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Abstract

This paper investigates the problem of distributed medium access control in a time slotted wireless multiple
access network with an unknown finite number of homogeneous users. Assume that each user has a single
transmission option. In each time slot, a user chooses either to idle or to transmit a packet. Under a general
channel model, a distributed medium access control framework is proposed to adapt transmission proba-
bilities of all users to a value that maximizes an arbitrarily chosen symmetric network utility. Probability
target of each user in the proposed algorithm is calculated based upon a channel contention measure, which
is defined as the success probability of a virtual packet. It is shown that the proposed algorithm falls into
the classical stochastic approximation framework with guaranteed convergence when the contention mea-
sure can be directly obtained from the receiver. On the other hand, when the contention measure is not
directly available, computer simulations show that a revised medium access control algorithm can still help
the system to converge to the same designed equilibrium.
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1. Introduction

In distributed communication when users access
the channel opportunistically, packet collisions are
often unavoidable. When communication optimiza-
tion cannot be achieved fully at the physical layer,
data link layer must get involved in communication
adaptation. To support efficient data link layer adap-
tation, great efforts have been made to investigate
the problem of distributed medium access control
(MAC). Distributed MAC protocols can generally
be categorized into non-adaptive ALOHA protocols
[1], splitting algorithms [2][3] and back-off approaches
[4][5]. ALOHA protocols are often used to investigate
fundamental limits, such as the throughput and the
stability regions, of a network [6][7]. In splitting al-
gorithms such as the FCFS algorithm [2], users main-
tain a common virtual interval of their random iden-

tity values. Users partition the interval based upon a
sequence of channel feedback messages and determine
their transmission schedules accordingly. While split-
ting algorithms can often achieve a relatively high
system throughput, their function depends on the as-
sumptions of instant availability of noiseless channel
feedback and correct reception of feedback sequences.
Unfortunately, both of these conditions can be vio-
lated in a wireless environment. Theoretical analysis
of a splitting algorithm can be extremely challenging,
especially when wireless-related factors such as chan-
nel noise, feedback error, and transmission delay are
taken into account. Back-off algorithms [8][4][5], on
the other hand, have proven to enjoy more trackable
analysis. In back-off algorithms such as the 802.11
DCF protocol, according to packet availability, each
user transmits its packets with an associated proba-
bility parameter. A user should decrease its trans-
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mission probability in response to a packet collision
(or transmission failure) event, and increase its trans-
mission probability in response to a transmission suc-
cess event. Distributed probability adaptation in a
back-off algorithm often falls into the stochastic ap-
proximation framework [8][4], with rigorously devel-
oped mathematical and statistical tools available for
its convergence and performance analysis. It is well
known that convergence proof of these algorithms of-
ten hold in the existence of measurement noise and
feedback delay [9]. Practical back-off algorithms can
also be analyzed using Markov models to characterize
the impact of discrete probability updates [5].
In [4], a stochastic approximation model was pro-

posed for distributed networking over a collision
channel with an unknown finite number of users, each
having a saturated message queue. By setting the
transmission probability target of each user as a func-
tion of the channel idling probability, it was shown
that the system can be designed to converge to a
unique stable equilibrium. In the case of throughput
maximization with homogeneous users, it was pro-
posed that idling probability of the channel should be
controlled toward the asymptotically optimal value of
1/e. This is similar to the proposal of controlling the
total traffic level toward 1, as discussed in [8] using
a stochastic approximation framework for a system
with an infinite number of users. Most of the existing
analysis of the splitting and the back-off algorithms
either assume a throughput optimization objective
and/or a simple collision channel model. While sig-
nificant research efforts have been made to revise col-
lision resolution algorithms to incorporate wireless-
related physical layer properties, such as capture ef-
fect [10] and multi-packet reception [11], not much
progress has been reported since the 1980s on inte-
grating these extensions with the insightful stochas-
tic approximation-based frameworks, such as those
introduced in [8][4].
Recently, an extended channel coding theory was

developed in [12][13][14] for physical layer distributed
communication that features opportunistic channel
access and packet collision. The new coding theory
enabled the derivation of fundamental limits of dis-
tributed communication systems. It also supported
the derivation of a link layer channel model based

upon the physical layer channel and coding parame-
ters of the data packets. This motivated the investi-
gation on the impact of a general link layer channel
model to the design and optimization of collision res-
olution algorithms.
In this paper, we consider the problem of dis-

tributed utility optimization in a wireless multiple
access network with an unknown finite number of
homogeneous users. Assume that each user is back-
logged with a saturated message queue. The link
layer multiple access channel is generally modeled
by two sets of channel parameters, detailed in the
paper. Given the channel model, we propose a dis-
tributed MAC framework for each user to adapt its
transmission probability according to a channel con-
tention measure defined as the success probability of
a virtual packet. We show that the proposed MAC al-
gorithm falls into the classical stochastic approxima-
tion framework with guaranteed convergence, if the
underlying ordinary differential equation (ODE) has
a unique equilibrium and two key monotonicity con-
ditions are satisfied. Without knowing the number of
users, we show that one can develop the MAC algo-
rithm to satisfy the required conditions and to place
the unique equilibrium at a point that is not far from
optimal with respect to a chosen utility. Our work
extends the basic framework of [4] from a simple col-
lision channel model to a general link-layer channel.
Such extension is enabled by the following key ideas.
First, as opposed to measuring contention level of the
channel using a locally observable variable such as
the channel idling probability [4], we measure chan-
nel contention level using the success probability of a
carefully designed virtual packet. Coding parameters
of the virtual packet affect the optimality of the MAC
algorithm through a set of channel parameters that
may need to be derived using the distributed chan-
nel coding theorems presented in [12][13][14]. Second,
with the help of the channel contention measure and
two key monotonicity properties, we show that each
user can first estimate the unknown number of users,
and then set its transmission probability target as a
function of the estimated number of users. Compared
with the approach of maintaining channel contention
at a more or less fixed level for all values of number
of users, as suggested in [4], the MAC algorithm to
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be proposed can help the system to achieve a perfor-
mance closer to optimal especially when the number
of users is not large in value.
The rest of the paper is organized as follows. In

Section 2, we present a stochastic approximation
framework for a class of distributed MAC algorithms.
While the framework and its convergence results are
quite standard in the stochastic approximation liter-
ature, they characterize the key conditions for guar-
anteed convergence to a unique system equilibrium.
Within the framework, the research objectives be-
come to design the system to satisfy the convergence
conditions, and to place the unique equilibrium at a
point that maximizes a chosen network utility. We
propose to measure contention level of the channel
using the success probability of a carefully designed
virtual packet, and require that users should derive a
common transmission probability target as a function
of the common channel contention measure. Such an
approach guarantees that transmission probabilities
of all users at any system equilibrium must be identi-
cal. In Section 3, under the assumption that channel
contention measure can be directly fed back by the
receiver to the transmitters, we propose a distributed
MAC algorithm to adapt the transmission probabili-
ties of the users to lead the actual channel contention
level toward a predetermined theoretical value. Con-
vergence of the proposed MAC algorithm is proven
with the help of two key monotonicity properties. In
Section 4, we consider the more practical case when
each user only knows the conditional success prob-
ability of its own packets. A two step approach is
proposed for each user to interpret the channel con-
tention measure and to adapt its transmission prob-
ability accordingly. Simulation results are provided
in Section 5 to demonstrate both the optimality and
the convergence properties of the proposed MAC al-
gorithms under various system settings.
To help reading the technical contents of the paper,

we summarize the definitions of a list of key variables
below.

Definitions of Key Variables

{Crj} : real channel parameter set. Crj is the
conditional success probability of a real packet
should it be transmitted in parallel with j other

real packets.

{Cvj} : virtual channel parameter set. Cvj is the
success probability of the virtual packet should
it be transmitted in parallel with j real packets.

Jǫv : argminj Cvj > Cv(j+1) + ǫv.

K : actual number of users.

K̂: estimated number of users.

p : transmission probability vector of all users.

p̃ : transmission probability vector target com-
puted using noisy measurements.

p̂ : theoretical transmission probability vector
target computed using noiseless measurements.

p
∗ : transmission probability vector at an equi-

librium.

pmax : upper bound to the transmission proba-
bility of a user.

qv : actual channel contention measure.

q∗v : theoretical channel contention measure.

x∗ : the limit of Kp as K → ∞. The value
of x∗ is obtained from the optimization of the
asymptotic utility function.

2. Problem Formulation

Consider a wireless multiple access network withK
homogeneous users (transmitters) and a common re-
ceiver. The value of K is known neither to the users
nor to the receiver. Time is slotted such that each
slot equals the length of one packet. Assume that
each user has a saturated message queue. In each
time slot, each individual user, say user k, makes its
transmission/idling decision according to an associ-
ated transmission probability parameter, denoted by
pk. Transmission decision of a user is not shared with
other users or with the receiver. We use transmission
probability vector p = [p1, · · · , pK ]T to denote the
transmission probabilities of all users.
Let us add an integer-valued time index t and use

p(t) = [p1(t), · · · , pK(t)]T to denote the transmis-
sion probability vector of the users at the beginning
of time slot t. Assume that users intend to maxi-
mize a symmetric network utility, which we will dis-
cuss later. In each time slot, according to channel
feedback obtained from the receiver, we assume that
user k should derive a transmission probability target
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p̃k(t). User k then updates its transmission probabil-
ity by

pk(t+ 1) = (1− α(t))pk(t) + α(t)p̃k(t), (1)

where α(t) ≥ 0 is the step size parameter of time
slot t. Let p̃(t) = [p̃1(t), · · · , p̃K(t)]T be the vector of
transmission probability targets of all users. Trans-
mission probability vector p(t) is updated by

p(t+ 1) = p(t) + α(t)(p̃(t)− p(t)). (2)

Probability adaptation given in (2) falls into the
stochastic approximation framework [9][15][16], and
p̃(t) is often calculated based upon noisy estimates of
certain system variables.
Let p̂(t) = [p̂1(t), · · · , p̂K(t)]T be the vector of

the theoretical transmission probability targets of all
users, which is computed based upon presumed noise-
less measurements and noiseless feedback in time slot
t. Let Et[p̃(t)] denote the conditional expectation of
p̃(t) given system state at the beginning of time slot
t. Let us write Et[p̃(t)] as

Et[p̃(t)] = p̂(t) + g(t) = p̂(p(t)) + g(p(t)), (3)

where g(t) is defined as the bias term in the probabil-
ity vector target derivation. Given the communica-
tion channel, both p̂(t) and g(t) are functions of p(t),
which denotes the transmission probability vector in
time slot t.
Next, we present two conditions that are typically

required for the convergence of a stochastic approxi-
mation algorithm.

Condition 1. (Mean and Bias) There exists a con-
stant Km > 0 and a bounding sequence 0 ≤ β(t) ≤ 1,
such that

‖g(p(t))‖ ≤ Kmβ(t). (4)

We assume that β(t) is controllable in the sense that,
for any ǫ > 0, one can design protocols to ensure
β(t) ≤ ǫ for a sufficiently large t.

Condition 2. (Lipschitz Continuity) There exists a
constant Kl > 0, such that

‖p̂(p1)− p̂(p2)‖ ≤ Kl‖p1−p2‖, for all p1,p2. (5)

According to classical stochastic approximation
theory [9][15][16], if Conditions 1 and 2 are met, and
α(t), β(t) are small enough, trajectory of probabil-
ity vector p(t) under distributed adaptation given in
(2) can be approximated by the following associated
ODE

dp(t)

dt
= − [p(t)− p̂(t)] , (6)

where, with an abuse of the notation, we also used t
to denote the continuous time variable. Because all
entries of p(t) and p̂(t) stay in the range of [0, 1], any
equilibrium p

∗ of the associated ODE must satisfy
p
∗ = p̂(p∗).
Convergence of the distributed probability adap-

tation is stated in the following two theorems, which
are quite standard for stochastic approximation algo-
rithms.

Theorem 1. Let Conditions 1 and 2 hold. Assume
that the associated ODE given in (6) has a unique
stable equilibrium at p∗. If α(t) and β(t) satisfy the
following conditions

∞
∑

t=0

α(t) = ∞,

∞
∑

t=0

α(t)2 < ∞,

∞
∑

t=0

α(t)β(t) < ∞, (7)

then under distributed probability adaptation given in
(2), p(t) converges to p

∗ with probability one.

Theorem 1 is implied by [9, Theorems 4.3].

Theorem 2. Let Conditions 1 and 2 hold. Assume
that the associated ODE given in (6) has a unique
stable equilibrium at p∗. Under distributed probability
adaptation given in (2), for any ǫ > 0, there exists a
constant Kw > 0, such that, for any 0 < α < α < 1
satisfying the following constraint

∃T0 ≥ 0, α ≤ α(t) ≤ α, β(t) ≤
√
α, ∀t ≥ T0, (8)

p(t) converges weakly to p
∗ in the following sense

lim sup
t→∞

Pr{‖p(t)− p
∗‖ ≥ ǫ} < Kwα. (9)

Theorem 2 can be obtained by following the proof
of [16, Theorems 2.3] with minor revisions.

4



Note that, in the above discussion, we assumed the
same α(t) and β(t) for all users. We also assumed
that feedback information should be obtained by all
users in every time slot, and probability adaptations
of all users should be synchronous. However, by fol-
lowing the literature of stochastic approximation the-
ory [9], it is easy to show that these assumptions can
be relaxed. So long as step size sequences and bound-
ing sequences of all users satisfy the same constraints
given in (7) and (8), and all users receive channel
feedback frequently enough, then conclusions of The-
orems 1 and 2 should remain valid.
With convergence of the system guaranteed by

Theorems 1 and 2, key objectives of the system design
are to develop the distributed MAC algorithm to sat-
isfy Conditions 1 and 2, and to place the unique sys-
tem equilibrium at a desired point that maximizes the
chosen utility. Because users are homogeneous, due
to symmetry, if a system equilibrium p

∗ is unique, it
must take the form of p∗ = p∗1, with 1 being the
vector of all ones. That is, transmission probabilities
of all users at the equilibrium must be identical. We
choose to enforce such a property by requiring that
all users should obtain the same transmission proba-
bility target in each time slot t, i.e., p̂(t) = p̂(t)1. The
corresponding part of the system design is explained
below.
Assume that there is a virtual packet being trans-

mitted in each time slot. Virtual packets of different
time slots are identical. A virtual packet is an as-
sumed packet with coding parameters known both to
the users and to the receiver, but it is not physically
transmitted in the system, i.e., the packet is “vir-
tual”. We assume that, without knowing the trans-
mission/idling status of the users, the receiver can
detect in each time slot whether the virtual packet
transmission should be regarded as successful or not.
For example, suppose that the link layer channel is a
collision channel, and a virtual packet has the same
coding parameters of a real packet. Then, virtual
packet reception in a time slot should be regarded
as successful if and only if no real packet is trans-
mitted. Success probability of the virtual packet in
this case equals the idling probability of the collision
channel. For another example, if all packets including
the virtual packet are encoded using random block

codes, given the physical layer channel, reception of
each virtual packet corresponds to a detection task
that judges whether or not the vector transmission
status of all real users should belong to a specific
region. Such detection tasks and their performance
bounds have been extensively discussed in the dis-
tributed channel coding theory [12][13][14].
Let qv(t) denote the success probability of the vir-

tual packet in time slot t. We assume that the re-
ceiver should estimate qv(t) and feed it back to all
transmitters. We term qv(t) the “channel contention
measure” because it is designed to serve as a measure-
ment of the contention level of the link-layer multiple
access channel. Note that, in the collision channel
case when qv(t) equals the channel idling probability,
feeding back qv(t) may not be necessary. So long as
each user k knows the conditional success probability
of its own packet, denoted by qk(t), idling probability
of the channel can be estimated by (1 − pk(t))qk(t).
With a general link layer channel, however, estimat-
ing qv(t) may not always be possible if it is not di-
rectly fed back from the receiver. Upon receiving the
estimate of qv(t), each user calculates its probabil-
ity target as the same function of the qv(t) estimate.
Denote the theoretical transmission probability tar-
get by p̂(qv(t)). The theoretical vector transmission
probability target is given by p̂(t) = p̂(qv(t))1. Be-
cause any equilibrium p

∗ of the ODE must satisfy
p
∗ = p̂(p∗), this guarantees that p

∗ must take the
form of p∗ = p∗1 with p∗ = p̂(p∗), where p̂(p∗) is the
theoretical transmission probability target computed
under the assumption that all users should transmit
with an identical probability of p∗.
In a practical system, the measurement of qv(t) is

likely to be corrupted by noise. We assume that, if
users keep their transmission probability vector p at
a constant, and qv is measured over an interval of Q
time slots, then the measurement should converge to
its true value with probability one as Q is taken to
infinity. Other than this assumption, measurement
noise is not involved in the discussion of the design
objectives of meeting Conditions 1 and 2 and placing
the unique system equilibrium at the desired point.
Therefore, in the following section, we assume that
qv(t) can be measured precisely and be fed back to
the users. This leads to p̃(t) = p̂(t) = p̂(t)1. We will
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also skip the time index t to simplify the notations.

3. Distributed MAC With Receiver Feeding

Back The Channel Contention Measure

In this section, we assume that success probability
of the virtual packet can be measured at the receiver
and be fed back to the transmitters. With a gen-
eral link layer channel model, we will show that a
distributed MAC algorithm can be developed to lead
the transmission probabilities of all users to the same
value that maximizes a chosen symmetric network
utility.
We first introduce two sets of parameters to model

the link layer channel. Define {Crj} for j ≥ 0 as
the “real channel parameter set”. Crj is the condi-
tional success probability of a real packet should it
be transmitted in parallel with j other real packets.
Define {Cvj} for j ≥ 0 as the “virtual channel param-
eter set”. Cvj is the success probability of the virtual
packet should it be transmitted in parallel with j real
packets. We assume that Cvj ≥ Cv(j+1) ≥ 0 should
hold for all j ≥ 0. This implies that an increased
number of parallel real packet transmissions should
not improve the chance of a virtual packet getting
through the channel. Let ǫv ≥ 0 be a pre-determined
small constant. Define Jǫv as the minimum integer
such that CvJǫv

is strictly larger than Cv(Jǫv
+1) + ǫv,

i.e.,
Jǫv = argmin

j

Cvj > Cv(j+1) + ǫv. (10)

Because {Crj} and {Cvj} can be theoretically derived
from the physical layer channel and coding parame-
ters of the real and the virtual packets, we assume
that they should be known to the users and also to
the receiver. Note that, while Crj does not depend
on the coding parameters of the virtual packet, cod-
ing design of the virtual packet does affect the value
of {Cvj}.
We assume that the users intend to maximize a

symmetric utility. Under the assumption that all
users should transmit with the same probability, util-
ity of the system is denoted by U(K, p, {Crj}), which
is defined as a function of the unknown number of
users K, the common transmission probability p of

all users, and the real channel parameter set {Crj}.
For example, if users intend to maximize the sum
throughput of the system, then U(K, p, {Crj}) should
be given by

U(K, p, {Crj})

= K

K−1
∑

j=0

(

K − 1

j

)

pj+1(1− p)K−1−jCrj .

(11)

For many utility functions of interest, such as the sum
throughput function given above, an asymptotically
optimal solution should maintain the expected load
of the channel at a constant [4][11]. Write p = x

K
.

We define x∗ using the following asymptotic utility
optimization

x∗ = argmax
x

lim
K→∞

U
(

K,
x

K
, {Crj}

)

. (12)

The calculation of x∗ is only involved with the utility
function and the real channel parameter set {Crj},
and is irrelevant to the coding parameters of the vir-

tual packet. We generally regard p = min
{

1, x
∗

K

}

as

an ideal solution to the utility optimization problem
for all values of number of users. Note that, this is in-
deed the optimum solution for allK for sum through-
put maximization over a collision channel [4][11].
Let b ≥ 1 be a pre-determined design parameter

whose value will be introduced later. Define pmax as

pmax = min

{

1,
x∗

Jǫv + b

}

. (13)

We will show next that, without knowing the actual
number of users K, it is possible to set the unique
system equilibrium at p∗ = p∗1 = min{pmax,

x∗

K+b
}1,

which is not far from the assumed ideal solution of
min{1, x∗

K
}1.

We intend to design a distributed MAC algorithm
to set the unique system equilibrium at p∗1 by main-
taining channel contention at an appropriate level.
Note that, given the virtual channel parameter set
{Cvj}, channel contention measure qv(p,K) is a func-
tion of the unknown number of users K and the
transmission probability vector p. Because qv(p,K)
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equals the summation of a finite number of polyno-
mial terms, it should be Lipschitz continuous in p

for any finite K. If all users transmit with the same
probability p, i.e., p = p1, qv(p1,K) is given by

qv(p1,K) =

K
∑

j=0

(

K

j

)

pj(1 − p)K−jCvj , (14)

We assume that, upon receiving qv from the receiver,
each user should first obtain an estimated number
of users, denoted by K̂, and then set the corre-
sponding transmission probability target at p̃ = p̂ =
min{pmax,

x∗

K̂+b
}, where x∗ > 0 is obtained from (12).

We will show that, for any x∗ > 0, one can always
find an appropriate b and design a distributed MAC
algorithm to ensure system convergence to the de-
signed equilibrium of p∗ = min{pmax,

x∗

K+b
}1. Note

that, while the actual number of users K is always an
integer, we do allow the estimated number of users
K̂ to take a non-integer value.
Convergence of the MAC algorithm to be pro-

posed depends on two key monotonicity properties
presented below. First, the following theorem shows
that, given the number of users K, qv(p1,K) is non-
increasing in p.

Theorem 3. With Cvj ≥ Cv(j+1) for all j ≥ 0,

qv(p1,K) given in (14) satisfies ∂qv(p1,K)
∂p

≤ 0. Fur-

thermore, ∂qv(p1,K)
∂p

< 0 holds with strict inequality

for K > Jǫv and p ∈ (0, 1).

The proof of Theorem 3 is presented in Appendix
A.
Next, we define the “theoretical channel contention

measure”, denoted by q∗v , which represents the ex-
pected channel contention level at the system equi-
librium if the estimated number of users is correct.
Let p̂ = x∗

K̂+b
, and N = ⌊K̂⌋ be the largest integer

below K̂. We define theoretical channel contention
measure as a continuous function q∗v(p̂), which can
also be viewed as a function of K̂, as follows

q∗v(p̂) =
p̂− pN+1

pN − pN+1
qN (p̂) +

pN − p̂

pN − pN+1
qN+1(p̂),

(15)

where

pN = min

{

pmax,
x∗

N + b

}

pN+1 = min

{

pmax,
x∗

N + 1 + b

}

, (16)

and

qN (p) =

N
∑

j=0

(

N

j

)

pj(1− p)N−jCj

qN+1(p) =

N+1
∑

j=0

(

N + 1

j

)

pj(1− p)N+1−jCj .

(17)

If the number of users in the system indeed equals
K = K̂ with K̂ ≥ x∗ − b, then q∗v(p̂) defined in
(15) equals the actual channel contention measure
qv(p

∗,K) at the desired equilibrium p
∗ = x∗

K+b
1 =

x∗

K̂+b
1, i.e., when all users transmit with the same

probability of p̂ = x∗

K̂+b
.

We intend to design the theoretical channel con-
tention measure as a decreasing function in the es-
timated number of users K̂. In other words, an
increased number of users should lead to a more
crowded channel. Equivalently, when being viewed as
a function of p̂, q∗v(p̂) is desired to be increasing in p̂.
Indeed, given an arbitrary x∗ > 0, such a monotonic-
ity property can be guaranteed with an appropriate
choice of b.

Theorem 4. Let x∗ > 0. If b ≥ max{1, x∗ − γǫv},
with γǫv being given by

γǫv = min
N,N≥Jǫv

,N≥x∗−b

∑N

j=0 j
(

N
j

)

(

pN+1

1−pN+1

)j

(Cvj − Cv(j+1))

∑N
j=0

(

N
j

)

(

pN+1

1−pN+1

)j

(Cvj − Cv(j+1))

, (18)

then q∗v(p̂) defined in (15) is non-decreasing in p̂.
Furthermore, if b > max{1, x∗−γǫv} holds with strict
inequality, then q∗v(p̂) is strictly increasing in p̂ for
p̂ ∈ (0, pmax).
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The proof of Theorem 4 is presented in Appendix
B. We want to point out that, if ǫv is small enough
to satisfy Cvj = Cv(j+1) for all j < Jǫv , then we have
γǫv = Jǫv . Otherwise, γǫv ≤ Jǫv is generally true.
We are now ready to propose the distributed MAC

algorithm.
Distributed MAC algorithm:

1. Initialize the transmission probabilities of all
users. Let the transmission probability of user
k be denoted by pk.

2. Over an interval of Q time slots, with Q ≥ 1,
the receiver measures the success probability of
a virtual packet, denoted by qv, and feeds qv back
to all transmitters.

3. Upon receiving qv, each user (transmitter) de-
rives a transmission probability target p̂ by solv-
ing the following equation

q∗v(p̂) = qv. (19)

If a p̂ ∈ [0, pmax] satisfying (19) cannot be found,
each user sets p̂ at p̂ = pmax when qv > q∗v(pmax),
or at p̂ = 0 when qv < q∗v(0).

4. User k then updates its transmission probability
by

pk = (1− α)pk + αp̂, (20)

where α is the step size parameter for user k.

5. The process is repeated from Step 2 till trans-
mission probabilities of all users converge.

Convergence of the proposed MAC algorithm is
stated in the following theorem.

Theorem 5. Given x∗ > 0, let b be chosen to sat-
isfy b > max{1, x∗ − γǫv}. With the proposed MAC
algorithm, the system has a unique equilibrium at
p
∗ = min{pmax,

x∗

K+b
}1. Furthermore, given the

number of users K, the probability target p̂(p) as a
function of transmission probability vector p satis-
fies Conditions 1 and 2. Consequently, transmission
probability vector p converges to p

∗ in the sense ex-
plained in Theorems 1 and 2.

The proof of Theorem 5 is presented in Appendix
C.

The above analysis indicates that, with an arbi-
trary virtual packet design and with the proposed
MAC algorithm, the system should converge to the
designed equilibrium so long as b is chosen to satisfy
b > max{1, x∗−γǫv}. However, one should note that
optimality of the algorithm does depend on the value
of b, γǫv , and Jǫv , which are determined by the vir-
tual channel parameter set {Cvj}, and therefore are
dependent on the coding parameters of the virtual
packet. For example, it is known that, to maximize
the sum throughput of a distributed multiple access
system over a collision channel, the optimal solution
is to set the transmission probability of all users at
p = 1

K
with K being the number of users. This cor-

responds to x∗ = 1 and b = 0 in our model. For a
general system, assume that setting the transmission
probabilities of all users at p = min{1, x∗

K
} should

be an ideal choice for maximizing the chosen util-
ity. Because the proposed MAC algorithm sets the
equilibrium at p∗ = min{pmax,

x∗

K+b
}1, there are two

optimality concerns. On one hand, when the num-
ber of users K is large, it is a general preference that
one should design the virtual packet to allow a rela-
tively small value of b. This implies that the values
of γǫv and Jǫv should not be much smaller than x∗.
On the other hand, when the actual number of users
K is small, one should also try to get pmax close to
1. This implies that Jǫv should also not be much
larger than x∗. Combining both optimality concerns,
a general guideline is to design coding parameters of
the virtual packet such that Jǫv and γǫv should be
slightly smaller than x∗ and b should be close to 1.

4. Distributed MAC with Interpreted Chan-

nel Contention Measure

Classical MAC protocols often assume that a user
should get feedback from the receiver on whether its
own packets are successfully received or not [2]. This
enables each user, say user k, to measure the condi-
tional success probability of its own packet transmis-
sions, denoted by qk. In this section, we consider the
case when qk is the only feedback available to user
k. To simplify the discussion, we also assume that
a virtual packet should have the same communica-
tion parameters as those of a real packet. In order

8



to apply the MAC algorithm proposed in Section 3,
user k will need to interpret the success probability
of the virtual packet based on the measurement of
qk. Because transmission activities of the users are
mutually independent, under the assumption that a
virtual packet should have the same coding parame-
ters of a real packet, qk equals the conditional success
probability of the virtual packet given that user k
idles. Consequently, user k can calculate the success
probability of the virtual packet by

qv = (1− pk)qk + pkdk, (21)

where pk is the transmission probability of user k, and
dk is the conditional success probability of the virtual
packet given that user k transmits a packet1. Note
that dk can be easily calculated in special cases. For
example, under a collision channel model, we have
dk = 0. In this case, qv = (1 − pk)qk is the actual
success probability of the virtual packet. However,
for a general channel, dk may not always be avail-
able at the transmitters unless additional feedback
information is provided. When dk is not available,
we propose a two-step approach for each user to in-
terpret dk and hence the success probability of the
virtual packet qv, and then to update its transmis-
sion probability accordingly.
To explain the detail of the two-step approach, we

need to define two auxiliary functions. More specifi-
cally, for an arbitrary estimated number of users K̆,
let N̆ = ⌊K̆⌋ denote the largest integer below K̆.
Let p̆ = min{pmax,

x∗

K̆+b
}, p

N̆
= min{pmax,

x∗

N̆+b
} and

p
N̆+1 = min{pmax,

x∗

N̆+1+b
}, where b is a constant sat-

isfying b > max{1, x∗ − γǫv}. We define auxiliary
functions q∗(p̆) and d∗(p̆) as follows

q∗(p̆) =
p̆− p

N̆+1

p
N̆
− p

N̆+1

N̆−1
∑

j=0

(

N̆ − 1

j

)

×p̆j(1− p̆)N̆−1−jCvj

1Extensions can be made to the case when a virtual packet
is equivalent to the combination of R real packets by decom-
posing qk in a similar way as shown in (21).

+
p
N̆
− p̆

p
N̆
− p

N̆+1

N̆
∑

j=0

(

N̆

j

)

p̆j(1− p̆)N̆−jCvj ,

d∗(p̆) =
p̆− p

N̆+1

p
N̆
− p

N̆+1

N̆−1
∑

j=0

(

N̆ − 1

j

)

×p̆j(1− p̆)N̆−1−jCv(j+1)

+
p
N̆
− p̆

p
N̆
− p

N̆+1

N̆
∑

j=0

(

N̆

j

)

p̆j(1− p̆)N̆−jCv(j+1).

(22)

In the case when K̆ takes an integer value, q∗(p̆)
is the conditional success probability of the virtual
packet under the assumptions that the system has
K̆ users, user k idles, and all other users have the
same transmission probability of p̆. Similarly, d∗(p̆)
represents the conditional success probability of the
virtual packet under the assumptions that the system
has K̆ users, user k transmits a packet, and all other
users have the same transmission probability of p̆.
Next, we present the two-step approach that is sug-

gested for each user to obtain its transmission prob-
ability target.
Step 1: Over an interval of Q ≥ 1 time slots,

each user, say user k, measures its own conditional
success probability qk. User k then obtains an in-
termediate transmission probability p̆ by solving the
following equation

q∗(p̆) = qk. (23)

If a p̆ ∈ [0, pmax] satisfying (19) cannot be found, user
k sets p̆ at p̆ = pmax when qk > q∗(pmax), or at p̆ = 0
when qk < q∗(0) .
Step 2: In the second step, user k interprets

channel contention measure qv as

qv = (1− pk)qk + pkd
∗(p̆). (24)

An updated transmission probability target p̂ for user
k is then determined by solving equation (19). As
before, if a p̂ ∈ [0, pmax] satisfying (19) cannot be
found, user k sets p̂ at p̂ = pmax when qv > q∗v(pmax),
or at p̂ = 0 when qv < q∗v(0).
Note that when p̂ is obtained by the two step ap-

proach, a convergence proof of the MAC algorithm
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is no longer available. This is because the two step
approach does not guarantee that transmission prob-
ability targets obtained by different users should be
identical. Therefore, the assumption that any equi-
librium p

∗ must take the form of p
∗ = p∗1 is no

longer valid. Nevertheless, in the following theorem,
we show that the two-step approach is equivalent to
a simplified one-step approach where user k directly
uses p̆ obtained in (23) as its transmission probability
target.

Theorem 6. Let x∗ > 0, and b ≥ max{1, x∗ − γǫv},
where γǫv is defined in (18). Suppose that each user,
say user k, first obtains an intermediate transmis-
sion probability p̆ and then determines its transmis-
sion probability target p̂ by following the two-step ap-
proach. Then p̆ ≥ pk implies p̂ ≥ pk, while p̆ ≤ pk
implies p̂ ≤ pk.

The proof of Theorem 6 is presented in Appendix
D.
Theorem 6 suggests that each user can simplify the

two step approach into Step 1 only and simply set
the transmission probability target at p̂ = p̆. In cases
when the two-step approach does lead the system to
the designed equilibrium, the simplified one step ap-
proach should also lead the system to the same equi-
librium.

5. Simulation Results

In this section, we use computer simulations to
illustrate both the optimality and the convergence
properties of the proposed MAC algorithms.
Example 1: (Optimality) The distributed MAC

framework proposed in this paper shares certain
proximity with the one proposed in [4], although [4]
only considered the simple collision channel model.
In the first example, we investigate the classical prob-
lem of symmetric sum throughput maximization over
a collision channel.
Assume that the system has K users each having a

saturated message queue. If K is known, the optimal
solution that maximizes the sum throughput is to set
the transmission probabilities of all users at popt =

1
K

[4]. It was suggested in [4] that, when K is unknown,

with the help of a proposed distributed MAC frame-
work, each user should direct its transmission proba-
bility to converge to pa, which is obtained by solving
the following equation.

eP (idle)− 1− 0.5
√
pa = 0, P (idle) = (1− pa)

K ,
(25)

where P (idle) is the idling probability of the channel
that can be measured locally if each user knows the
conditional success probability of its own packets.
Now consider the distributed MAC algorithm pro-

posed in Section 3 of this paper. With the colli-
sion channel model, the real channel parameter set
{Crj} is given by Cr0 = 1 and Crj = 0 for all
j > 0. Because the utility function is chosen as the
sum network throughput, we obtain from (12) that
x∗ = 1. Let us assume that a virtual packet should
have the same coding parameters as those of a real
packet. Consequently, the virtual channel parameter
set {Cvj} is identical to the real channel parameter
set, i.e., Cvj = Crj for all j ≥ 0. Choose ǫv = 0.01,
we get γǫv = Jǫv = 0. This supports the choice of
b = 1.01 > x∗ − γǫv . The unique equilibrium of the
system is therefore set at p∗ = p∗1 = 1

K+1.011.
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Figure 1: Sum throughput as functions of the number of users
for distributed multiple access over a collision channel.

In Figure 1, we illustrate the achieved sum
throughput in packets/slot as functions of the num-
ber of users under various system settings. The

10



dashed curve represents the optimum utility when
transmission probabilities of all users are set at popt.
Note that the optimum utility is not necessarily
achievable because it requires the knowledge of the
number of users K. The solid curve represents the
achieved utility at the designed equilibrium of the
proposed MAC algorithm, i.e., when transmission
probabilities of all users are set at p∗. The dash-
dotted curve is the achieved utility when transmission
probabilities of all users are set at pa, as suggested in
[4]. It can be seen that, at the designed equilibrium,
the proposed distributed MAC algorithm can achieve
a throughput performance slightly higher than the
approach suggested in [4].
Example 2: (Optimality) In this example, we

consider a distributed multiple access network with
K users and a simple fading channel. In each time
slot, with a probability of 0.3, the channel can sup-
port no more than M1 = 4 parallel real packet trans-
missions, and with a probability of 0.7, the channel
can support no more than M2 = 6 parallel real packet
transmissions. Note that such a channel can appear
if there is an interfering user that transmits a packet
with probability 0.3 in each time slot. One packet
from the interfering user is equivalent to the combi-
nation of two packets from a regular user. The real
channel parameter set {Crj} in this case is given by
Crj = 1 for j < 4, Crj = 0.7 for 4 ≤ j < 6, and
Crj = 0 for j ≥ 6. Assume that users intend to opti-
mize the symmetric throughput weighted by a trans-
mission energy cost of E = 0.3. With the number
of users being K and all users transmitting with the
same probability p, system utility U(K, p, {Crj}) is
given by

U(K, p, {Crj}) = −EKp+

K−1
∑

j=0

K

(

K − 1

j

)

pj+1(1 − p)K−1−jCrj.(26)

Correspondingly, x∗ can be obtained from (12) as
x∗ = 3.29. Assume that a virtual packet should have
the same coding parameters as those of a real packet.
The virtual channel parameter set {Cvj} is therefore
identical to the real channel parameter set, i.e., Cvj =
Crj for all j ≥ 0. With ǫv = 0.01, we have γǫv =
Jǫv = 3. Therefore, we can set b = 1.01 > x∗ − γǫv .

In Figure 2, we illustrate three utilities all as func-
tions of the number of users K. The solid curve rep-
resents the utility achieved by the proposed MAC
algorithm at the designed equilibrium. The dashed
curve represents the optimum utility under the as-
sumption that number of users K is known, and this
is not necessarily achievable without the knowledge of
K. The dash-dotted curve represents the utility if we
maintain the channel idling probability at its asymp-
totically optimal value of exp(−x∗), as suggested in
[4]2. This is equivalent to setting the transmission

probabilities of all users at 1− exp
(

−x∗

K

)

. It can be

seen that, the proposed MAC algorithm can achieve a
higher utility value compared with the approach sug-
gested in [4]. Achieved utility of the proposed MAC
algorithm is also reasonably close to optimal when
the number of users K is not close to M .
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Figure 2: Sum utility as functions of the number of users for
distributed multiple access over a simple fading channel.

Example 3: (Convergence with receiver feeding
back the channel contention measure) Following Ex-
ample 2, we have x∗ = 3.29 and b = 1.01. Assume
that the system has K = 8 users. We initialize the

2While [4] also suggested to maintain other variables at
their asymptotically optimal values, these alternative ap-
proaches do not lead to a better performance in this example.
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transmission probabilities of all users at 0. In each
time slot, a channel state flag is randomly generated
to indicate whether the channel can support the par-
allel transmissions of no more than 4 or 6 packets.
Each user also randomly determines whether a packet
should be transmitted according to its own transmis-
sion probability parameter. Whether the real pack-
ets and the virtual packet can go through the chan-
nel or not is then determined using the correspond-
ing channel model. We use the following exponential
moving average approach to measure qv. qv is ini-
tialized at qv = 1. In each time slot, qv is updated
by qv = (1 − 1

300 )qv + 1
300Iv, where Iv ∈ {0, 1} is an

indicator of the success/failure status of the virtual
packet in the current time slot, i.e., Iv = 1 indicates
that the transmission of the virtual packet in this
time slot should be regarded as successful and Iv = 0
otherwise. While this is different from the approach
proposed in the distributed MAC algorithm, simula-
tions show that an exponential averaging measure-
ment of qv can often lead the system to converge in
a relatively smaller number of time slots. We assume
that qv is measured at the receiver and is then fed
back in each time slot to all transmitters. The rest
of probability adaptation proceeds according to the
distributed MAC algorithm introduced in Section 3
with a constant step size of α = 0.05.
Convergence behavior of the system utility is il-

lustrated in Figure 3, where system utility is also
measured using the same exponential moving aver-
age approach except that initial value of the util-
ity is set at 0. The dash-dotted line represents the
system utility if each user transmits with the de-
sired probability p∗ = x∗

K+b
= 0.365. The dashed

line represents the optimal system utility obtained
by max0≤p≤1 U(K, p, {Crj}), where U(K, p, {Crj}) is
given in (26). In this case, system utility at the de-
signed equilibrium is about 90% of the optimal value.
In about 1000 interations, transmission probabilities
of all users already become close to the equilibrium
value.
Example 4: (Convergence with interpreted chan-

nel contention measure) In this example, we study
the convergence property of the distributed MAC al-
gorithm proposed in Section 4 when each user only
knows the success/failure status of its own packets.
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Figure 3: Convergence in system utility of a multiple access
network with K = 8 users over a simple fading channel. Chan-
nel contention measure is fed back by the receiver.

Following Example 3, we assume that each user, say
user k, should maintain a measurement of the condi-
tional success probability of its own packets, denoted
by qk. qk is initialized at qk = 1. In each time slot,
if user k transmits a packet, then qk is updated by
qk = (1 − 1

300 )qk + 1
300Ik, where Ik ∈ {0, 1} is an

indicator of the success/failure status of the packet
transmitted by user k in the current time slot. We
assume that the value of Ik should be fed back to
user k from the receiver. If user k idles, on the other
hand, the value of qk should remain unchanged. With
the measurement of qk, user k then uses the sim-
plified one step approach to derive its transmission
probability target p̂ = p̆ by solving equation (23).
Then, user k updates its transmission probability by
pk = (1 − α)pk + αp̂ with a constant step size of
α = 0.05.
In Figure 4, we illustrate the convergence behavior

in sum utility of the system. As before, system util-
ity is measured using the same exponential moving
average approach with an initial value of 0. It can be
seen that, when each user uses the one step approach
to calculate its transmission probability target, the
system can still converge to the same designed equi-
librium.
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Figure 4: Convergence in system utility of a multiple access
network with K = 8 users over a fading channel. Each user
only knows the success/failure status of its own packets.

Example 5: (Convergence in a dynamic environ-
ment) In this example, we start with the system in-
troduced in Example 4. We still assume that each
user only knows the success/failure status of its own
packets, and uses the simplified one step approach to
calculate its transmission probability target. The sys-
tem contains K = 8 users at the beginning. We say
that the system starts with Stage 1. At the 3001th
time slot, we assume that the system enters Stage 2
when 7 other users join the network. This leads to
a total of K = 15 users. Each of the new users has
its transmission probability initialized at zero and its
packet conditional success probability initialized at
one. Then at the 6001th time slot, we assume that
the system enters Stage 3 when 5 users exit the net-
work.
In Figure 5, we illustrate convergence behavior of

the system in average transmission probability of the
active users over the three stages. The correspond-
ing optimal transmission probability (i.e., transmis-
sion probability that maximizes the symmetric util-
ity) and the theoretical transmission probability at
the designed equilibria are also illustrated in dashed
lines and dash-dotted lines, respectively. While a the-
oretical convergence proof is not available in this case,

we can see that in a dynamic environment when users
join/exit the system, the proposed MAC algorithm
has a reasonably good capability to help active users
tracking the designed equilibrium.
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Figure 5: Convergence in average transmission probability of
the active users of a multiple access network over three stages.

6. Conclusion

We investigated multiple access networking with an
unknown finite number of homogeneous users. A dis-
tributed MAC algorithm is proposed to maximize an
arbitrarily chosen symmetric network utility with a
generally modeled link layer channel. We proposed to
measure contention level of the channel using the suc-
cess probability of a carefully designed virtual packet,
and to adapt transmission probabilities of all users
toward a direction that matches the actual channel
contention measure with its theoretical value. Under
the assumption that channel contention measure can
be fed back by the receiver, we proved the conver-
gence of the proposed MAC algorithm with the help
of two key monotonicity properties. We also proposed
a revised MAC algorithm for the case when each user
only knows the success/failure status of its own pack-
ets. While a convergence proof of the revised MAC
algorithm is not available, simulation results suggest
that the revised MAC algorithm can indeed lead the
system to the same designed equilibrium.
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Appendix A. Proof of Theorem 3

Partial derivative of qv(p1,K) with respect to p is
given by

∂qv(p1,K)

∂p
=

K
∑

j=0

(

K

j

)

jpj−1(1− p)K−jCvj

−
K
∑

j=0

(

K

j

)

pj(K − j)(1− p)K−j−1Cvj

= −
K−1
∑

j=0

K

(

K − 1

j

)

pj(1 − p)K−1−j

×(Cvj − Cv(j+1))

≤ 0, (A.1)

where the last inequality is due to the assumption
that Cvj ≥ Cv(j+1) for all j ≥ 0. (A.1) holds with
strict inequality if K > Jǫv and p(1− p) 6= 0.

Appendix B. Proof of Theorem 4

Let us first consider the situation when x∗

N+b
≤

pmax. According to the definition of q∗v(p̂) given in
(15), we have

dq∗v(p̂)

dp̂
=

qN (p̂)− qN+1(p̂)

pN − pN+1

+
p̂− pN+1

pN − pN+1

dqN (p̂)

dp̂
+

pN − p̂

pN − pN+1

dqN+1(p̂)

dp̂
.

(B.1)

Write K̂ = N + 1− λ with λ ∈ (0, 1]. We have

p̂−pN+1 =
x∗

K̂ + b
− x∗

N + 1 + b
=

λ

N + 1 + b
p̂, (B.2)

and

pN − p̂ =
x∗

N + b
− x∗

K̂ + b
=

1− λ

N + b
p̂. (B.3)

Meanwhile, because qN+1(p̂) can be decomposed as

qN+1(p̂) =

N+1
∑

j=0

(

N + 1

j

)

p̂j(1− p̂)N+1−jCvj

= p̂

N
∑

j=0

(

N

j

)

p̂j(1− p̂)N−jCv(j+1)

+(1− p̂)
N
∑

j=0

(

N

j

)

p̂j(1− p̂)N−jCvj , (B.4)

we have

qN −qN+1 =
N
∑

j=0

(

N

j

)

p̂j+1(1− p̂)N−j(Cvj−Cv(j+1)).

(B.5)
Furthermore, by taking derivatives of qN (p̂) and
qN+1(p̂) with respect to p̂, we get,

dqN (p̂)

dp̂
=

N
∑

j=0

(N − j)

(

N

j

)

p̂j(1− p̂)N−j−1

×(Cv(j+1) − Cvj), (B.6)

and

dqN+1(p̂)

dp̂
=

N
∑

j=0

(N + 1)

(

N

j

)

p̂j(1− p̂)N−j

×(Cv(j+1) − Cvj). (B.7)

Substituting the above results into (B.1) yields

(pN − pN+1)
dq∗v(p̂)

dp̂

=

N
∑

j=0

(

N

j

)

p̂j+1(1 − p̂)N−j
(

Cvj − Cv(j+1)

)

− λ

N + 1 + b

N
∑

j=0

(N − j)

(

N

j

)

×p̂j+1(1− p̂)N−j−1
(

Cvj − Cv(j+1)

)

− 1− λ

N + b

N
∑

j=0

(N + 1)

(

N

j

)

×p̂j+1(1− p̂)N−j
(

Cvj − Cv(j+1)

)

=

N
∑

j=0

(

N

j

)

p̂j+1(1− p̂)N−j−1(Cvj − Cv(j+1))

×
(

λ((1 − p̂)(N + 1 + b)−N + j)

N + 1 + b
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+
(1− λ)(1 − p̂)(b− 1)

N + b

)

. (B.8)

Note that, for all j ≥ 0, we have

λ((1 − p̂)(N + 1 + b)−N + j)

N + 1 + b
≥ λ(b− x∗ + j)

N + 1 + b
.

(B.9)

Therefore,
dq∗

v
(p̂)

dp̂
≥ 0 if b ≥ 1 and

N
∑

j=0

(

N

j

)(

p̂

1− p̂

)j

(Cvj − Cv(j+1))(b − x∗ + j) ≥ 0.

(B.10)
(B.10) holds if b ≥ x∗ − γǫv with γǫv being defined in
(18).
Furthermore, if we have both b > 1 and b > x∗−γǫv

holding with strict inequalities, and N ≥ Jǫv , then
dq∗

v
(p̂)

dp̂
> 0 should also hold with strict inequality for

p̂ ∈ (0, pmax).
Now consider the situation when x∗

N+b
≥ pmax. It is

easy to see that, when x∗

K̂+b
≥ pmax, we have

dq∗
v
(p̂)

dp̂
=

0. When x∗

K̂+b
< pmax but x∗

N+b
≥ pmax, on the other

hand, we can write K̂ = N + 1 − λ with 0 < λ ≤
N +1+ b− x∗

pmax
. Consequently, (B.1) and (B.2) still

hold, but (B.3) should be replaced by

pN − p̂ = pmax − x∗

K̂ + b
≤ 1− λ

N + b
p̂. (B.11)

Therefore, (B.8) becomes

(pN − pN+1)
dq∗v (p̂)

dp̂

≥
N
∑

j=0

(

N

j

)

p̂j+1(1 − p̂)N−j−1
(

Cvj − Cv(j+1)

)

×
(

λ ((1− p̂)(N + 1 + b)−N + j)

N + 1 + b

+
(1− λ)(1 − p̂)(b − 1)

N + b

)

. (B.12)

By following the rest of the derivations, it can be seen
that conclusion of the theorem still holds.

Appendix C. Proof of Theorem 5

First, according to Theorem 4, if b is chosen to sat-

isfy b > max{1, x∗−γǫv}, dq∗
v
(p̂)

dp̂
> 0 holds with strict

inequality for p̂ ∈ (0, pmax). According to Theorem 3,
qv(p1,K) is non-increasing in p̂ for any given number
of users K. Therefore, if K ≥ Jǫv , q

∗
v(p̂) = qv(p̂1,K)

should have a unique solution at p̂ = x∗

K+b
. IfK < Jǫv

on the other hand, we must have qv(p̂1,K) > q∗v(p̂)
for all p̂ ∈ [0, pmax). Consequently, the proposed
MAC algorithm should possess a unique equilibrium
at p∗ = p∗1 = min{pmax,

x∗

K+b
}1.

Second, consider an arbitrary p̂ < pmax, which im-
plies that the corresponding K̂ should satisfy K̂ >
Jǫv . According to (B.8) and (B.9), we have

dq∗v(p̂)

dp̂
≥ p̂

pN − pN+1

(

N

Jǫv

)

×p̂Jǫv (1− p̂)N−Jǫv
−1(CvJǫv

− Cv(Jǫv
+1))

×
(

λ(b− x∗ + Jǫv )

N + 1 + b
+

(1− λ)(1 − p̂)(b− 1)

N + b

)

.

(C.1)

It can be seen that the right hand side of (C.1) has
a positive limit as p̂ is taken to zero. Therefore, we
can find two positive constants ǫ0, ǫ1 > 0, such that
dq∗

v
(p̂)

dp̂
≥ ǫ0 > 0 for all p̂ ≤ ǫ1. In the meantime, when

ǫ1 ≤ p̂ < pmax, because b > max{1, x∗ − γǫv}, we
can find another positive constant ǫ2 > 0, such that
the right hand side of (C.1) is larger than or equal
to ǫ2. Consequently, there exists a positive constant

ǫ = min{ǫ0, ǫ2}, such that
dq∗

v
(p̂)

dp̂
≥ ǫ > 0 for all

p̂ < pmax.
Third, let q∗−1

v (.) be the inverse function of q∗v(p).
For any given transmission probability vector p,
transmission probability target p̂ is obtained by

p̂ = q∗−1
v (qv) = q∗−1

v (qv(p,K)). (C.2)

Because
dq∗

v
(p̂)

dp̂
≥ ǫ > 0 for all p̂ < pmax, there must

exist a constant Kl1 > 0 such that

‖p̂1 − p̂2‖ ≤ Kl1‖qv1 − qv2‖, (C.3)

for all p̂1 = q∗−1
v (qv1) and p̂2 = q∗−1

v (qv2). Further-
more, because qv = qv(p,K) is Lipschitz continuous
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in p, for all qv1 = qv(p1,K) and qv2 = qv(p2,K),
there exists a constant Kl2 > 0 to satisfy

‖qv1 − qv2‖ ≤ Kl2‖p1 − p2‖. (C.4)

From (C.3) and (C.4), for all p̂1 = q∗−1
v (qv(p1,K))

and p̂2 = q∗−1
v (qv(p2,K)), we have

‖p̂1 − p̂2‖ ≤ Kl1Kl2‖p1 − p2‖. (C.5)

This implies that the probability target function
given in (C.2) satisfies the Lipschitz condition given
in Condition 2.
Finally, when the system is noisy, the receiver can

choose to measure qv over an extended number of
time slots, namely increasing the value of Q intro-
duced in Step 2 of the distributed MAC algorithm. If
users maintain their transmission probabilities during
the Q time slots, by assumption, an increased value
of Q can reduce the potential measurement (or esti-
mation) bias in the system arbitrarily close to zero.
Therefore the bias condition given in Condition 1 is
also satisfied. Consequently, convergence of the pro-
posed distributed MAC algorithm is supported by
Theorems 1 and 2.

Appendix D. Proof of Theorem 6

According to the two-step approach, qv is inter-
preted by qv = (1 − pk)qk + pkd

∗(p̆). When p̆ ≥ pk,
we should either have qk = q∗(p̆) when p̆ < pmax, or
qk ≥ q∗(p̆) when p̆ = pmax. Therefore

qv = (1− pk)qk + pkd
∗(p̆)

≥ (1− pk)q
∗(p̆) + pkd

∗(p̆)

= q∗(p̆)− pk(q
∗(p̆)− d∗(p̆))

≥ q∗(p̆)− p̆(q∗(p̆)− d∗(p̆))

= q∗v(p̆), (D.1)

where the last inequality is due to the fact that
q∗(p̆)− d∗(p̆) ≥ 0 should always hold.
Because b ≥ max{1, x∗ − γǫv}, according to The-

orem 4, q∗v(p̂) is non-decreasing in p̂. Therefore, if
qv > q∗v(pmax), we have p̂ = pmax ≥ pk. Otherwise,
we have

q∗v(p̂) = qv ≥ q∗v(p̆) ≥ q∗v(pk). (D.2)

This also implies that we p̂ ≥ pk.
Similarly, when p̆ ≤ pk, it can be shown that the

two-step approach will yield p̂ ≤ pk.
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