Now, suppose the erronic route does not merge with the ac-
tual route after making significant number of decision errors,
as illustrated by “erronic route 2” in Figure 1. We can con-
struct a new route that connects the actual paths to the erronic
route, as illustrated by the dotted route in Figure 1. Although
in making such connection, the constructed route also makes
several decision errors and hence can have low sum log like-
lihood value, the value can still be larger than the sum log
likelihood of erronic path 2 since the number of decision er-
rors made by erronic route 2 is much more significant.

Note that as long as the probability of symbol detection
error of the ML detector can go to zero as σ → 0, without
requiring Assumption 1, we can find asymptotically efficient
optimality examination method, similar to the one presented

in Theorem 1, with a complexity per symbol in the order of
O(LK2). However, if Assumption 1 is not true, finding an
asymptotically efficient suboptimal detector with a complex-
ity of O(LK2) per symbol becomes non-trivial, if not impos-
sible.

4. CONCLUSION

We considered the maximum likelihood sequence detection
(MLSD) problem of transmitting a sequence of binary vec-
tor symbols over a vector intersymbol interference channel.
We show that as the signal to noise ratio (SNR) goes to in-
finity, the ML sequence can be obtained with a complexity of
O(LK2) per symbol, where L is the number of channel taps
and K is the vector length of the source symbol, under cer-
tain conditions. Such a complexity is no higher in order than
any of the efficient sequence detectors, including suboptimal
ones, that can achieve diminishing symbol detection error as
SNR goes to infinity.
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