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Abstract—A fast optimal algorithm based on the branch-and-
bound (BBD) method is proposed for the joint detection of binary
symbols of users in a synchronous code-division multiple-access
channel with Gaussian noise. Relationships between the proposed
algorithms (depth-first BBD and fast BBD) and both the decor-
relating decision-feedback (DF) detector and sphere-decoding al-
gorithm are clearly drawn. It turns out that decorrelating DF de-
tector corresponds to a “one-pass” depth-first BBD; sphere de-
coding is, in fact, a type of depth-first BBD, but one that can be
improved considerably via tight upper bounds and user ordering,
as in the fast BBD. A fast “any-time” suboptimal algorithm is also
available by simply picking the “current-best” solution in the BBD
method. Theoretical results are given on the computational com-
plexity and the performance of the “current-best” suboptimal so-
lution.

Index Terms—Branch and bound (BBD), code-division multiple
access (CDMA), multiuser detection, optimal algorithm.

I. INTRODUCTION

DUE TO THE problem of multiple-access interference
(MAI) in many multiuser communication systems,

multiuser detection for the symbol-synchronous Gaussian
code-division multiple access (CDMA) channel has received
considerable attention over the past 15 years. When the source
signals are binary- or integer-valued, the resulting integer
programming problem is generally NP-hard [4], unless the
signature waveform autocorrelation matrix has a special struc-
ture [24], [25]. Consequently, prior research has focused on
designing suboptimal receivers with low computational com-
plexity and better performance than a conventional detector.
Popular suboptimal detectors include the linear detectors, such
as the decorrelator [4] and the minimum mean-square error
(MMSE) detector [5]; the decision-driven detectors, such as the
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multistage detector [6], [7], the group detector [8], [9] and the
decision-feedback (DF) detector [10]–[12]. The DF detector,
one of the most efficient methods, has complexity ( is
the number of users), and its performance is significantly better
than those of the linear detectors. Other advanced detectors,
such as the semidefinite relaxation method [13], [14] and the
probabilistic data association (PDA) method [15], [16] were
proposed recently to achieve close-to-optimal performance
at the expense of somewhat increased computational cost. A
comparison of the performances of different detectors can be
found in [17].

Since optimal multiuser detection is generally NP-hard, and
the worst-case computational cost grows exponentially in the
number of users [18], [19], it is unlikely to be implemented in
a practical system. However, the optimal algorithm serves as a
benchmark against which to evaluate suboptimal algorithms. In
such an environment, average computational cost is much more
important than the worst-case one. Since the multiuser detec-
tion problem can be viewed as a binary quadratic programming
problem, smart search techniques, such as a branch-and-bound
(BBD) method based on tight lower and upper bounds and user
ordering, can speed up the solution process significantly. Prior
research on using the BBD algorithm to multiuser detection in-
cludes [22] and [23]. An optimal algorithm based on sphere de-
coding (SD) was also proposed recently in [26]. These results
show that the average computational cost can be significantly
less than that of the worst-case one for an optimal multiuser de-
tector.

Prior research on optimal multiuser detection used only the
quadratic cost function and the binary constraints on user sig-
nals. Problem-domain information in the form of the matched-
filter outputs being generated from a known statistical model
is essentially ignored. In this paper, we propose a fast optimal
BBD algorithm, and show that using the statistical information
in the matched-filter outputs significantly reduces the average
computational cost of the optimal multiuser detector. Compared
with the breadth-first BBD algorithm in [23] and the SD pro-
cedure of [26], the key speed-up mechanisms of the proposed
optimal algorithm are the following.

1) The use of user ordering proposed in [12]. We show that
the first feasible solution of the BBD algorithm is, in fact,
the solution of the decorrelating DF detector. Therefore,
the user ordering proposed in [12] for the DF detector
maximizes the probability that the first feasible solution
is optimal.
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2) A search strategy that maximizes the probability that the
“current-best” feasible solution is optimal.

3) A computational enhancement that minimizes redundant
computations in the lower bound computation.

When strict computational limits exist, a suboptimal solu-
tion can be obtained by simply picking the “current-best” so-
lution in the BBD search. Since the decorrelating DF method
is a first-order approximation to the optimal algorithm, a “cur-
rent-best” solution of the second- or the third-order approxi-
mation will generally outperform the decorrelating DF method
with a marginal increase in computation. Theoretical analysis of
the performance and computational cost on the “current-best”
solution is given and verified by the simulation results.

The rest of the paper is organized as follows. The syn-
chronous multiuser detection problem formulation and existing
techniques are discussed in Section II. In Section III, a
depth-first BBD-based optimal algorithm (which can also be
treated as a simplified version of the fast BBD algorithm) is
presented. Analysis is given to show that the decorrelating DF
solution is, in fact, the first feasible solution in the depth-first
BBD approach. The relationship between the depth-first BBD
and the SD method proposed in [26] and [27] is pointed out.
In Section IV, we present a user ordering, a search strategy,
and a computational method to use the statistical information
in the matched-filter output. The fast optimal BBD algorithm
is presented and is also extended to nonbinary systems. In
Section V, suboptimal algorithms are introduced by picking
the “current-best” solution in the BBD search. Theoretical
analysis on the performances and the computational costs
are given. Simulation results and comparative analysis are
provided in Section VI. The paper concludes with a summary
in Section VII.

II. PROBLEM FORMULATION AND EXISTING METHODS

A discrete-time equivalent model for the matched-filter out-
puts at the receiver of a CDMA channel is given by the -length
vector [4]

(1)

where denotes the -length vector of bits
transmitted by the active users. Here is a non-
negative definite signature waveform correlation matrix, is
the symmetric normalized correlation matrix with unit diagonal
elements, is a diagonal matrix whose th diagonal element,

, is the square root of the received signal energy per bit of
the th user, and is a real-valued zero-mean Gaussian random
vector with a covariance matrix . It has been shown that this
model holds for both baseband [4] and passband [12] channels
with additive Gaussian noise.

Letting be the Cholesky decomposition of , the
system can also be represented by a white noise model

(2)

where is a white Gaussian noise with zero mean and
covariance .

When all the user signals are equally probable, the optimal
solution of (1) is the output of a maximum-likelihood (ML) de-
tector [4]

(3)

The ML detector has the property that it minimizes, among all
detectors, the probability that not all users’ decisions are correct.

The solution of the decorrelating detector [4]

(4)

is found in two steps. First, the unconstrained solution
is computed. This is then projected onto the constraint

set via .
The decorrelating DF method is described in [12]. If we de-

note the th component of a vector by , and denote the
th component of a matrix by , the decorrelating DF

detector can be characterized by

(5)

where , . Here,
represents the upper triangular part of a matrix, represents
the strictly lower triangular part of a matrix, and is a permu-
tation matrix. The choice of has been discussed in [12, Th. 1].

For multiuser detectors, symmetric energy (SE) is an im-
portant performance measure in the high signal-to-noise ratio
(SNR) regime that characterizes the probability that all user sig-
nals are detected correctly. The SE of the ML detector, decor-
relator, and the decorrelating DF detector can be expressed, re-
spectively, by [12]

(6)

It has been shown in [12] that (assuming that
the users are properly ordered). Usually, the DF detector can
provide two to three orders of improvement in the magnitude of
probability of error when compared with a linear detector. How-
ever, the output of the DF detector is still a suboptimal solution.
Simulation results show that, in most cases, there still exists a
substantial gap in performance between the DF detector and the
optimal solution.

III. OPTIMAL ALGORITHM BASED ON DEPTH-FIRST BBD
(SIMPLIFIED VERSION OF FAST BBD)

The idea of using a BBD method in solving binary or integer
programming problems is already well known [20], [21]. BBD
divides the decision regions into several parts and assigns each
part to a branch in the BBD tree. For each branch, the decision
region is further divided and assigned to subbranches. The node
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on each leaf of the tree represents a feasible solution of the opti-
mization problem. In order to avoid searching the whole tree to
find the optimal solution, BBD associates a lower bound on the
objective cost to each of the branches. The algorithm also keeps
an upper bound, which is the cost of the “current-best” fea-
sible solution. When the lower bound associated with a branch
is greater than the upper bound, the whole branch is discarded,
since no better solution can be found. For BBD methods, the
tradeoff between a tight lower bound and a lower bound with
fewer computational requirements is common to most of the
problems.

In multiuser detection, a BBD method with breadth-first
search has been used in [23] to find the minimum distance,
which is defined by

(7)

In this section, we present an optimal algorithm based on
BBD with depth-first search. We point out the relationship be-
tween the proposed depth-first BBD method, the decorrelating
DF detector, and the SD detector [26], [27].

For the convenience of the readers, the algorithm presented
in this section is a simplified version of the fast BBD algorithm.
The fast optimal BBD that fully uses the statistical information
in (1) is proposed and studied in Section IV.

A. Depth-First BBD Algorithm

Since , the objective function in (3) can be
equivalently written as

(8)

Define . We have

(9)

Here, since is a lower triangular matrix, depends only
on . When the decisions for the first users are
fixed, the term

(10)

can serve as a lower bound of (9). It can be easily seen that
the lower bound is achievable when the binary constraints on

are disregarded. The BBD tree search to find
the minimum value of is described below.

Similar to a general BBD method [20], [21], the algorithm
maintains a node stack called , and a scalar called

, which is equal to the minimum feasible cost found
so far, i.e., the “current-best” solution. Define to be the level

of a node (the virtual root node has level 0). Label the branch
which connects the two nodes and
with . The node is labeled with
the lower bound . Also, define , where
denotes the th column of . Denote as the th component
of vector . The depth-first BBD algorithm proceeds as
follows.

Depth-first BBD Algorithm (Simplified Version of the
Fast BBD)

1) Order users according to [12, Th. 1], which is also pre-
sented in Proposition 2 of Section IV below. Compute ,

, and matrices for the ordered system.
2) Precompute .
3) Initialize . , , and

.
4) Set . For both nodes, let , .

Choose the node in level such that . Set
flag .

5) Compute .
6) Compute .
7) If , drop this node. Go to step 10).
8) If and , precompute

. If , append the other node with
to the end of the list, and store the

associated , , together with this node. Go to step 4).
9) If , , update the “current-best” solu-

tion and . Go to step 10).
10) If the list is not empty, pick the node from the end

of the list, set , , and equal to the stored values
associated with this node. Set flag and go to step 5).

11) Stop and report the “current-best” solution.
Example 1: The following three-user example illustrates the

procedure. The system is given by

(11)

Assume that the source signal is and the
noise vector is , hence,

. Fig. 1 shows the BBD tree struc-
ture.

In step 1), we precompute
. Then, initialize , ,
, , . In step 4),

let , choose the node with
(node 1 in Fig. 1). Add node 6 to the list. Up-
date , . Since

and , go to step 4). This leads us to node
2. Add node 4 to the end of the list. Go back to step 4),
which leads us to node 3 (which is the first feasible solution
and, as shown later, it also corresponds to the decorrelating DF
solution). Since this is the bottom level, we know that node 3
gives a better result than node . Therefore, without
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Fig. 1. Example of the depth-first BBD algorithm.

changing the list, update . In
step 9), we pick node 4 from the end of the list. Go
to node 5, and obtain , which means
that node 5 is a better solution. Update
and pick node 6 from the list. For node 6, since

, we drop this node. Now since the
list is empty, the algorithm stops and reports node 5 as

the optimal solution.
The above algorithm is a BBD method with depth-first search.

The computational cost for step 1) is multiplica-
tions and additions. Steps 5) and 6) need two ad-
ditions and one multiplication. Notice that step 1) is outside the
BBD search. In step 8), since can only take known discrete
values, can be precomputed and stored; hence, only
additions are needed to obtain . To update the lower bound for
a node on level , at most addi-
tions and one multiplication are needed. In addition, the compu-
tational requirements for finding the first feasible solution (also
the optimal solution in the noise-free case) are
multiplications and additions.

B. Relationship Between the Depth-First BBD and the
Decorrelating DF Detector

Proposition 1: The first feasible solution obtained from the
above depth-first BBD search is the solution of decorrelating
DF method.

Proof: From step 3), when we branch, we first go to the
node with a smaller lower bound value. In the above BBD

Fig. 2. Comparison of decorrelating DF and BBD decisions on b .

method, suppose has already been fixed by the
branch. The choice of for the BBD method can be described
by

(12)

Notice that in (12), is fixed and we only have a
binary constraint on . The choice of for the decorrelating
DF method, however, is given by

(13)

Fig. 2 shows the difference between the above two choices.
The ellipses here represent the level curves of the objective
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function in the user-expurgated channel that contains users
. For the DF method, the soft solution corresponds to

point . The decision on is made by comparing the lengths
and . While for the proposed depth-first BBD

method, the decision on is made by comparing the values
of the cost function on points and , which corresponds to
comparing the lengths of and . Since the triangles

and are similar, (12) and (13) are equivalent.
Example 1—Continued: In the above example, at node 1, the

user-expurgated channel for the decorrelating DF method is rep-
resented by

(14)

According to (13), the decision on for DF detector is given
by

(15)

which is consistent with the depth-first BBD algorithm. How-
ever, as shown in the example, the DF method failed to find the
optimal solution.

Recall that in the BBD algorithm, the computational cost to
obtain the first feasible solution (also the solution of DF de-
tector) is much less than the computational cost of a conven-
tional linear detector. Evidently, any further computations will
result in better accuracy than the decorrelating DF solution (un-
less the DF solution is already optimal).

C. Relationship Between the Depth-First BBD and the SD

The SD, originally proposed in [28], is a well-known efficient
lattice decoding algorithm [26], [27], and was introduced to the
multiuser detection community recently in [26]. We first rewrite
the SD algorithm as follows.

SD Algorithm
1) Compute the Cholesky decomposition matrix

.
2) Precompute , , where is chosen

so that [27]

(16)

3) Initialize , , . Initialize
. Initialize .

4) Set . For both nodes, let , .
Choose the node in level such that . Append
the node with to the end of the list, and
store the associated , , and together with this node.

5) Compute .
6) Compute .
7) If , drop this node. Go to step 10).
8) If and , for , precompute

. Go to step 4).

9) If , , update the “current-best”
solution and . Go to step 10).

10) If the list is not empty, pick the node from the
end of the list, set , , and equal to the stored
values associated with this node, and go to step 5).

11) If no solution is available yet, let and go to
step 3). Otherwise, stop and report the “current-best”
solution.

Although written in a different form with a different notation,
it is easy to show that the above algorithm is indeed identical to
the SD methods proposed in [26] and [27].1 Apparently, the SD
method can be categorized as a depth-first BBD algorithm. The
major differences between the SD and the proposed depth-first
BBD algorithm, however, are in steps 1), 3), 4), and 8). The
lower-bound update is also identical to the breadth-first BBD
algorithm proposed in [23].

• As we have shown before, the choice of in step 4) of the
proposed depth-first BBD algorithm corresponds to the
solution of the DF detector (which uses the statistical in-
formation embedded the system model). In the noise-free
case, the first feasible solution of the fast optimal algo-
rithm is optimal. This guarantees a minimum computa-
tional cost when the system is noise free. It is also a key
step that allows the fast BBD algorithm (proposed in the
next section) to further use the statistical information and
perform user ordering, smart search, smart computing, etc.
However, these enhancements are not exploited in the SD
algorithm because statistical information in the model is
ignored in step 4).

• The user ordering in step 1) of the simplified fast optimal
algorithm is the single most important step that reduces
the average computational cost. This is further studied in
Section IV.

• Step 8) in the two algorithms represent different ways of
computing the lower bounds. Since
for the sibling nodes share most of the computations,
step 8) in the SD method precomputes the common terms
for both nodes in level . However, notice that the
computations of for nodes in different levels also
involve partially common terms. In the depth-first BBD,
each node precomputes part of the lower bounds for
the subnodes in the branch and removes the redundant
computations. However, if the branch is discarded later
in the BBD search, such precomputing itself is a waste of
computational resources. Unfortunately, it is impossible
to completely avoid the redundant computations. Never-
theless, different computational methods may result in
different average computational costs, especially when
the statistical information embedded in (1) is considered.
In the proposed depth-first BBD, the computational cost
for user to obtain the lower bound is additions
and one multiplication. Hence, the computational cost

1Two different upper bound initializations are proposed for the SD algorithm
in [26] and [27]. According to computer simulations, the average computational
complexity of the SD in [26] is higher than the one in [27], both in low and high
SNR regimes. Bounding and sphere-enlargement parameters, respectively, in
steps 2) and 11) may be better coordinated, but no suggestions of such tuning
have appeared to date.



LUO et al.: FAST OPTIMAL AND SUBOPTIMAL ANY-TIME ALGORITHMS FOR CDMA MULTIUSER DETECTION 637

for the nodes near the bottom of the tree is relatively
small. When the signal powers are not close to each other,
the user ordering in step 1) puts the weak users at the
bottom of the tree. In such situations, since branching and
searching happen mostly on the weak users, the compu-
tational method in the depth-first BBD results in a lower
average computational cost than that of the SD. We will
study this aspect of computation further in Section IV.

• The initialization of in step 3) of the sphere de-
coder is certainly a step that uses the statistical information
embedded in (1). In spite of the drawback of requiring ,
this key step in the SD algorithm ensures that the order
of the asymptotic average computational cost is
[27]. Such an initialization technique can also be easily
applied to the depth-first BBD as well as the fast BBD al-
gorithm (described in the next section). However, since the
proposed BBD algorithm ensures a minimum asymptotic
computational cost, the effect of upper bound initialization
in the high SNR regime is limited. Nevertheless, a proper
initialization of the upper bound does reduce the average
computational cost when SNR is moderate. This is further
studied toward the end of Section IV.

IV. FAST OPTIMAL BBD ALGORITHM USING THE

STATISTICAL INFORMATION (FULL VERSION)

A key feature of multiuser detection is that the matched-filter
output is generated from a statistical model given by (1). Typ-
ically, the variance of the noise is not very large, which means
that a significant fraction of optimal multiuser detection prob-
lems can be solved easily. The statistical information helps sub-
optimal algorithms, such as the DF detector [12] and the PDA
detector [15], to achieve outstanding bit-error performance with
low computational costs. However, this information is essen-
tially ignored in most of the existing optimal multiuser detec-
tors. In this section, we present the full version of the fast op-
timal BBD algorithm. The key ideas of using the statistical in-
formation are: the user ordering, the search strategy, and the
lower-bound computation.

The BBD search can be separated into two stages. We term
the first stage the “search” stage, where the “current-best” solu-
tion is not the optimal solution. The second stage is termed the
“confirm” stage, where the “current-best” solution is optimal,
but the algorithm needs to confirm that it is indeed better than
any other solution.

Assume that the true solution is also the ML solution. In the
“confirm” stage, we have

(17)

Asymptotically, .
Now, consider any other branch associated with vector

. Without loss of generality, suppose ,
, and . The lower bound is

(18)

Apparently, when , . This shows that, asymp-
totically, whenever the algorithm enters the “confirm” stage, all
the branches will be discarded with a high probability.

A. User Ordering

According to the above intuitive analysis, the major task in
the “search” stage is to maximize the probability that the “cur-
rent-best” solution is optimal, so that the algorithm can enter
the “confirm” stage as soon as possible. As we have shown in
the previous section, the first feasible solution in the proposed
algorithm is the decorrelating DF solution. For the DF detector,
define to be the probability of error on user , given that
all the decisions on users are correct. We have from
[12]

(19)

In the high SNR regime, the probability of error of the DF so-
lution is dominated by the user corresponding to the minimum
diagonal element of .

Proposition 2: The following user-ordering algorithm, pre-
sented first in [29] and then in [12, Th. 1], maximizes the SE of
the decorrelating DF detector, i.e., it maximizes the probability
that the first feasible solution in the fast BBD algorithm is op-
timal.

User-Ordering Algorithm: Select the first user of the new
order (denote this user’s index as ) as the one that corresponds
to the minimum diagonal element of . For ,
select the th user of the new order (denote this user’s index
as ) as the user that corresponds to the minimum diagonal el-
ement of , and is the matrix of the user-expurgated
channel that contains only the remaining users. Then
the optimal user order that maximizes SE is .

Proof: See [9, Prop. 1] for the proof.

B. Search Strategy

Although the user ordering maximizes the probability that the
first feasible solution is optimal, there is still a small probability
that it is not optimal. In the high SNR regime, defining
to be the probability of error of the first feasible solution, we
have

(20)

Define

(21)

Given that the first feasible solution is not optimal, user
has a high probability of being the erroneous user, since

dominates . Consequently, swapping the
decision on user and applying DF detection to find the
second feasible solution is the best choice. The probability that
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neither the first nor the second feasible solutions are optimal
is given by

(22)

Similarly, is the next user we should search. And the prob-
ability that the “current-best” solution is still not optimal after
searching users and is

(23)

Apparently, unlike the search strategy in the depth-first BBD
which searches nodes in descending order of their levels in the
tree, the optimal search strategy visits nodes in ascending order
according to the values of the diagonal elements of the matrix.

Due to the dynamic choice of which node to explore next, the
worst-case storage requirement (i.e., of previously visited-node
data) is exponential. The fixed search strategy of the depth-first
BBD, including the SD, obviates this; but likewise, so do other
versions of BBD that perform a smart search only on certain
users. Extreme demands on memory are rare, but if they are of
concern, it is worthwhile to recall that there is a continuum of
tradeoffs between memory and speed.

C. Computational Enhancement

Step 8) of the SD algorithm precomputes part of the lower
bounds for the sibling nodes. However, it does not take advan-
tage of the fact that other nodes may also share part of the com-
putations. The depth-first BBD method does precomputing for
all the nodes under the same branch. However, if the branch is
discarded, the precomputing itself is a waste of computational
resources.

In the high SNR regime, since the error performance of the
DF detector is characterized by the diagonal elements of , it
is reasonable to make the following assumption in the BBD
search.

Assumption: If a branch on level is accepted (not dis-
carded), then the subbranches on levels
may also be accepted with a high probability, as long as

, .
Based on this assumption, suppose for user , and are

defined as

(24)

or if no solution can be found in (24)

(25)

or if no solution can be found in (25).

Similar to the simplified fast optimal algorithm, we also keep
a vector . When computing the lower bound , we precompute
for users

(26)

i.e., precomputing involves only the block in with rows
and columns .

D. Fast Optimal BBD Algorithm (Full Version)

Similar to the depth-first BBD, the user ordering is precom-
puted offline, and we assume that all matrices are properly pre-
computed for the ordered system. In order to implement the new
search strategy, instead of using the stack, in the full
version, we have queues, termed . Queue is as-
sociated with user . The nodes in a queue follow the “first-in,
first-out” rule, i.e., nodes enter from the tail and are taken from
the head of the queue. In addition, we order queues according to
the values of the diagonal elements of , i.e., in the BBD search,
we take nodes from the queues in the order ,
where are defined in (21).

To implement the proposed method, for each user , the block
margins and are precomputed and stored in vectors and

.
The full version of the fast optimal BBD algorithm proceeds

as follows.
Fast Optimal BBD Algorithm

1) Order users according to [12, Th. 1], which is also pre-
sented in Proposition 2. Compute , , and matrices
for the ordered system; precompute the vectors and ,
the components of which are defined by (24) and (25).

2) Precompute .
3) Initialize . , , and

initialize queues by , .
4) Set . For both nodes, let ,

. Choose the node in level such that
. Set flag .

5) Compute .
6) Compute .
7) If , drop this node. Go to step 10).
8) If and , do

8.1) If , for both nodes in level :
8.1.1) If , precompute ,

.
8.1.2) If , precompute ,

.
8.1.3) Append the node to the tail of

queue , and store the associated , , and to-
gether with this node.

8.2) If , precompute ,
.

8.3) If , precompute , .
8.4) Go to step 4).

9) If , , update the “current-best”
solution and . Go to step 10).

10) If not all the queues are empty, pick one node from the
queues (note that we should check queues in the order
of ). Set , , and equal to the stored
values associated with this node. Set , go to step
5).

11) Stop and report the “current-best” solution.

In the ideal case, the first feasible solution is optimal, and
the algorithm does not search on any other branches. The com-
putational cost of the ideal situation is the same for both the
depth-first BBD and the fast optimal BBD algorithm, and is
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. When , it is expected that the average computa-
tional cost converges to the ideal one. For moderate SNRs, how-
ever, the average computational cost is affected by the correla-
tion coefficients in the matrix. Generally speaking, when the
signal powers are not similar, or when user signature sequences
are not highly correlated, the optimal detection problems are rel-
atively easier to solve. On the other hand, when the correlations
between user signatures are high and when the signal powers are
similar, the optimal detection problem is deemed “hard” and the
average computational cost will be high.

E. Nonbinary BBD

In a system where user signals are taken from a finite al-
phabet, the fast optimal BBD algorithm can be directly applied.
In step 5), we should choose the node associated with that
minimizes . The steps 8.1), 8.2), and 8.3) should
be applied to the rest of the nodes, which should be sorted in an
ascending order according to the values of .

Alternatively, one could choose to treat an -ary user as sev-
eral binary users (e.g., , equivalent to three binary users).
Both philosophies are applicable to any BBD method, including
SD.

F. Upper Bound Initialization

As shown in the SD method, the statistical information can
also be used in the initialization of the upper bound in BBD.
Since the fast BBD algorithm ensures a minimum asymptotic
average computational cost, the positive effect of the upper
bound initialization in the high SNR regime is limited. In the
moderate SNR regime, however, a proper initialization on the
upper bound does reduce the average computational cost and
speeds up the BBD process.

To further reduce the average computational cost, we recom-
mend modifying steps 2), 3), and 11) in the fast BBD algorithm
as follows.

2) Precompute . Precompute (The choices
for are recommended below).

3) Initialize . , , and
initialize queues by , .

11) If no solution is available so far, let and
go to step 3). Otherwise, stop and report the “current-
best” solution.

Assume that the true solution is also the ML. The optimal
cost is given by (17). Approximating by a Gaussian
random variable, we have

(27)

When is available, we recommend

(28)

where is the minimum diagonal element of .

When is not available, we recommend the upper bound ini-
tialization proposed in [26]

(29)

where is the volume of a sphere of radius one in the real space
.

When SNR is moderate, the recommended upper bound ini-
tializations save up to 1/3 of the average computational cost
of the fast BBD algorithm (speedup 33%). However, for some
SNRs, upper bound initialization (29) may result in a higher av-
erage computational cost, compared with the initial-
ization.

V. “ANY-TIME” SUBOPTIMAL ALGORITHM

Although the average computational costs may not be very
high, the computational costs for the worst case of the proposed
algorithms are still exponential in the number of users, since the
ML solution is generally NP hard. In practical systems, when a
strict limitation on computational cost exists, the “current-best”
solution in the above BBD method can serve as a suboptimal
alternative to the NP-hard optimal solution.

For the depth-first BBD algorithm, define the suboptimal de-
tector that explores the subtree under and including level

to be . From the above analysis of

the computational cost, the worst-case computation for
is given by

Multiplications

Additions

(30)

Similar to (7), define the minimum distance among users
by

(31)

Consequently, the SE measure for is given by

(32)

Furthermore, from the definitions of (31) and (7), we have

(33)

can then be denoted by

(34)
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Fig. 3. Performance of various methods. (Three users, 10 Monte Carlo runs.)

Based on the performance analysis, we have the following.
Proposition 3: When ordering users by the ordering algo-

rithm, the SE of all are maximized
simultaneously.

The proof can be easily derived from [9, Prop. 2].
For the fast optimal BBD algorithm, we define the suboptimal

detector that searches users as . Similarly,

the SE of is given by

(35)

The worst-case computational cost for , although
tractable, is problem dependent, and therefore does not have a
useful closed-form expression.

VI. SIMULATION RESULTS

According to (30), the computational complexities for the
suboptimal detector , as well as , are exponen-
tial in . However, since we assume to be known, the SE of
the proposed “current-best” suboptimal solutions can be found
offline by (34) and (35). The following simulation results show
that, in some cases, a small amount of extra computation can
significantly improve the performance of the detection system,
when compared with the (which is the same as ).

Example 1—Continued: In the previous example, since users
2 and 3 are strongly correlated, we expect that

will be a significant improvement over .
The SE for different detectors can be obtained via (6) and (34):

, , ,

. The simulation result is given in Fig. 3, which
is consistent with the theoretical analysis.

Example 2: In this example, we vary the number of users
from 5 to 60. The ratio between the number of users and the
signature length is fixed at 5/6. The binary signature sequences
are randomly generated, and the user signal powers are set to
be equal. For the suboptimal detectors, the

Fig. 4. Average computational costs versus number of users. (10 Monte Carlo
runs.)

Fig. 5. Average computational cost versus SNR. (10 Monte Carlo runs.)

is fixed at 14.77 dB. The upper bound initialization (28) is used
by the fast BBD algorithm. Fig. 4 shows a comparison on the
average computational costs of the fast optimal BBD algorithm,
the SD method, the decorrelator, and the decorrelating DF
method, at different SNRs. When SNR dB, the average
computational cost of the fast BBD algorithm is comparable to
that of the decorrelator for up to 60 users, and is significantly
better than that of the SD method with the same SNR.

Example 3: In this example, we have 50 equal-powered
users. The 53-length binary signature sequences are randomly
generated. Fig. 5 shows the average computational costs versus
SNR, together with the and the percentile curves,
for the fast BBD and the SD algorithms. Upper bound initial-
ization (28) is used in the fast BBD. The fast BBD is shown to
significantly outperform the SD over all SNRs.

Example 4: In the last example, we have 50 equal-powered
users, again with randomly generated 53-length binary signa-
ture sequences. We set SNR so that the probability of error of
the ML detector is around . This is considered “hard” for all
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Fig. 6. Performance comparisons (50 users, 53-length random signatures, 10
Monte Carlo runs for the suboptimal algorithms, dynamic Monte Carlo runs for
the ML detector).

TABLE I
ACTUAL NUMBER OF MONTE-CARLO RUNS

FOR ML DETECTOR (FOR 100 ERRORS)

optimal multiuser detection algorithms. However, the fast BBD
algorithm is able to obtain the performance of the ML detector
with reasonable computation. In computer simulation, we use
upper bound initialization (28) for the fast BBD algorithm. We
also use the following dynamic Monte Carlo simulation tech-
nique in order to avoid unnecessary simulations. In the simu-
lation, instead of fixing the number of Monte Carlo runs, we
stop the simulation whenever a certain number of errors are ob-
served. (In this example, for each simulation point, we stop the
fast BBD whenever 100 errors are obtained.) Fig. 6 shows the
performances of the decorrelating DF detector, the ML detector,
and the suboptimal detector . The actual numbers of
Monte Carlo simulations for different SNRs are given in Table I.

VII. CONCLUSION

A fast BBD-based optimal algorithm for the multiuser de-
tection of symbol-synchronous CDMA is proposed. Due to the
use of statistical information embedded in the system model,
the average computational cost has been significantly reduced.
The proposed fast BBD optimal algorithm is able to simulate
a 50-user bandwidth-efficient system with equal user powers.
It is found to outperform the SD method for all SNRs and all
numbers of users in the binary signaling case. Comparisons
for the -ary modulation cases are in progress. A suboptimal
“any-time” algorithm is also proposed by simply picking the
“current-best” solution in the BBD search. Theoretical anal-
ysis on both the asymptotic performance and the computational
complexity are given.
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