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Abstract—This paper considers distributed medium access
control in a wireless multiple access network with an unknown
number of users. A multi-packet reception channel is assumed in
which all packets should be received successfully if and only if the
number of users transmitting in parallel does not exceed a known
threshold. We propose a transmission adaptation approach,
where, in each time slot, a user estimates the probability of chan-
nel availability from the viewpoint of a virtual user and adjusts
its transmission probability according to its utility objective and
a derived user number estimate. A sufficient condition under
which the system should have a unique equilibrium is obtained.
Simulation results show that the proposed medium access control
algorithm does help users to converge asymptotically to a near
optimal transmission probability.

I. INTRODUCTION

While the problem of distributed medium access control
(MAC) in wireless multiple access networks has been exten-
sively investigated in the past several decades, most existing
works assumed relatively simple channel models such as the
collision channel [1]. Recently, an extended channel coding
theory was developed for distributed communication at the
physical layer [2]. The new coding theory enabled an enhanced
physical-link layer interface [3], which essentially equips each
link layer user with multiple transmission options and each
link layer receiver with multi-packet reception capability.
Consequently, it becomes necessary to develop distributed
MAC algorithms to efficiently exploit the advanced commu-
nication adaptation options, which, unfortunately, come with
sophisticated channel models.

As an early step, in this paper, we consider distributed
MAC in a time-slotted wireless multiple access network over
a class of multi-packet reception channels with an unknown
finite number of homogeneous users. We still assume binary
transmission options in the sense that, in each time slot, a
user either idles or transmits a packet. Assume that users
are backlogged with messages and know the success/failure
status of their own packet transmissions. In each time slot,
a user measures the “crowdedness” of the channel, which
is defined as the conditional success probability of a vir-
tual packet transmission. A transmission probability target is
then calculated based on the utility objective and a derived
user number estimate. We propose a distributed transmis-
sion probability adaptation model and show that it falls into
the classical stochastic approximation framework. Under the
assumption that each user can obtain the true crowdedness

measure of the channel, we obtain a sufficient condition for
users’ probabilities to asymptotically converge to the unique
system equilibrium that maximizes a class of utility functions.
In cases when channel crowdedness cannot be measured
locally, we propose a two-step approach for each user to
interpret crowdedness of the channel from its own transmission
probability and conditional packet success probability. We
show that the two-step approach can be simplified into one-
step in terms of giving the direction of increasing/decreasing
the transmission probability. Although we are not able to
obtain a convergence proof for cases when users need to
interpret channel crowdedness, simulation results show that the
proposed MAC algorithm does lead the system to the desired
system equilibrium.

II. PROBLEM FORMULATION

Consider a time-slotted distributed multiple access network
with K homogeneous users. The value of K is assumed to be
unknown to all users. In each time slot, a user either idles or
transmits a packet. Assume that packet transmissions should be
successful if and only if no more than L ≤ K users transmit
in parallel, where L > 0 is a known parameter. Note that
the multi-packet reception channel model, which includes the
collision channel as a special case, can be derived from a class
of physical layer channels [3].

We assume that users are backlogged with messages. In
each time slot, user k chooses whether to transmit a packet
or not according to a probability parameter pk. We assume
that a user gets feedback from the receiver about whether
each transmitted packet is successfully received, and this is
the only feedback information available. Consequently, user
k is able to measure the conditional success probability of
its own packet transmissions, and we denote this quantity
by qk. Under the assumption that all users should eventually
transmit with an identical probability p, and the corresponding
conditional success probability being denoted by q, users
intend to maximize the following symmetric network utility

U(p, q) = pT (q), with q =
L−1∑
i=0

(
K − 1

i

)
pi(1− p)K−1−i,

(1)
where T (q) in (1) is a function of q.

Since the network utility defined in (1) is a function of the
unknown user number, a user has to estimate the user number



first in order to calculate the corresponding transmission prob-
ability target that maximizes the utility. Assume that, in time
slot n, user k obtains a transmission probability target p̃k(n),
and then updates its transmission probability by pk(n+ 1) =
(1− α)pk(n) + αp̃k(n), where α > 0 is a constant step size.
Because packet transmissions of the users are random, p̃k(n)
is a random variable. Let p̂k(n) = En[p̃k(n)], where En[.]
denotes the conditional expectation operation given system
state at the beginning of time slot n. We say the probability
update reaches an equilibrium if and only if pk(n) = p̂k(n)
for all k.

We use p(n) = [p1(n), · · · , pK(n)]T to denote the trans-
mission probabilities of all users. Similarly, let p̃(n) and p̂(n)
denote the actual and the expected transmission probability
targets of all users, respectively. The stochastic probability
update can be written as

p(n+ 1) = (1− α)p(n) + αp̃(n), (2)

with the conditional expectation satisfying

En[p(n+ 1)] = (1− α)p(n) + αp̂(n). (3)

Note that p̂(p(n)) is a function of p(n). According to the
stochastic approximation theory [4], when step size α is
small enough and under certain conditions, dynamics of the
probability update can be approximated by the following
ordinary differential equation

dp(t)

dt
= − [p(t)− p̂(p(t))] . (4)

A weak sense convergence property of the system is stated in
the following theorem.

Theorem 1: Assume that function p̂(p) is Lipschitz con-
tinuous, i.e., there exists a constant K1 > 0, such that

∥p̂(p1)− p̂(p2)∥ ≤ K1∥p1 − p2∥. (5)

If ordinary differential equation (4) has a unique stable equi-
librium at p∗, then for any ϵ > 0, there exists a constant
K2 = K2(ϵ) such that the following inequality holds under
the stochastic probability update given in (2).

lim sup
n→∞

P (∥p(n)− p∗∥ ≥ ϵ) ≤ K2α. (6)

Theorem 1 is implied by [4, Theorems 2.3].
In the rest of the paper, we will investigate the condition

under which (4) possesses a unique stable equilibrium. For the
sake of simple discussion, we assume no measurement noise,
i.e., p̃(n) = p̂(n).

III. CONVERGENCE WITH TRUE MEASUREMENT OF
CHANNEL CROWDEDNESS

Let us define “channel crowdedness”, denoted by qv(p),
as the conditional success probability of a virtual packet
transmission. Or in other words, qv is the probability that an
additional packet can be sent successfully through the channel
in a time slot. For example, under the collision channel model,
qv(p) =

∏K
i=1(1 − pi). Under the multi-packet reception

channel if p1 = · · · = pK = p, for another example, qv =

∑L−1
i=0

(
K
i

)
pi(1 − p)K−i. In this section, we assume that qv

can be measured by every user in the system. This assumption
holds for the collision channel when L = 1, because each
user, say user k, can first measure its own conditional packet
success probability, denoted by qk =

∏
i ̸=k(1− pi), and then

calculate qv = (1 − pk)qk. While the assumption does not
hold for multi-packet reception channels with L > 1, we will
show by computer simulations in Section V that the system
can still converge to the same equilibrium with users using an
interpreted channel crowdedness variable.

Consider the optimization of symmetric utility given in
(1). When all users transmit with an identical probability p,
conditional success probability q of each user is given by
q =

∑L−1
i=0

(
K−1

i

)
pi(1 − p)K−1−i. We intend to design a

distributed MAC algorithm such that transmission probabilities
of all users should converge asymptotically to p∗ = x∗

K+1 ,
where x∗ is obtained from

x∗ = argmax
x

xT

(
e−x

L−1∑
i=0

xi

i!

)
. (7)

Note that p∗ is a near optimal solution to the utility maximiza-
tion problem for large K1.

Since the value of K is unknown, each user needs to
maintain a user number estimate, denoted by K̂, which is not
necessarily integer-valued. Given K̂, transmission probability
target of the user is set at p̂ = x∗

K̂+1
. To explain how each

user should obtain p̂ and K̂, we need to define a function
q∗v(p̂), which can be viewed as a function of p̂ or K̂. Let
⌊K̂⌋ ≤ K̂ be the integer closest to but no larger than K̂. Let
λ = ⌊K̂⌋+ 1− K̂. We define q∗v(p̂) as

q∗v(p̂) = λ
L−1∑
i=0

(
⌊K̂⌋
i

)
p̂i(1− p̂)⌊K̂⌋−i

+(1− λ)
L−1∑
i=0

(
⌊K̂⌋+ 1

i

)
p̂i(1− p̂)⌊K̂⌋+1−i

with K̂ =
x∗

p̂
− 1, λ = ⌊K̂⌋+ 1− K̂. (8)

In each time slot, we assume a user should first measure qv,
which is the conditional success probability of a virtual packet
transmission. The transmission probability target p̂ should then
be obtained from q∗v(p̂) = qv, with only two exceptions. First,
if qv ≥ q∗v(

x∗

L+1 ), we set p̂ = x∗

L+1 . Second, if qv ≤ q∗v(0),
we set p̂ = 0. It is easy to verify that, the probability
target function p̂(p), as a function of the user transmission
probability vector p, is Lipschitz continuous.

The following theorem shows the monotonicity property
of function q∗v(p̂), and this key property will be used in the
convergence proof of the proposed distributed MAC algorithm.

Theorem 2: If x∗ ≤ L, then q∗v(p̂) defined in (8) is non-
decreasing in p̂, for p̂ ∈

[
0, x∗

L+1

]
.

1We choose to target at the equilibrium of p∗ = x∗

K+1
instead of x∗

K
because the latter choice does not always yield the desired monotonicity
property given in Theorem 2.



Proof: Let us write q∗v(K̂) as a function of K̂ = x∗

p̂ − 1.
To prove the theorem, it is sufficient to show that q∗v(K̂) is
non-increasing in K̂ between (⌊K̂⌋, ⌊K̂⌋+ 1] for all K̂ ≥ L.

Define N = ⌊K̂⌋, λ = ⌊K̂⌋+ 1− K̂. Assume that N ≥ L
is fixed. We can write q∗v as a function of λ and p̂.

q∗v(p̂, λ) = λ
L−1∑
i=0

(
N

i

)
p̂i(1− p̂)N−i

+(1− λ)
L−1∑
i=0

(
N + 1

i

)
p̂i(1− p̂)N+1−i. (9)

Because p̂ = x∗

N+2−λ , we can take the derivative of q∗v with
respect to λ as follows.

dq∗v(λ)

dλ
=

∂q∗v(p̂, λ)

∂λ
+

dp̂

dλ

∂q∗v(p̂, λ)

∂p̂

=
∂q∗v(p̂, λ)

∂λ
+

p̂

N + 2− λ

∂q∗v(p̂, λ)

∂p̂
. (10)

Note that
L−1∑
i=0

(
N + 1

i

)
p̂i(1− p̂)N+1−i

= p̂

L−2∑
i=0

(
N

i

)
p̂i(1− p̂)N−i

+(1− p̂)
L−1∑
i=0

(
N

i

)
p̂i(1− p̂)N−i. (11)

From (9) and (11), we get

∂q∗v(p̂, λ)

∂λ
=

L−1∑
i=0

(
N

i

)
p̂i(1− p̂)N−i

−
L−1∑
i=0

(
N + 1

i

)
p̂i(1− p̂)N+1−i

= p̂

L−1∑
i=0

(
N

i

)
p̂i(1− p̂)N−i − p̂

L−2∑
i=0

(
N

i

)
p̂i(1− p̂)N−i

=

(
N

L− 1

)
p̂L(1− p̂)N+1−L, (12)

and

∂q∗v(p̂, λ)

∂p̂
= −λ

(
N

L− 1

)
p̂L−1(1− p̂)N−L(N + 1− L)

−(1− λ)

(
N + 1

L− 1

)
p̂L−1(1− p̂)N+1−L(N + 2− L).

(13)

Because (N + 1)p̂ ≤ x∗ ≤ L, we have(
N+1
L−1

)
p̂L−1(1− p̂)N+1−L(N + 2− L)(

N
L−1

)
p̂L−1(1− p̂)N−L(N + 1− L)

=
(N + 1)(1− p̂)

N + 1− L
=

(N + 1)(N + 2− λ− x∗)

(N + 1− L)(N + 2− λ)
≥ 1,

(14)

which implies that

∂q∗v
∂p̂

≥ −
(
N + 1

L− 1

)
p̂L−1(1− p̂)N+1−L(N + 2− L). (15)

Consequently, combining (10), (12) and (15) yields

dq∗v
dλ

≥
(

N

L− 1

)
p̂L(1− p̂)N+1−L

−
(
N + 1

L− 1

)
p̂L

N + 2− λ
(1− p̂)N+1−L(N + 2− L)

=

(
N

L− 1

)
p̂L(1− p̂)N+1−L

(
1− N + 1

N + 2− λ

)
≥ 0. (16)

Conclusion of the theorem then follows.
Theorem 2 implies that as the network size increases, while

maximizing the symmetric network utility, the conditional
success probability of a virtual packet transmission should
decrease if users’ transmission probabilities are chosen ap-
propriately. This is consistent with our original purpose of
defining the corresponding quantity as the measure of “channel
crowdedness”.

The following theorem shows that, if “channel crowded-
ness” qv can be measured locally by each user, then for a class
of network utility functions, the proposed distributed MAC
algorithm converges to the unique equilibrium of p∗ = x∗

K+1
for all users.

Theorem 3: Assume K ≥ L. Assume that qv, which
is the conditional success probability of a virtual packet
transmission, can be measured by each user in the system.
Let users calculate their transmission probability target p̃ = p̂
by equalling q∗v(p̂) = qv with p̂ ∈ [0, x∗

L+1 ]. Suppose that T (q)
in (1) satisfies the following conditions.

T (1) > 0,
dT (q)

dq
> 0, T (q) ≤ q

dT (q)

dq
. (17)

Then distributed MAC algorithm given in (2) converges to
p∗ = x∗

K+1 for all users, and this is the unique stable
equilibrium of the ordinary differential equation given in (4).

Proof: Define

q∞(x) = e−x
L−1∑
i=0

xi

i!
. (18)

According to (7), x∗ must satisfy the following equality.

T (q∞) + x
dT (q∞)

dq∞

dq∞(x)

dx

∣∣∣∣
x=x∗

= 0. (19)

Since T (q) satisfies the conditions in (17), if x > L, then

T (q∞) + x
dT (q∞)

dq∞

dq∞
dx

∣∣∣∣
x=x∗

≤ dT (q∞)

dq∞

(
q∞ + x

dq∞
dx

)∣∣∣∣
x=x∗

=
dT (q∞)

dq∞
e−x

L−1∑
i=0

xi

i!
(1 + i− x)

∣∣∣∣∣
x=x∗

< 0. (20)



Therefore, 0 < x∗ ≤ L must hold. According to Theorem 2,
function q∗v(p̂) is non-decreasing in p̂.

Because the “channel crowdedness” measure qv is common
to all users, their derived transmission probability targets p̂
must be identical. Consequently, all users must have the same
transmission probability at any equilibrium of the system.
Let p be the user transmission probability at an arbitrary
equilibrium. From p = p̂, we know that p must satisfy

q∗v(p) = qv(p) (21)

Because the left-hand-side of equation (21) is non-decreasing
in p and the right-hand-side is decreasing in p, the solution to
(21) must be unique. Therefore, (21) has a unique solution at
p∗ = x∗

K+1 .
As an example, utility functions satisfying condition (17)

include the widely considered utility of symmetric system
throughput weighted by a transmission energy cost E ∈ [0, 1),
i.e., U(p, q) = pq − pE with T (q) = q − E.

IV. CONVERGENCE WITH CHANNEL CROWDEDNESS
INTERPRETATION

Consider an arbitrary user in the system, say user k. Let
qk be the conditional packet transmission success probability
of user k. For a general multi-packet reception channel, the
channel crowdedness variable qv can be written as

qv = (1− pk)qk + pkdk, (22)

where dk is the probability that channel can support an
additional virtual packet transmission conditioned on user k
transmitting a packet. When L > 1, qv cannot be measured
by user k unless additional feedback information is available
to enable the measurement of dk. In this section, we show that
a simple probability updating algorithm can be developed if
user k interprets qv from pk and qk. We will show in Section
V by computer simulations that such a revised MAC algorithm
can still lead the system to the desired unique equilibrium.

Given p̂ = x∗

K̂+1
, λ = ⌊K̂⌋ + 1 − K̂. Let us define the

following two functions.

q∗(p̂) = λ
L−1∑
i=0

(
⌊K̂⌋ − 1

i

)
p̂i(1− p̂)⌊K̂⌋−1−i

+(1− λ)
L−1∑
i=0

(
⌊K̂⌋
i

)
p̂i(1− p̂)⌊K̂⌋−i,

d∗(p̂) = λ
L−2∑
i=0

(
⌊K̂⌋ − 1

i

)
p̂i(1− p̂)⌊K̂⌋−1−i

+(1− λ)
L−2∑
i=0

(
⌊K̂⌋
i

)
p̂i(1− p̂)⌊K̂⌋−i. (23)

We propose a two-step approach for user k to calculate its
transmission probability target p̂k. Key idea of the approach
is to interpret channel crowdedness qv by writing dk in (22)
as a function of qk.

Step 1: In each time slot, user k first measures its con-
ditional packet success probability qk. Then user k

should obtain an intermediate probability variable p̆k
from

q∗(p̆k) = qk, (24)

with one exception: if qk ≤ q∗(0), user k should set
p̆k = 0.

Step 2: In the second step, user k should first interpret
channel crowdedness qv as

q̂v = (1− pk)qk + pkd
∗(p̆k). (25)

User k should then obtain the transmission probabil-
ity target p̂k from

q∗v(p̂k) = q̂v, (26)

with two exceptions: if q̂v ≥ q∗v(
x∗

L+1 ), user k should
set p̂k = x∗

L+1 , while if q̂v ≤ q∗v(0), user k should
set p̂k = 0.

While we are not yet able to obtain a convergence proof for
the distributed MAC algorithm with the two-step approach,
the following theorem shows that the two-step approach can
actually be simplified to one step in the sense that user k can
directly use p̆k obtained in the first step as its transmission
probability target.

Theorem 4: Assume that K ≥ L and x∗ ≤ L. If users
calculate their transmission probability targets using the two-
step approach, then for each user, say user k, qk ≥ q∗(pk)
implies p̂k ≥ pk and qk ≤ q∗(pk) implies p̂k ≤ pk.

Proof: By following a similar proof of Theorem 2, we can
see that both functions q∗(p̂) and q∗v(p̂) are non-decreasing in
p̂. Consequently, if qk ≥ q∗(pk), in the first step of the two-
step approach, we must have p̆k ≥ pk. Because q∗(p̆) ≥ d∗(p̆),
we get the following inequality

q∗v(p̆) = (1−p̆)q∗(p̆)+p̆d∗(p̆) ≤ (1−pk)q
∗(p̆)+pkd

∗(p̆) = q̂v.
(27)

From monotonicity of q∗v(.), p̆k ≥ pk implies q∗v(p̆) ≥ q∗v(pk).
Consequently, we must have

q̂v ≥ q∗v(p̆) ≥ q∗v(pk). (28)

This implies that, in the second step of the two-step approach,
we will get p̂k ≥ pk. Similarly, qk ≤ q∗(pk) implies p̂k ≤ pk.

Theorem 4 implies that, if the two-step approach can
indeed lead the system to the desired equilibrium, then as an
equivalent alternative, in each time slot, user k can simply
compare its own conditional transmission success probability
qk with q∗(pk) to determine whether pk should be increased
or decreased.

V. SIMULATION RESULTS

In this section, we use computer simulations to demonstrate
convergence of the distributed MAC algorithm proposed in
Section IV.

Example 1: In the first example, we consider a multiple
access system with K = 12 users. Assume that the multiple



access channel can support no more than L = 3 users trans-
mitting in parallel. We choose T (q) = q, which means that
users intend to maximize the symmetric system throughput.
x∗ in this case is calculated from (7) to be x∗ = 2.27. If all
users transmit with the same probability p, conditional packet
success probability experienced by each user should equal
q =

∑2
i=0

(
K−1

i

)
pi(1 − p)K−1−i. Transmission probabilities

of the users are initialized randomly. In each time slot, each
user, say user k, measures its conditional packet success
probability qk. We assume that such a measurement is precise.
User k then obtains the transmission probability target p̂k from
q∗(p̂k) = qk. As explained in Section IV, this is equivalent to
the two-step approach of calculating the transmission probabil-
ity target. Step size of the probability update is set at α = 0.05.
Convergence of the sum throughput of the system is illustrated
in Figure 1. The dashed line represents the sum throughput if
each user transmits with probability p∗ = x∗

K+1 = 0.17. The
dash-dotted line represents the optimal sum throughput ob-
tained by KU∗ = max0≤p≤1 Kp

∑2
i=0

(
K−1

i

)
pi(1−p)K−1−i.

In this case, since K = 12 is much larger than L = 3,
sum throughput at the system equilibrium is very close to the
optimal sum symmetric throughput of the system.
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Fig. 1. Sum throughput of system with K = 12 users and L = 3.

Example 2: In the second example, we consider a multiple
access system with K = 10 users. Assume that the multiple
access channel can support no more than L = 5 users
transmitting in parallel. Utility function of the system is chosen
to be U(p, q) = pq − 0.5p, which is the symmetric system
throughput weighted by a transmission energy cost. x∗ in this
case equals x∗ = 2.62. In this example, we initialize transmis-
sion probabilities of all users at zero. As in the first example,
in each time slot, each user uses the one-step approach to
calculate its transmission probability target. Step size of the
probability update is set at α = 0.05. Convergence of the
sum network utility is illustrated in Figure 2. The dashed line
represents the sum network utility at the system equilibrium
corresponding to p∗ = x∗

K+1 = 0.24. The dash-dotted line
represents the optimal sum throughput obtained by KU∗ =

max0≤p≤1 Kp
(∑5

i=0

(
K−1

i

)
pi(1− p)K−1−i − 0.5

)
. In this

case sum utility at the system equilibrium is about 9% below
the optimum value.
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Fig. 2. Sum utility of system with K = 10 users and L = 5.

VI. CONCLUSION

We investigated the problem of distributed MAC in a wire-
less multiple access network with an unknown finite number
of homogeneous users over a class of multi-packet reception
channels. We presented a transmission probability adaptation
model that falls into the stochastic approximation frame-
work. We defined “channel crowdedness” as the conditional
success probability of a virtual packet transmission. Under
the assumption that channel crowdedness can be measured
locally, we obtained a sufficient condition for transmission
probabilities of all users to converge to a unique equilibrium
that maximizes a class of network utility functions. In cases
when the assumption does not hold, we proposed a simple
approach for each user to interpret channel crowdedness and
showed by computer simulations that the proposed approach
can still lead the system to the desired unique equilibrium.
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