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Distributed Multiple Access with Multiple

Transmission Options at The Link Layer
Faeze Heydaryan, Yanru Tang, and Jie Luo

Abstract— This paper investigates the problem of distributed
medium access control in a wireless multiple access network
with an unknown finite number of homogeneous transmitters.
An enhanced physical link layer interface is considered where
each link layer user can be equipped with multiple transmission
options. Assume that each user is backlogged with a saturated
message queue. With a generally-modeled channel, a distributed
medium access control framework is proposed to adapt the
transmission scheme of each user to maximize an arbitrarily
chosen symmetric network utility. The framework suggests that
the receiver should measure the success probability of a carefully
designed virtual packet, and feed such information back to
the transmitters. Upon receiving the measured probability, each
transmitter should obtain an estimated number of users by
comparing the probability with a pre-determined theoretical
reference. Transmission schemes of the users are then adapted
toward a target that is a function of the estimated number of
users. Convergence conditions are characterized for the proposed
algorithm to converge to a designed unique equilibrium, which
should be close to optimal with respect to the chosen utility.
Simulation results are provided to demonstrate the optimality
and the convergence properties of the proposed algorithm.

I. INTRODUCTION

Due to increasing dynamics of communication activities, a

significant proportion of messages in communication networks

are transmitted using distributed protocols where users make

their transmission decisions and communication parameter

choices individually. Classical network architecture such as

the OSI model assumes that each link layer user should be

equipped with a single transmission option plus an idling

option [1]. At any moment, a link layer user can only choose

to idle or to transmit a packet. When communication cannot be

fully optimized at the physical layer, which happens often in

a distributed wireless network, data link layer must share the

responsibility of transmission adaptation. However, the single

transmission option setting significantly limited the capability

of exploiting advanced wireless tools such as rate and power

adaptations at the data link layer.

Recently, a new channel coding theory was proposed in

[2][3][4][5] for distributed communication at the physical

layer. The coding theory allows each physical layer transmitter

to prepare an ensemble of channel codes, and to choose an
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arbitrary one (according to the link layer decision) to encode

its message and to transmit the codeword symbols to the

receiver. While code ensembles of the users are assumed

to be known, actual coding decisions are not shared among

the transmitters or with the receiver. The receiver, on the

other hand, should either decode the messages of interest or

report collision, depending on whether a pre-determined error

probability requirement can be met. Fundamental limit of the

system was characterized using a distributed channel capacity

region defined in the vector space of the coding decisions of

the transmitters. The distributed capacity region was shown in

[2][5] to coincide with the classical Shannon capacity region.

Error performance bounds in the case of finite codeword length

were obtained in [3][4].

The new channel coding theory provided the basic physical

layer support for an enhancement to the physical-link layer in-

terface [4][5], which allows each link layer user to be equipped

with multiple transmission options. These options correspond

to different codes at the physical layer, possibly representing

different communication settings such as different transmis-

sion power and rate combinations. The interface enhancement

enables data link layer protocols to exploit advanced wireless

communication adaptations through the navigation of different

transmission options. It also enables the modeling of a wide

range of general but realistic link layer channels that can be

derived from physical layer channel and coding details.

As an early attempt to support the enhanced physical-link

layer interface at the link layer, [6][7] investigated the problem

of distributed utility optimization in a wireless multiple access

network with an unknown finite number of homogeneous

users. While a general link layer channel and a general

utility function were considered, [6][7] still assumed that each

user should be equipped with a single transmission option

plus an idling option. Base on a stochastic approximation

framework [8][9][10], a distributed medium access control

(MAC) algorithm was proposed to adapt the transmission

probabilities of the users to a designed unique equilibrium. In

the proposed MAC algorithm, the receiver should measure the

contention level of the channel using the success probability

of a carefully designed virtual packet [6][7]. Once a channel

contention estimate is obtained and is fed back to the users

(transmitters), each user should then increase/decrease its

transmission probability to move channel contention toward

a desired theoretical value. It was shown that, at the equilib-

rium, all users should have the same transmission probability.

Transmission probability of the users at the equilibrium can be

designed as a closed-form function of the unknown number

of users, and can also be set close to optimal with respect
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to a chosen network utility. As shown in [6][7], uniqueness

of the equilibrium and convergence of the MAC algorithm

are guaranteed by the monotonicity properties of two key

design functions. On one hand, given the unknown number

of users, users can increase/decrease channel contention by

decreasing/increasing their transmission probabilities. On the

other hand, the expected contention level of the channel should

be reverse monotonic in the transmission probability of the

users at the equilibrium.

In this paper, we extend the distributed MAC framework of

[6][7] to the case when each link layer user can be equipped

with multiple transmission options. The key challenge brought

by the equipment of multiple transmission options is that,

when users adapt their transmission schemes involving a mix-

ture of transmission options, it becomes difficult to determine

whether the adaptations should increase or decrease contention

level of the channel. Consequently, it becomes mathematically

difficult to guarantee the two key monotonicity properties

required in [6][7] for the proof of equilibrium uniqueness and

convergence of the MAC algorithm. We show in this paper

that, such a challenge can be circumvented by a search-assisted

design approach. More specifically, the proposed approach

uses a manual design part to ensure optimality of the system

equilibrium, and uses an automatic design part to guarantee

one of the key monotonicity properties required in [6][7]. An

alternative proof is adopted to show equilibrium uniqueness

and convergence of the MAC algorithm without requiring the

other monotonicity property used in [6][7].

The rest of the paper is organized as follows. In Section II,

we present a stochastic approximation framework for a class

of distributed MAC algorithms with guaranteed convergence

to a unique system equilibrium. While the results are more

or less standard in the stochastic approximation literature,

they characterize the key conditions for convergence and a

key approach to simplify the equilibrium analysis. In Section

III, based on a general link layer channel model and a

utility maximization objective, we present a distributed MAC

algorithm that adapts the transmission scheme of each user

according to two carefully designed functions. We show that,

under a set of assumptions, the proposed MAC algorithm

should lead the transmission schemes of all users to a designed

system equilibrium. Next, in Section IV, we consider a simple

scenario and present a closed-form approach to design the

two key functions to satisfy the required assumptions and to

place the system equilibrium at a point that is close to optimal

with respect to a chosen symmetric network utility1. We then

extend the design approach to the general scenario in Section

V where a search-assisted approach is proposed to replace the

closed-form approach to design part of the two key functions.

Simulation results are provided in Section VI to demonstrate

both the optimality and the convergence properties of the

proposed MAC algorithm.

II. A STOCHASTIC APPROXIMATION FRAMEWORK

Consider a distributed multiple access network with a

memoryless channel and K homogeneous users (transmitters).

1A network utility is “symmetric” if it requires that utility values achieved
by different individual users should be equal.

Time is slotted. The length of each time slot equals the

transmission duration of one packet. We assume that the

number of users K should be unknown to the users and

also unknown to the receiver. Each user is equipped with M

transmission options plus an idling option, and is backlogged

with a saturated message queue. We formulate the problem

at the data link layer in the sense of constraining users to

the provided transmission options. At the beginning of each

time slot t, a user should either idle or randomly choose a

transmission option to send a message, with corresponding

probabilities being specified by an associated probability vec-

tor. Transmission decisions of the users are made individually,

and they are shared neither among the users nor with the

receiver. The M -length probability vector associated to user

k, k = 1, . . . ,K , is denoted by pk(t) for time slot t. We

write pk(t) = pk(t)dk(t), with 0 ≤ pk(t) ≤ 1 being the

probability that user k transmits a packet in time slot t, and

with vector dk(t) specifying the conditional probabilities for

user k to choose each of the transmission options should it

decide to transmit a packet. Entries of the dk(t) vector satisfy

0 ≤ dkm(t) ≤ 1 for 1 ≤ m ≤ M , and
∑M

m=1 dkm(t) = 1.

We term pk(t) the “transmission probability” of user k, and

term dk(t) the “transmission direction” vector of user k.

At the end of each time slot t, based upon available channel

feedback, each user k derives a target probability vector p̃k(t).
User k then updates its transmission probability vector by

pk(t+ 1) = (1− α(t))pk(t) + α(t)p̃k(t)

= pk(t) + α(t)(p̃k(t)− pk(t)), (1)

where α(t) > 0 is a step size parameter of time slot t. Let

P (t) = [pT
1 (t),p

T
2 (t), . . . ,p

T
K(t)]T denote an MK-length

vector that consists of the transmission probability vectors of

all users in time slot t. Let P̃ (t) = [p̃T
1 (t), p̃

T
2 (t), . . . , p̃

T
K(t)]T

denote the corresponding target vector. According to (1), P (t)
is updated by

P (t+ 1) = P (t) + α(t)(P̃ (t)− P (t)). (2)

Probability adaptation given in (2) falls into the stochastic ap-

proximation framework [8][9][10], where the target probability

vector P̃ (t) is often calculated from noisy estimates of certain

system variables, e.g., the channel idling probability.

Define P̂ (t) = [p̂T
1 (t), p̂

T
2 (t), . . . , p̂

T
K(t)]T as the “theo-

retical value” of P̃ (t) under the assumption that there is

no measurement noise and no feedback error in time slot t.

Let Et[P̃ (t)] be the conditional expectation of P̃ (t) given

system state at the beginning of time slot t. The difference

between Et[P̃ (t)] and P̂ (t) is defined as the bias in the target

probability vector calculation, denoted by G(t).

G(t) = Et[P̃ (t)]− P̂ (t). (3)

We assume that, given the communication channel, both

P̂ (t) = P̂ (P (t)) and G(t) = G(P (t)) should only be

functions of P (t), which is the transmission probability vector

in time slot t.

The following two conditions are typically required for

the convergence of a stochastic approximation algorithm

[8][9][10].
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Condition 1: (Mean and Bias) There exists a constant

Km > 0 and a bounding sequence 0 ≤ β(t) ≤ 1, such that

‖G(P (t))‖ ≤ Kmβ(t), (4)

where ‖.‖ denotes the second order norm. We assume that

β(t) is controllable in the sense that one can design protocols

to ensure β(t) ≤ ǫ for any chosen ǫ > 0 and for large enough

t.

Condition 2: (Lipschitz Continuity) There exists a constant

Kl > 0, such that

‖P̂ (P a)− P̂ (P b)‖ ≤ Kl‖P a − P b‖, for all P a,P b. (5)

According to stochastic approximation theory [8][10], if

the above two conditions are satisfied, the step size sequence

α(t) and the bounding sequence β(t) are small enough, then

trajectory of the transmission probability vector P (t) under

distributed adaptation given in (2) can be approximated by

the following associated ordinary differential equation (ODE)

in a sense explained in [8][10],

dP (t)

dt
= −[P (t)− P̂ (t)], (6)

where we used t to denote the continuous time variable.

Because all entries of P (t) and P̂ (t) stay in the range of [0, 1],
any equilibrium P ∗ = [p∗T

1 , . . . ,p∗T
K ]T of the associated ODE

must satisfy

P ∗ = P̂ (P ∗). (7)

Suppose that the associated ODE given in (6) has a unique

solution at P ∗, then the following convergence results can

be obtained from the standard conclusions in the stochastic

approximation literature.

Theorem 1: For distributed transmission probability adap-

tation given in (2), assume that the associated ODE given in

(6) has a unique stable equilibrium at P ∗. Suppose that α(t)
and β(t) satisfy the following conditions

∞
∑

t=0

α(t) = ∞,

∞
∑

t=0

α(t)2 < ∞,

∞
∑

t=0

α(t)β(t) < ∞. (8)

Under Conditions 1 and 2, P (t) converges to P ∗ with

probability one.

Theorem 1 is implied by [8, Theorem 4.3].

Theorem 2: For distributed transmission probability adap-

tation given in (2), assume that the associated ODE given in

(6) has a unique stable equilibrium at P ∗. Let Conditions 1

and 2 hold true. Then for any ǫ > 0, there exists a constant

Kw > 0, such that, for any 0 < α < α < 1 satisfying the

following constraint

∃T0 ≥ 0, α ≤ α(t) ≤ α, β(t) ≤
√
α, ∀t ≥ T0, (9)

P (t) converges weakly to P ∗ in the following sense

lim sup
t→∞

Pr {‖P (t)− P ∗‖ ≥ ǫ} < Kwα. (10)

Theorem 2 can be obtained by following the proof of [10,

Theorem 2.3] with minor revisions.

For simplicity, we assumed the same step size sequence

α(t) and the same bounding sequence β(t) for all users. We

also assumed that all users should update their transmission

probability vectors synchronously in each time slot. However,

according to the literature of stochastic approximation theory

[8], convergence results stated in Theorems 1 and 2 should

remain valid, even if different users use different step sizes and

bounding sequences, so long as the step sizes and bounding

sequences of all users satisfy the same constraints given in

(8) and (9). Convergence results of Theorems 1 and 2 should

also remain valid if users adapt their probability vectors

asynchronously, so long as users update their probability

vectors frequently enough [8]. Note that information on the

asymptotic convergence rate of P (t) → P ∗ can be obtained

from the eigenvalues of the Hessian matrix
∂(P̂ (P )−P )

∂P

∣

∣

∣

P ∗

[11]. However, convergence rate discussion is outside the

scope of this paper.

Theorems 1 and 2 provided convergence guarantee for a

class of distributed MAC algorithms. Within the presented

stochastic approximation framework, the key question is how

to design a distributed MAC algorithm to satisfy Conditions

1 and 2 and to place the unique equilibrium of the associated

ODE at a point that maximizes a chosen utility. Because

users are homogeneous, if equilibrium of the system is indeed

unique, transmission probability vectors of the users at the

equilibrium must be identical. We choose to enforce such a

property by guaranteeing that all users should obtain the same

target transmission probability vector in each time slot. This

is achieved by the following design details [6][7].

We assume that, in each time slot, there is a virtual

packet being transmitted through the channel. Virtual packets

assumed in different time slots are identical. A virtual packet

is an assumed packet whose coding parameters are known to

the users and to the receiver, but it is not physically transmitted

in the system, i.e., the packet is “virtual”. Without knowing

the transmission/idling status of the users, we assume that

the receiver can detect whether the reception of a virtual

packet should be regarded as successful or not, and therefore

can estimate its success probability [4][6][7]. For example,

suppose that the link layer channel is a collision channel, and

a virtual packet has the same coding parameters of a real

packet. Then, virtual packet reception in a time slot should

be regarded as successful if and only if no real packet is

transmitted. Success probability of the virtual packet in this

case equals the idling probability of the collision channel. For

another example, if all packets including the virtual packet

are encoded using random block codes, given the physical

layer channel, reception of the virtual packet corresponds

to a detection task that judges whether or not the vector

transmission status of all real users should belong to a specific

region. Such detection tasks and their performance bounds

have been extensively investigated in the distributed channel

coding literature [2][3][4][5].

Let qv(t) denote the success probability of the virtual packet

in time slot t. We term qv(t) the “channel contention measure”

because it is designed to serve as a measurement of the

contention level of the link-layer multiple access channel. We

assume that the receiver should obtain an estimate of qv(t)
and feed it back to all transmitters. Note that, in the collision

channel case when qv(t) equals the channel idling probability,

feeding back an estimate of qv(t) may not be necessary. So
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long as each user k knows the success probability of its own

packet, denoted by qk(t), idling probability of the channel can

be calculated by (1 − pk(t))qk(t). With a general link layer

channel, however, such calculation of qv(t) at a transmitter is

not always possible if an estimate of qv(t) is not fed back

directly by the receiver [6][7]. Upon receiving an estimate of

qv(t), each user calculates its target transmission probability

vector as the same function of the qv(t) estimate. Denote the

theoretical target transmission probability vector of a user by

p̂(qv(t)). The theoretical target transmission probability vector

of all users is given by P̂ (t) = 1⊗ p̂(qv(t)), where 1 denotes

a K-length vector of all 1’s and ⊗ represents the Kronecker

product. Consequently, according to (6), any equilibrium P ∗

of the ODE must take the form of P ∗ = 1 ⊗ p∗. Because

qv is a function of the transmission probability vectors of all

users, we must have P ∗ = 1⊗p∗ = 1⊗ p̂(p∗), where p̂(p∗)
denotes the derived target transmission probability vector of a

user given that all users have the same transmission probability

vector p∗.

In a practical system, an estimate of qv(t) is likely to

be corrupted by measurement noise. We assume that, if the

transmission probability vectors of all users P is kept at a

constant vector, and qv is measured over an interval of Q

time slots, then the measurement should converge to its true

value with probability one as Q is taken to infinity. Other

than this assumption, measurement noise is not involved in the

discussion of the design objectives, i.e., to meet Conditions 1

and 2 and to place the unique system equilibrium at the desired

point. Therefore, in the following three sections, we assume

that qv(t) can be measured precisely and be fed back to the

users. This leads to P̃ (t) = P̂ (t) = 1 ⊗ p̂(t). We will also

skip time index t to simplify the notations.

III. CHANNEL MODEL, UTILITY, AND A DISTRIBUTED

MAC ALGORITHM

According to the distributed channel coding theory

[2][3][4][5], given any combination of transmission status of

the users, the receiver should be able to reliably detect the

success/failure outcomes of the real and the virtual packets.

These outcomes as functions of the transmission status of the

users form the complete model of the link layer multiple access

channel. While the complete channel model can be overly

complicated, we require that the channel should satisfy the

following sensitivity assumption.

Assumption 1: (Channel Sensitivity) There exists a finite

constant Kc, such that virtual packet reception should fail if

the number of parallel real packet transmissions exceeds Kc.

Because it is usually trivial to satisfy this assumption, in

the rest of the paper, we will assume that it should hold true.

Given the link layer multiple access channel and the num-

ber of users K , channel contention measure qv(P ,K) is a

function of the transmission probability vectors of all users

P . Under Assumption 1, qv(P ,K) equals the summation of

a finite number of terms each representing the probability of

a particular transmission status combination of the users that

can support the successful reception of the virtual packet2.

Because each of these terms is a polynomial function of P ,

we have the following property.

Theorem 3: With Assumption 1, channel contention mea-

sure qv is Lipschitz continuous in the transmission probability

vectors of all users P . That is, there exists a finite constant

Kqc, such that for any number of users K and any transmission

probability vectors P a, P b, the following inequality should

hold true.

|qv(P a,K)− qv(P b,K)| ≤ Kqc‖P a − P b‖. (11)

Proof of the theorem is skipped.

In the rest of the paper, we will simplify the complete

link layer channel model into two sets of channel parameter

functions, {Crij(d)} and {Cvj(d)}. Assume that all users

should have the same transmission direction vector d. We

define {Crij(d)} for 1 ≤ i ≤ M and j ≥ 0 as the “real

channel parameter function set”. Crij(d) is the conditional

success probability of a real packet corresponding to the

ith transmission option, should the packet be transmitted in

parallel with j other real packets. We also define {Cvj(d)}
for j ≥ 0 as the “virtual channel parameter function set”.

Cvj(d) is the success probability of the virtual packet should

it be transmitted in parallel with j real packets. We assume that

Cvj(d) ≥ Cv(j+1)(d) should hold for all j ≥ 0 and for any

d. That is, with users having the same transmission direction

vector d, if the number of parallel real packet transmissions

increases, the chance of a virtual packet getting through the

channel should not increase. Let ǫv ≥ 0 be a pre-determined

constant. We define Jǫv(d) as the smallest integer such that

CvJǫv
(d) is strictly larger than Cv(Jǫv+1)(d) + ǫv , i.e.,

Jǫv(d) = argmin
j

Cvj(d) > Cv(j+1)(d) + ǫv. (12)

By definition, Jǫv(d) is a function of d. Note that the value

of ǫv needs to be carefully chosen to guarantee the existence

of Jǫv (d) for all d. With Assumption 1, we should have

Cvj(d) = 0 for all j > Kc. If the virtual packet is designed

properly, we should also have Cv0 > 0, where Cv0 is not a

function of d. Therefore, the existence of Jǫv (d) is guaranteed

if ǫv is chosen to satisfy 0 ≤ ǫv < Cv0

Kc
. Because both

{Crij(d)} and {Cvj(d)} can be derived from the physical

layer channel model and the coding parameters of the packets

[2][3][4][5], we assume that they should be known at the

transmitters and at the receiver. Note that, while {Cvj(d)}
depends on the coding detail of the virtual packet, virtual

packet is not involved in the calculation of {Crij(d)}.

With the simplified channel model, given the number of

users K and under the assumption that all users should have

the same transmission probability vector p = pd, we write

channel contention measure qv(p,K) as a function of p and

K . In this case, qv(p,K) can be calculated by

qv(p,K) =

K
∑

j=0

(

K

j

)

pj(1− p)K−jCvj(d). (13)

2For example, a particular term can represent the probability that K0 users
idle, K1 users transmit with the 1st option, K2 users transmit with the 2nd

option, etc, under the constraints that
∑

M

i=0
Ki = K and

∑

M

i=1
Ki ≤ Kc.
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We assume that users intend to maximize a symmetric utility

function. Under the assumption that all users should have

the same transmission probability vector, the utility function

U(K,p, {Crij(d)}) is defined as a function of the number of

users K , the common transmission probability vector p = pd,

and the real channel parameter function set {Crij(d)}. For

example, suppose that users intend to maximize the symmetric

sum throughput of the network. If the ith transmission option

has a communication rate of ri (bits/time slot), then the utility

function should be given by

U(K,p, {Crij(d)}) = K

M
∑

i=1

diri

K−1
∑

j=0

(

K − 1

j

)

×pj+1(1− p)K−1−jCrij(d). (14)

Next, we present a distributed MAC algorithm that adapts

the transmission probability vectors of the users based on

the estimated qv fed back from the receiver and according

to two carefully designed functions, both are functions of an

estimated number of users K̂ . The first function is the “theo-

retical transmission probability vector” function p∗(K̂), which

denotes the theoretical transmission probability vector of a

user if the number of users equals K̂ . The second function is

the “theoretical channel contention measure” function q∗v(K̂),
which denotes the theoretical success probability of the virtual

packet if the number of users of the system equals K̂ and all

users have the same transmission probability vector p∗(K̂).
Assumption 2: (Estimation Continuity) p∗(K̂) and q∗v(K̂)

should be defined for both integer and non-integer K̂ val-

ues. Their limits as K̂ → ∞, denoted by p∗(∞) =
lim

K̂→∞
p∗(K̂) and q∗v(∞) = lim

K̂→∞
q∗v(K̂), should be

well defined. For all integer-valued K̂, the following equality

should be satisfied

q∗v(K̂) = qv(p
∗(K̂), K̂). (15)

Assumption 3: (Contention Monotonicity) q∗v(K̂) should

be non-increasing in K̂. There exists a positive constant Kmin,

such that q∗v(K̂) should be strictly decreasing for K̂ > Kmin,

and p∗(K̂) should remain a constant vector for K̂ ≤ Kmin.

We are now ready to present the distributed MAC algorithm.

Distributed MAC Algorithm:

1) Each user initializes its transmission probability vector.

2) Let Q > 0 be a pre-determined integer. Over an interval

of Q time slots, the receiver measures the success

probability of the virtual packet, denoted by qv, and

feeds qv back to all users.

3) Upon receiving qv , each user derives an estimated num-

ber of users K̂ by solving the following equation.

q∗v(K̂) = qv, s.t. K̂ ≥ Kmin. (16)

If a K̂ satisfying (16) cannot be found, users set K̂ =
Kmin if qv > q∗v(Kmin), or set K̂ = ∞ otherwise. Each

user then sets the target transmission probability vector

at p̂ = p∗(K̂).
4) Each user, say user k, updates its transmission probabil-

ity vector by

pk = (1− α)pk + αp̂, (17)

where α is the step size parameter for user k.

5) The process is repeated from Step 2 till transmission

probability vectors of all users converge.

To prove convergence of the distributed MAC algorithm, we

need two additional assumptions presented below.

Assumption 4: (Target Continuity) Given qv , let the target

transmission probability vector p̂ be determined as in Step 3

of the distributed MAC algorithm. p̂(qv) as a function of qv
should be Lipschitz continuous in qv. That is, there exists a

constant Kqp, such that for any qv1 and qv2, the following

inequality should hold

‖p̂(qv1)− p̂(qv2)‖ ≤ Kqp|qv1 − qv2|. (18)

Assumption 5: (Equilibrium Uniqueness) For any number

of users K > Kmin, equation q∗v(K̂) = qv(p
∗(K̂),K) should

have a unique solution at K̂ = K . For any number of users

K ≤ Kmin, equation q∗v(K̂) = qv(p
∗(K̂),K) should hold for

all K̂ ≤ Kmin.

Convergence property of the proposed distributed MAC

algorithm is stated in the following theorem.

Theorem 4: Consider the K-user multiple access network

presented in this section. Under Assumptions 1-5, and with

the proposed MAC algorithm, the associated ODE given in

(6) has a unique equilibrium at P ∗ = 1 ⊗ p∗(K). The

probability target p̂(P ) as a function of the transmission

probability vectors of all users P satisfies Conditions 1 and

2. Consequently, transmission probability vectors of all users

should converge to P ∗ = 1⊗p∗(K) in the sense specified in

Theorems 1 and 2.

Proof of Theorem 4 is given in .

Note that the distributed MAC algorithm guides the adapta-

tion of transmission probability vectors of all users by trying

to maintain channel contention measure at an appropriate

level. System equilibrium can be designed as a function of

the number of users K even though the actual value of K

is unknown. While we have not yet provided any optimality

argument on how p∗(K̂) should be designed to maximize a

chosen utility U(K,p, {Crij(d)}), because p∗(K̂) and q∗v(K̂)
functions need to satisfy the required assumptions, it is quite

clear that system equilibrium cannot be designed freely.

IV. A CLOSED-FORM DESIGN APPROACH WITH

PRE-FIXED TRANSMISSION DIRECTION

In this section, we consider a simple scenario when all users

have the same pre-fixed transmission direction vector d. We

write the theoretical transmission probability vector function

p∗(K̂) as

p∗(K̂) = p∗(K̂)d, (19)

where p∗(K̂) is the “theoretical transmission probability”

function that needs to be designed. It is easy to see that the

problem becomes equivalent to the case when each user only

has a single transmission option, as investigated in [6][7]. We

will review the closed-form approach presented in [6][7] to

design p∗(K̂) and q∗v(K̂) functions to maximize the chosen

network utility and to satisfy Assumptions 2-5. Most of the

design parameters presented in this section should be functions
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of d. However, for the sake of simple presentation, we will

skip d in some of the notations.

With a fixed transmission direction vector d, for most of

the utility functions of interest, such as the sum throughput

function given in (14), an asymptotically optimal solution

should keep the expected load of the channel at a constant

[11][12]. Therefore, if p∗K is the optimal transmission proba-

bility when the number of users equals K , we should have

limK→∞ Kp∗K = x∗ with x∗ > 0 being obtained by the

following asymptotic utility optimization.

x∗ = argmax
x

lim
K→∞

U
(

K,
x

K
d, {Crj(d)}

)

. (20)

Without knowing the actual number of users K , we design

p∗(K̂) as

p∗(K̂) = min

{

pmax,
x∗

K̂ + b

}

, (21)

where b ≥ 1 is a pre-determined design parameter, and pmax

is given by

pmax = min

{

1,
x∗

Jǫv(d) + b

}

, (22)

with Jǫv (d) being defined in (12). According to Theorem 4,

such a design implies that we intend to set system equilibrium

at P ∗ = 1 ⊗ p∗(K)d. As shown in [6][7], this equilibrium

setting is not only asymptotically optimal as K → ∞, but also

often close to optimal for small K values.

The q∗v(K̂) function, on the other hand, can be calculated

as q∗v(K̂) = qv(p
∗(K̂)d, K̂) for integer-valued K̂. For non-

integer-valued K̂ , q∗v(K̂) is designed as follows. Let N = ⌊K̂⌋
be the largest integer below K̂. Define qN (p) and qN+1(p)
as

qN (p) = qv(p, N), qN+1(p) = qv(p, N + 1). (23)

q∗v(K̂) is designed as a linear interpretation between

qN (p∗(K̂)d) and qN+1(p
∗(K̂)d).

q∗v(K̂) =
p∗(K̂)− p∗(N + 1)

p∗(N)− p∗(N + 1)
qN (p∗(K̂)d)

+
p∗(N)− p∗(K̂)

p∗(N)− p∗(N + 1)
qN+1(p

∗(K̂)d). (24)

With p∗(K̂) and q∗v(K̂) functions designed in (21) and

(24), respectively, Assumption 2 is satisfied. According to the

following theorem, Assumption 3 should hold true if design

parameter b in (21) is chosen appropriately.

Theorem 5: [6, Theorem 4] Let x∗ > 0 and b ≥
max{1, x∗ − γǫv} with γǫv being defined as

γǫv = min
N̂,N̂≥Jǫv (d),N̂≥x∗−b

∑N̂

j=0 j
(

N̂
j

)

( p∗(N̂+1)

1−p∗(N̂+1)
)j(Cvj(d)− Cv(j+1)(d))

∑N̂

j=0

(

N̂
j

)

( p∗(N̂+1)

1−p∗(N̂+1)
)j(Cvj(d)− Cv(j+1)(d))

,

(25)

where N̂ only takes integer values. q∗v(K̂) defined in (24) is

non-increasing in K̂. Furthermore, if b > max{1, x∗ − γǫv}

holds with strict inequality, then q∗v(K̂) is strictly decreasing

in K̂ for K̂ ≥ Jǫv(d).

According to [6, Theorem 4], Assumption 4 should also

hold true. Furthermore, because p∗(K̂) is non-increasing in

K̂, given the number of users K , channel contention measure

qv(p
∗(K̂)d,K) as a function of K̂ is non-decreasing in

K̂. According to [6, Theorem 3], qv(p
∗(K̂)d,K) is strictly

increasing in K̂ for all K > Kmin and K̂ ≥ max{Jǫv(d), x∗−
b}. Consequently, Assumption 5 should hold true due to the

monotonicity properties of qv(p
∗(K̂)d,K) and q∗v(K̂).

It is important to note that system design also includes the

design of the virtual packet, which affects the virtual channel

parameter function set. In the case of a fixed d, virtual packet

should be chosen to support reasonable sensitivity of channel

contention measure to the variation of number of users. As

explained in [6, Section 3], a general principle is to choose a

virtual packet design such that Jǫv (d) and γǫv are both slightly

less than x∗ and therefore b ≥ max{1, x∗ − γǫv} can take a

value close to 1. Also as explained in [6, Section 4], when

the receiver does not feedback qv and each user only knows

the success/failure status of its own packets, the distributed

MAC algorithm can be revised to use an interpreted channel

contention measure and, according to computer simulations,

the system can still converge to the same designed system

equilibrium.

V. A SEARCH-ASSISTED DESIGN APPROACH

In this section, we consider the general scenario when

transmission direction vectors of the users are not fixed. To

understand the challenges in the design of p∗(K̂) and q∗v(K̂)
functions, we first take a look at a simple example.

Example 1: Consider a time-slotted multiple access net-

work over a multi-packet reception channel. Each user is

equipped with two transmission options respectively labeled

as the high-rate option and the low-rate option. If all packets

are encoded using the low-rate option, then the channel can

support the parallel transmissions of no more than 10 packets.

We assume that one packet from the high-rate option is

equivalent to the combination of 5 low-rate packets. That

is, the channel can support the parallel transmissions of nh

high-rate packets plus nl low-rate packets if and only if
1
2nh + 1

10nl ≤ 1. The utility function is chosen to be the

sum system throughput. Suppose that all users should hold

the same transmission probability vector p = [ph, pl]
T where

ph and pl denote the probabilities of a user choosing the

high-rate option and the low-rate option, respectively. We

obtain the optimum probability vector as p∗ = [p∗h, p
∗
l ]

T =
argmaxp U(K,p, {Crij(d)}). Figure 1 illustrates p∗h and p∗l
as functions of the number of users. We can see that, if we

write p∗ = p∗d∗, then d∗ is fixed at d∗ = [1, 0]T for K ≤ 2,

and is fixed at d∗ = [0, 1]T for K ≥ 10. d∗ transits from

[1, 0]T to [0, 1]T in the region of 2 ≤ K ≤ 10.

According to the above observation, we assume that the

theoretical transmission probability vector function p∗(K̂) =
p∗(K̂)d∗(K̂) should be designed to satisfy the following

properties termed the “Head and Tail Condition”.
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Fig. 1. Optimal transmission probabilities of a K-user multiple access system
with each user having two transmission options.

Condition 3: (Head and Tail) Let ǫv > 0 be a pre-

determined constant. Let Jǫv(d) be defined in (12). There exist

two integer-valued constants 0 < K ≤ K, such that,

1) K ≥ Jǫv (d
∗(K)) and d

∗(K̂) = d
∗(K) for K̂ ≤ K .

2) K > Jǫv (d
∗(K)) and d∗(K̂) = d∗(K) for K̂ ≥ K .

The Head and Tail Condition indicates that, when K̂ is

either small enough or large enough, d∗(K̂) should stop

changing in K̂. Consequently, in the “Head” regime defined as

K̂ ≤ K, and in the “Tail” regime defined as K̂ ≥ K, p∗(K̂)
and q∗v(K̂) functions should be designed using the closed-form

approach specified in Section IV.

Now consider the regime of K ≤ K̂ ≤ K. Because we

usually have d∗(K) 6= d∗(K), if the designed equilibrium

needs to be close to optimal, then theoretical transmission

probability vector function p∗(K̂) designed for K ≤ K̂ ≤
K should involve a transition of the transmission direction

vector from d∗(K) to d∗(K). Unfortunately, due to generality

of the system model, when users change their transmission

direction vectors, it is difficult to argue whether the out-

come should increase/decrease the channel contention mea-

sure. Consequently, it becomes difficult to argue for mono-

tonicity properties on channel contention measure functions

qv(p
∗(K̂),K) and q∗v(K̂). To overcome such a challenge,

we switch to a search-assisted approach whose basic idea

is illustrated as follows. We will first choose several integer-

valued K̂ points, termed “Pinpoints”, and assume that p∗(K̂)
and q∗v(K̂) = qv(p

∗(K̂), K̂) should be manually determined

for the pinpoints. After that, an interpolation approach will

be used to connect the pinpoints and to determine p∗(K̂)
and q∗v(K̂) functions for all K ≤ K̂ ≤ K. Key objective

of the pinpoints selection and their corresponding design is to

make sure that the theoretical transmission probability vector

function p∗(K̂) is close to optimal in terms of network utility

optimization at equilibrium for all K ≤ K̂ ≤ K. Key objective

of the interpolation approach, on the other hand, is to make

sure that p∗(K̂) and q∗v(K̂) functions designed to connect

the pinpoints should satisfy the monotonicity and continuity

requirements presented in Assumptions 2-5.

We require that the following condition should be satisfied

by the pinpoints.

Condition 4: (Pinpoints) Let K̂i for i = 0, . . . , L be L+1
integers such that K = K̂0 < K̂1 < . . . < K̂L = K . For

i = 0, . . . , L and 0 ≤ λ < 1, define

K̂iλ = (1− λ)K̂i−1 + λK̂i,

d
∗
iλ = (1− λ)d∗(K̂i−1) + λd∗(K̂i),

q∗viλ = (1 − λ)q∗v(K̂i−1) + λq∗v(K̂i). (26)

1) There exists a positive constant ǫq to satisfy q∗v(K̂i−1)−
q∗v(K̂i) ≥ ǫq , for all i = 1, . . . , L.

2) There exists a constant ǫv > 0, such that for all i =
1, . . . , L and for all 0 ≤ λ < 1, we have K̂iλ >

Jǫv(d
∗
iλ), where Jǫv (d

∗
iλ) is defined in (12).

3) There exist 0 < p < p < 1 to satisfy p ≤ p(K̂i) ≤ p for

all i = 1, . . . , L.

4) Let N = ⌊K̂⌋. Define qN (p) and qN+1(p) as in (23).

Extend the definition of qv(p, K̂) for non-integer-valued

K̂ as

qv(p, K̂) = (N + 1− K̂)qN (p)

+(K̂ −N)qN+1(p), (27)

The following inequality should be satisfied for all i =
1, . . . , L and for all 0 ≤ λ < 1.

qv(pd
∗
iλ, K̂iλ) ≤ q∗viλ ≤ qv(pd

∗
iλ, K̂iλ). (28)

With p∗(K̂) being designed for the L + 1 pinpoints, we

propose the following interpolation approach to complete

p∗(K̂) and q∗v(K̂) functions for K ≤ K̂ ≤ K .

Interpolation Approach Assume that p∗(K̂) is designed

for K̂i, i = 0, ....L, with K = K̂0 < K̂1 < . . . < K̂L = K, to

satisfy Condition 4. For i = 1, . . . , L and for all 0 ≤ λ < 1, let

K̂iλ, d∗
iλ and q∗viλ be defined in (26). Let qv(p, K̂) be defined

in (27). We choose p∗(K̂iλ) to satisfy the following equality.

qv(p
∗(K̂iλ)d

∗
iλ, K̂iλ) = q∗viλ. (29)

This leads to p∗(K̂iλ) = p∗(K̂iλ)d
∗
iλ. Note that the existence

of a solution to (29) is guaranteed by Item 4 of Condition 4.

Effectiveness of the Interpolation Approach is stated in the

following theorem.

Theorem 6: Assume that p(K̂) is designed for a set of

L + 1 pinpoints {K̂i}, i = 0, . . . , L, with K = K̂0 <

K̂1, . . . , < K̂L = K, to satisfy Condition 4. After completing

the functions using the Interpolation Approach, p∗(K̂) and

q∗v(K̂) functions satisfy Assumptions 2-5 for K ≤ K̂ ≤ K.

The proof of Theorem 6 is given in .

Note that the search-assisted design approach can also be

adopted in the simple scenario when either all users have the

same pre-fixed d vector or each user has a single transmission

option. When there is a noticeable gap between the optimal

performance, in terms of network utility maximization at equi-

librium, and the performance of the p∗(K̂) function designed

using the closed-form approach, one can adjust p∗(K̂) at

carefully selected pinpoints to further improve its optimality.

Also note that when users have multiple transmission options,

the system should choose a virtual packet design such that

channel contention measure is reasonably sensitive to the

change of number of users for all transmission option choices.
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While we did not provide theoretical guidance on virtual

packet design and pinpoint selections for the general scenario,

in the next section, we will show that coming up with a

reasonably good design should not be a difficult task.

VI. SIMULATION RESULTS

In this section, we provide computer examples to illustrate

both optimality and convergence properties of the proposed

MAC algorithm.

Example 2: We will use the system introduced in Example

1 to illustrate the design procedure of the p∗(K̂) function

when users have multiple transmission options. First, we

consider the “Head” and the “Tail” regimes when K̂ is either

small or large in value. We will add subscript “H” (or “T”)

to parameters of the “Head” (or the “Tail”) regime. Without

specifying the values of K and K , we first determine the

optimal transmission direction vectors in these two regimes as

dH = [1, 0]T and dT = [0, 1]T . In other words, users should

only use the high rate option in the “Head” regime and only

use the low rate option in the “Tail” regime. In the “Head”

regime, the channel can support the parallel transmissions of

no more than 2 high rate packets. The real channel parameter

set of the equivalent single option system is given by {Crj}H
with Crj = 1 for j ≤ 1 and Crj = 0 otherwise. By

following the design guideline of Section IV, we get x∗
H =

argmaxx(x+ x2)e−x = 1.62.

We design the virtual packet to be equivalent to the combi-

nation of 3 low rate packets. Consequently, the virtual channel

parameter set of the equivalent single option system is given

by {Cvj}H = {Crj}H . Choose ǫv = 0.01, we get γǫvH =
JǫvH = 1, and bH = 1.01. In the “Tail” regime, on the other

hand, the channel can support the parallel transmissions of no

more than 10 low rate packets. The real channel parameter

set of the equivalent single option system is given by {Crj}T
with Crj = 1 for j ≤ 9 and Crj = 0 otherwise. This leads

to x∗
T = argmaxx

∑9
i=0

xi+1

i! e−x = 7.30. Because a virtual

packet is equivalent to the combination of 3 low rate packets,

virtual channel parameter set of the equivalent single option

system in this case is given by {Cvj}T with Cvj = 1 for

j ≤ 7 and Cvj = 0 otherwise. Therefore, with ǫv = 0.01, we

have γǫvT = JǫvT = 7. Luckily, this supports bT = 1.01.

Next, we determine the values of K and K. We first

compare two schemes named the “high rate option only”

scheme and the “low rate option only” scheme. In the “high

rate option only” scheme, we fix d∗(K̂) at [1, 0]T for all K̂,

and set p∗(K̂) = min
{

pmaxH ,
x∗

H

K̂+bH

}

, where pmaxH =
x∗

H

JǫvH+bH
. In the “low rate option only” scheme, we fix d

∗(K̂)

at [0, 1]T for all K̂, and set p∗(K̂) = min
{

pmaxT ,
x∗

T

K̂+bT

}

,

where pmaxT =
x∗

T

JǫvT+bT
. By comparing utility values and

theoretical channel contention measures of the two schemes,

we choose K = 2 and K = 11. Note that we cannot choose

a small-valued K due to the constraint of q∗v(K) > q∗v(K).
Now consider the “Pinpoints Condition” for K ≤ K̂ ≤ K.

For transmission direction vectors d satisfying d1 > 0, with

a small enough ǫv, we generally have Jǫv = 1. Therefore,

so long as d∗(K̂) does not transit too quickly to [0, 1]T , the

condition of K̂ > Jǫv(d
∗(K̂)) should hold true. Consequently,

only two other key conditions need to be satisfied. The first

condition is that q∗v(K̂) of the selected pinpoints must be

strictly decreasing in K̂ . The second condition is that p∗(K̂)
found in the Interpolation Approach should be bounded away

from 0 and 1. In addition, from the optimal scheme, we can

see that d∗(K̂) should transit toward [0, 1]T faster than a linear

transition from K̂ = K to K̂ = K. With these considerations,

we choose the following 4 pinpoints. At the edge of the “Head”

and the “Tail” regimes, we have K̂0 = K = 2 with p∗(2) =
x∗

H

K+bH
[1, 0]T and K̂3 = K = 11 with p∗(11) =

x∗

T

K+bT
[0, 1]T .

We also choose other two pinpoints at K̂1 = 5 and K̂2 = 6.

We set transmission directions vectors d∗(5) and d∗(6) to

be equal to the corresponding optimal transmission direction

vectors, i.e., direction vectors extracted from the optimal p

vectors that maximize the sum throughput at K = 5 and

K = 6, respectively. Transmission probabilities of these two

pinpoints are chosen such that the resulting q∗v(K̂) equals
K−K̂

K−K
q∗v(K)+

K̂−K

K−K
q∗v(K). Note that, the purpose of designing

pinpoints K̂1 = 5 and K̂2 = 6 is to help d∗(K̂) to transit

appropriately toward [0, 1]T . The rest of the p∗(K̂) function is

completed using the Interpolation Approach for K ≤ K̂ ≤ K.

Theoretical channel contention measure q∗v(K̂) of the designed

system is illustrated in Figure 2.
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Fig. 2. Theoretical channel contention measure q∗v as a function of the user
number.

In Figure 3, we illustrate the theoretical sum throughput

of the network as functions of the number of users K when

the transmission probability vectors of all users are set at the

following four different vectors: optimal p(K) that maximizes

the sum throughput, designed p∗(K), p∗(K) from the high

rate option only scheme, and p∗(K) from the low rate option

only scheme. Note again that the optimal sum throughput

is not necessarily achievable without the knowledge of K .

Assume that the high rate only scheme and the low rate only

scheme should be reasonably good for the “Head” and the

“Tail” regimes, respectively. It can be seen from Figure 3 that,

with the help of the designed p∗(K̂) and q∗v(K̂) functions, the

system can take advantage of the multiple transmission options

and maintain a reasonably good performance in term of sum

throughput for all user number values.
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Fig. 3. Sum throughput of the system as functions of the user number under
different transmission probability vector settings.

Next, we illustrate the convergence property of the proposed

distributed MAC algorithm. Assume that the system has 2
users initially. Transmission probability vectors of all users

are initialized at [0, 0]T . In each time slot, according to its

own transmission probability vector, each user randomly deter-

mines whether a packet should be transmitted or not, and if the

answer is positive, which transmission option should be used.

The receiver measures qv using the following exponential

moving average approach. qv is initialized at qv = 1. In each

time slot, an indicator variable Iv ∈ {0, 1} is used to represent

the success/failure status of the virtual packet reception. qv is

then updated by qv = (1− 1
300 )qv +

1
300Iv , and is fed back to

the users at the end of each time slot. Each user then adapts

its transmission probability vector according to the proposed

MAC algorithm with a constant step size of α = 0.05.

We assume that the system experiences three stages. At

Stage one, the system has 2 users. The system enters Stage

two at the 3001st time slot, when 11 more users enter

into the system with their transmission probability vectors

initialized at [0, 0]T . Then at the 6001st time slot, the system

enters Stage three when 5 users exit the system. Convergence

behavior in sum throughput of the system is illustrated in

Figure 4. The corresponding optimal throughput and the

theoretical throughput at the designed equilibrium are provided

as references. In Figure 5, we also illustrate entries of the

target transmission probability vector calculated by the users

together with the corresponding theoretical values. Note that

the simulated throughput and probability values presented in

the figures are measured using the same exponential averaging

approach explained above. From Figures 4 and 5, we can see

that the proposed MAC algorithm can indeed help users to

adapt to the changes of stages and to adjust their transmission

probability vectors to the new equilibrium.

According to the Head and Tail Condition, the system

degrades to an equivalent single option system when K ≤
K and K ≥ K. It is generally expected that transmission

direction vectors of the “Head” and the “Tail” regimes should

be different, i.e., d(K) 6= d(K). In this example, we found

one virtual packet design that supports both bH = 1.01 in the
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“Head” regime and bT = 1.01 in the “Tail” regime. One may

think that such a lucky result should be rare. Surprisingly,

according to our observations, in most of the problems of

interest, even though one may not always be able to get

the perfect result of bH = bT ≈ 1, a single virtual packet

can often be designed to support close to ideal values on

JǫvH , bH , JǫvT , and bT . While it is possible to extend the

system design and to improve design flexibility by including

the transmissions of multiple (different) virtual packets in

each time slot, because performance improvement provided

by such an extension is often marginal, we choose to skip the

corresponding discussions in this paper.

VII. CONCLUSION

We investigated distributed multiple access networking with

an unknown finite number of homogeneous users. An en-

hanced physical-link layer interface is considered where each

link layer user can be equipped with multiple transmission

options. With a generally modeled link layer channel, we

proposed distributed MAC algorithms to adapt the transmis-

sion schemes of the users to maximize a chosen symmetric

network utility. Convergence property of the proposed MAC



10

algorithms is proven under quite mild conditions. While there

is no theoretical guarantee on the optimality of the proposed

MAC algorithms, simulation results suggest that performances

of the proposed MAC algorithms are often not too far from

optimal.

APPENDIX

According to Step 3 of the distributed MAC algorithm, users

should always have the same target transmission probability

vectors. At any equilibrium, we should have transmission

probability vectors of all users equal p∗(K̂) for some K̂,

which must satisfy qv(p
∗(K̂),K) = q∗v(K̂). According to

Assumption 5, if K ≥ Kmin, we must have K̂ = K . If

K < Kmin, on the other hand, according to Assumption 3,

for all K̂ > Kmin, we have

q∗v(K̂) < q∗v(Kmin)

= qv(p
∗(Kmin),Kmin)

≤ qv(p
∗(Kmin),K). (30)

Consequently, transmission probability vectors of all users

at equilibrium must equal p∗(Kmin), which equals p∗(K)
according to Assumption 5. Therefore, the system should

always have a unique equilibrium at P ∗ = 1⊗ p∗(K).
Given the number of users K . Target transmission prob-

ability vector p̂ obtained in Step 3 of the distributed MAC

algorithm can be written as a function of the transmission

probability vectors of all users P as p̂(P ) = p̂(qv(P ,K)).
Let P a, P b be two arbitrary transmission probability vectors

of all users. According to Assumption 4 and Theorem 3, we

have

‖p̂(P a)− p̂(P b)‖ ≤ Kqp|qv(P a,K)− qv(P b,K)|
≤ KqcKqp‖P a − P b‖. (31)

Therefore, the Lipschitz Continuity Condition 2 is satisfied.

Finally, when the system is noisy, the receiver can choose

to measure qv over an extended number of time slots, or

equivalently, to increase the value of Q introduced in Step

2 of the proposed MAC algorithm. If users maintain their

transmission probability vectors during the Q time slots, it

is often the case that the potential measurement bias in the

system can be reduced arbitrarily close to zero. Therefore, the

Mean and Bias Condition 1 is also satisfied.

First, it is easy to see that Assumption 2 is satisfied

with q∗v(∞) being equal to the limiting theoretical channel

contention measure of the “Tail” regime, and p∗(∞) =
p∗(∞)d∗(K), where p∗(∞) is the limiting theoretical trans-

mission probability of the “Tail” regime.

Second, in the “Head” regime when K̂ ≤ K, because K ≥
Jǫv(d

∗(K)), q∗v(K̂) is strictly decreasing for Jǫv(d
∗(K)) ≤

K̂ ≤ K, and p∗(K̂)) = pmaxd
∗(K) remains a constant

vector for K̂ ≤ Jǫv (d
∗(K)). In other words, we should

define Kmin = Jǫv(d
∗(K)). Furthermore, q∗v(K̂) is strictly

decreasing for K ≤ K̂ ≤ K by design. Because K >

Jǫv(d
∗(K)), q∗v(K̂) is also strictly decreasing for K̂ ≥ K

in the “Tail” regime. Therefore, Assumption 3 is satisfied.

Third, according to [6, Theorem 4], Assumption 4 should

be satisfied in the “Head and Tail” regimes. In other words,

target transmission probability vector p̂(qv) as a function of qv
is Lipschitz continuous in qv for qv ≥ q∗v(K) and qv ≤ q∗v(K).

Next, we will prove that the theoretical transmission prob-

ability vector function p∗(K̂) = p∗(K̂)d∗(K̂) is Lipschitz

continuous in K̂ for K ≤ K̂ ≤ K. Because d∗(K̂) is

continuous by design, the objective is to show that the search-

assisted approach does not lead to any discontinuity of p∗(K̂)

in K̂. For the sake of simple notation, we use
dp∗(K̂)

dK̂
to

represent the derivative of p∗(K̂) with respect to K̂ if p∗(K̂)
is differentiable. If p∗(K̂) is only continuous but not dif-

ferentiable at K̂ , then
dp∗(K̂)

dK̂
represents one or an arbitrary

subderivative of p∗(K̂). If p∗(K̂) is not continuous at K̂, then
dp∗(K̂)

dK̂
should take the values of ±∞. Note that the adoption

of such a notation does not imply a continuity assumption on

p∗(K̂). Our objective then becomes to prove that
dp∗(K̂)

dK̂
is

bounded for K ≤ K̂ ≤ K.

Let i ∈ {1, . . . , L} and 0 ≤ λ < 1 be chosen arbitrarily.

Let K̂ = K̂iλ, where K̂iλ is defined in (26). To simplify

the discussion, we assume that the neighboring two pinpoints

satisfy K̂i+1 = K̂i + 1, i.e., they take neighboring integer

values3. Write K̂ = K̂iλ = (1− λ)K̂i + λK̂i+1 as a function

of λ, we have
dp∗(K̂)

dK̂
= dp∗(λ)

dλ
.

To bound
dp∗(λ)

dλ
, we consider two different expressions of

q∗v(K̂) = q∗v(λ). The first expression is

q∗v(λ) = (1 − λ)q∗v(K̂i) + λq∗v(K̂i+1). (32)

Take derivative with respect to λ, we get
dq∗v(λ)

dλ
= q∗v(K̂i+1)−

q∗v(K̂i). Because both q∗v(K̂i+1) and q∗v(K̂i) are bounded,

there exists a positive constant ∆1 > 0 such that
∣

∣

∣

∣

dq∗v(λ)

dλ

∣

∣

∣

∣

≤ ∆1. (33)

On the other hand, define p∗iλ = p∗(K̂iλ), and consider the

second expression of q∗v(K̂) = q∗v(λ) given below.

q∗v(λ, p
∗
iλd

∗
iλ) = (1− λ)qv(p

∗
iλd

∗
iλ, K̂i)

+λqv(p
∗
iλd

∗
iλ, K̂i+1). (34)

Taking derivative with respect to λ results in

dq∗v(λ, p
∗
iλd

∗
iλ)

dλ
=

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂λ

+

[

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂d∗
iλ

]T
dd∗

iλ

dλ

+
∂q∗v(λ, p

∗
iλd

∗
iλ)

∂p∗iλ

dp∗iλ
dλ

. (35)

Now we consider the terms on the right hand side of (35)

separately.

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂λ
= qv(p

∗
iλd

∗
iλ, K̂i+1)− qv(p

∗
iλd

∗
iλ, K̂i). (36)

Because both two terms on the right hand side of (36) are

bounded, there exists a constant ∆2 > 0 to satisfy
∣

∣

∣

∣

∂q∗v(λ, p
∗
iλd

∗
iλ)

∂λ

∣

∣

∣

∣

≤ ∆2. (37)

3The proof can be easily extended to the case when this assumption does
not hold.
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According to (13), we can write qv(p
∗
iλd

∗
iλ, K̂i) as

qv(p
∗
iλd

∗
iλ, K̂i) =

K̂i
∑

j=0

(

K̂i

j

)

p
∗j
iλ(1−p∗iλ)

K̂i−jCvj(d
∗
iλ). (38)

Due to Assumption 1, the right hand side of (38) contains no

more than Kc+1 terms. Because
∂Cvj(d

∗

iλ)
∂d∗

iλ

is bounded for all

j,
∂qv(p

∗

iλd
∗

iλ,K̂i)
∂d∗

iλ

must be bounded. Similarly,
∂qv(p

∗

iλd
∗

iλ,K̂i+1)
∂d∗

iλ

is also bounded. Therefore, from (34), we can see there exists

a constant ∆3 > 0 such that
∣

∣

∣

∣

∣

[

∂q∗v(λ, piλdiλ)

∂diλ

]T
ddiλ

dλ

∣

∣

∣

∣

∣

≤ ∆3. (39)

From (38), by taking partial derivative with respect to p∗iλ,

we get

∂qv(p
∗
iλd

∗
iλ, K̂i)

∂p∗iλ
=

K̂i
∑

j=0

(

K̂i

j

)

jp
∗(j−1)
iλ (1− p∗iλ)

K̂i−jCvj(d
∗
iλ)

−
K̂i
∑

j=0

(

K̂i

j

)

(K̂i − j)p∗jiλ(1 − p∗iλ)
K̂i−j−1Cvj(d

∗
iλ)

=

K̂i−1
∑

j=0

(

K̂i

j

)

K̂ip
∗j
iλ(1− p∗iλ)

K̂i−j−1

×(Cv(j+1)(d
∗
iλ)− Cvj(d

∗
iλ)). (40)

Due to Item 2 of the Pinpoints Condition 4, K̂i > Jǫv(d
∗
iλ).

Therefore, Cvj(d
∗
iλ) − Cv(j+1)(d

∗
iλ) ≥ ǫv should hold for at

least one 0 ≤ j ≤ K̂i − 1. Due to Item 3 of Condition 4, p ≤
p∗iλ ≤ p. Hence

∣

∣

∣

∂qv(p
∗

iλd
∗

iλ,K̂i)
∂p∗

iλ

∣

∣

∣
is bounded away from zero.

The same conclusion applies to

∣

∣

∣

∂qv(p
∗

iλd
∗

iλ,K̂i+1)
∂p∗

iλ

∣

∣

∣
. Because

both
∂qv(p

∗

iλd
∗

iλ,K̂i)
∂p∗

iλ

and
∂qv(p

∗

iλd
∗

iλ,K̂i+1)
∂p∗

iλ

are negative-valued,

from (34), we can see there exists a positive constant ∆1 > 0
such that

∣

∣

∣

∣

∂q∗v(λ, piλdiλ)

∂piλ

∣

∣

∣

∣

≥ ∆1. (41)

Because the two expressions of q∗v(K̂) given in (32) and

(34) must equal each other, by combining (33), (35), (37),

(39), and (41), we conclude that there exists a positive constant

Kg > 0, such that

∥

∥

∥

dp∗(K̂)

dK̂

∥

∥

∥
≤ Kg. With the extended

definition of
dp∗(K̂)

dK̂
, as explained at the beginning of the

proof,

∥

∥

∥

dp∗(K̂)

dK̂

∥

∥

∥
≤ Kg means that p∗(K̂) is Lipschitz

continuous in K̂ .

According to Item 1 of the Pinpoints Condition 4, for any

K̂a, K̂b ∈ [K,K], we have

|q∗v(K̂a)− q∗v(K̂b)| ≥
ǫq

K −K
|K̂a − K̂b|. (42)

This means that, for K̂ being obtained according to Step 3

of the distributed MAC algorithm, K̂(qv) as a function of

qv is Lipschitz continuous in qv for q∗v(K) ≤ qv ≤ q∗v(K).

Because we just proved that p∗(K̂) is Lipschitz continuous in

K̂, we conclude that the target transmission probability vector

p̂(qv) obtained according to Step 3 of the distributed MAC

algorithm is Lipschitz continuous in qv for q∗v(K) ≤ qv ≤
q∗v(K). Combined with Lipschitz continuity of p̂(qv) in the

“Head and Tail” regimes, we can see that Assumption 4 is

also satisfied.

Fourth, because q∗v(K̂) is strictly decreasing in K̂ for

K̂ ≥ Jǫv(d
∗(K)), it is easy to prove that, if K ≤ Kmin =

Jǫv(d
∗(K)), then q∗v(K̂) = qv(p

∗(K̂),K) should hold for

all K̂ ≤ Kmin, and for Kmin ≤ K ≤ K and K ≥ K,

q∗v(K̂) = qv(p
∗(K̂),K) should have a unique solution at

K̂ = K .

Now consider the case when K ≤ K ≤ K . With users set-

ting their transmission probability vectors at p∗(K̂), because

K̂ > Jǫv (d
∗(K̂)) and p ≤ p∗(K̂) ≤ p, if K > K̂ and K̂ is

an integer, we must have

qv(p
∗(K̂),K) < qv(p

∗(K̂), K̂) = q∗v(K̂). (43)

If K > K̂ and K̂ is not an integer, we have

qv(p
∗(K̂),K) < qv(p

∗(K̂), ⌊K̂⌋),
qv(p

∗(K̂),K) ≤ qv(p
∗(K̂), ⌊K̂⌋+ 1),

(44)

which implies that

qv(p
∗(K̂),K) < q∗v(K̂). (45)

On the other hand, if K < K̂ and K̂ is an integer, we must

have

qv(p
∗(K̂),K) > qv(p

∗(K̂), K̂) = q∗v(K̂). (46)

If K < K̂ and K̂ is not an integer, we have

qv(p
∗(K̂),K) > qv(p

∗(K̂), ⌊K̂⌋+ 1),

qv(p
∗(K̂),K) ≥ qv(p

∗(K̂), ⌊K̂⌋), (47)

which also implies that

qv(p
∗(K̂),K) > q∗v(K̂). (48)

Consequently, q∗v(K̂) = qv(p
∗(K̂),K) must have a unique

solution at K̂ = K . Therefore, Assumption 5 should hold

true.
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