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Abstract—Classical random access protocols support prioritized
user groups by allowing a high priority user to transmit with
a relatively high probability. However, when a high priority
user competes for the channel with a large number of low
priority users, transmission success probability of the high priority
user can still diminish to zero. In this paper, a distributed
medium access control (MAC) framework is proposed to support
hierarchical user groups in a random multiple access system. A
hierarchical user structure, such as a primary-secondary user
structure, differs from a priority user structure in the following
senses. First, when the number of primary users is small, the
MAC framework guarantees that channel availability should stay
above a pre-determined threshold no matter how many secondary
users are competing for the channel. Second, when the number of
primary users is large, the MAC framework drives transmission
probabilities of the secondary users to zero but does not reject
channel access to the primary users. These properties are achieved
in a distributed environment without direct message exchange
between users, without knowledge on the number of users, and
without knowing whether each transmission should belong to a
primary or a secondary user.

I. INTRODUCTION

Diversity of wireless devices and applications often requires

wireless networks to provide differentiated services to users

in the sense of supporting user groups with different priority

levels. Take the enhanced distributed coordination function

(EDCF) in 802.11e for example. Users (or traffics) in 802.11e

EDCF can be assigned to four different priority levels with

different adaptation schemes on their backoff windows. A high

priority user generally maintains a backoff window smaller

in size than that of a low priority user. This leads to a

higher transmission probability for the high priority users and

therefore gives their packets an advantage in getting through

the shared wireless channel. However, such a priority user

structure is “soft” in the sense that, when the system has a

large number of low priority users whose transmission activities

cause significant contention, the packet success probability of

a high priority user can still be driven close to zero.

Recent trend of dynamic spectrum access (DSA) created the

new demand of supporting a “hard” hierarchical user structure

in wireless systems [1] [2]. Take channel sharing with the

primary-secondary user structure for example. It is expected

that secondary users should access the channel only if they
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can guarantee no disturbance to communication activities of

the primary users. Existing DSA literature often assumes that

secondary users should be able to identify whether an existing

transmission should belong to a primary user or not. Disruptive

interference is often avoided with online coordinations between

primary and secondary users or within the secondary user

group. There is little discussion on how to support hierarchical

user groups in a random access environment, where users do

not exchange information with each other directly, and where

packet collision is part of the natural transmission outcomes.

Classical distributed MAC protocols such as 802.11 DCF

and 802.11e EDCF assume each link layer user can only

determine whether to transmit a packet or not. They also assume

a simple link layer channel model such as the collision channel.

Recently, a new channel coding theory was proposed in [3]

and [4] for distributed communication at the physical layer.

The coding theory allows each physical layer user (transmitter)

to prepare an ensemble of channel codes, and to choose an

arbitrary one to encode its message. While code ensembles of

the users are assumed to be known, actual coding decisions are

not shared among the users or with the receiver. The receiver,

on the other hand, should either decode the messages of interest

or report collision, depending on whether a pre-determined

error probability requirement can be met. Fundamental limit

of the system was characterized using a distributed channel

capacity region defined in the vector space of the coding

decisions of the users. The distributed capacity region was

shown to coincide with the classical Shannon capacity region

in a sense explained in [4]. The new channel coding theory

provided the basic physical layer support for an enhancement

to the physical-link layer interface [4], which allows each link

layer user to be equipped with multiple transmission options.

These options correspond to different codes at the physical

layer, possibly representing different communication settings

such as different transmission power and rate combinations.

The interface enhancement enables data link layer protocols to

exploit advanced wireless communication adaptations through

the navigation of different transmission options. It also enables

the modeling of a wide range of general but realistic link layer

channels that can be derived from the physical layer channel

and coding details of the packets.

With the new channel coding theory, a distributed MAC

framework was proposed in [5] to support a general link layer

channel model and to support multiple transmission options



at each link layer user [4]. In this paper, we further extend

the MAC framework of [5] to support hierarchical primary-

secondary user groups in a time-slotted random multiple access

system. While the MAC algorithm can incorporate a general

link layer channel model, we still assume a single transmission

option at each user. Further extensions that equip each user

with multiple transmission options can be found in [6].

II. A STOCHASTIC APPROXIMATION FRAMEWORK

Consider a wireless multiple access network with K users

(transmitters) and a common receiver. Among the users, Kp of

them are labeled as “primary” users and Ks of them are labeled

as “secondary” users. K = Kp+Ks. Each user only knows its

own label, but does not know the labels of other users, as well

as the values of Kp, Ks and K . As we will explain later, users

will adopt the same type of MAC algorithms, but with users of

different labels setting their parameters differently. Other than

such a difference, we assume that the users are homogeneous.

Let time be slotted with each slot equaling the length of

one packet. Assume that each user is equipped with one

transmission option and an idling option, and is backlogged

with a saturated message queue. At the beginning of each time

slot t, a user determines whether to idle or to transmit a packet

according to an associated probability parameter. Transmission

decisions of the users are made individually. They are shared

neither among the users nor with the receiver. The probability

parameter associated to user k, k = 1, . . . ,K , is denoted by

pk(t) for time slot t. At the end of each time slot t, based on

available channel feedback, which we will discuss later, each

user k derives a target transmission probability p̃k(t). User k

then updates its transmission probability by

pk(t+ 1) = pk(t) + α(t)(p̃k(t)− pk(t)), (1)

where α(t) > 0 is a step size parameter of time slot t. Let

p(t) = [p1(t), p2(t), . . . , pK(t)]T denote a K-length vector

that consists of the transmission probabilities of all users in

time slot t. Let p̃(t) = [p̃1(t), p̃2(t), . . . , p̃K(t)]T denote the

corresponding target vector. According to (1), p(t) is updated

by

p(t+ 1) = p(t) + α(t)(p̃(t)− p(t)). (2)

Probability adaptation given in (2) falls into the stochastic

approximation framework [7] [8], where the target probability

vector p̃(t) is often calculated from noisy estimates of certain

system variables, e.g., channel idling probability.

Define p̂(t) = [p̂1(t), p̂2(t), . . . , p̂K(t)]T as the “theoretical

value” of p̃(t) under the assumption that there is no measure-

ment noise and no feedback error in time slot t. Let Et[p̃(t)]
be the conditional expectation of p̃(t) given the system state at

the beginning of time slot t. The difference between Et[p̃(t)]
and p̂(t) is defined as the bias in the target probability vector

calculation, denoted by g(t).

g(t) = Et[p̃(t)]− p̂(t). (3)

We assume that, given the communication channel, both p̂(t) =
p̂(p(t)) and g(t) = g(p(t)) should only be functions of p(t),
which is the transmission probability vector in time slot t.

The following two conditions are typically required for the

convergence of a stochastic approximation algorithm [4] [5].

Condition 1: (Mean and Bias) There exists a constant

Km > 0 and a bounding sequence 0 ≤ β(t) ≤ 1, such that

‖g(p(t))‖ ≤ Kmβ(t), where ‖.‖ denotes the second order

norm. We assume that β(t) is controllable in the sense that

one can design protocols to ensure β(t) ≤ ǫ for any chosen

ǫ > 0 and for large enough t.

Condition 2: (Lipschitz Continuity) There exists a constant

Kl > 0, such that ‖p̂(pa) − p̂(pb)‖ ≤ Kl‖pa − pb‖, for all

pa,pb.

According to stochastic approximation theory [7] [8], if the

above two conditions are satisfied, and values of the step

size sequence α(t) and the bounding sequence β(t) are small

enough, then trajectory of the transmission probability vector

p(t) under distributed adaptation algorithm given in (2) can be

approximated by the following associated ordinary differential

equation (ODE) in a sense explained in [7] [8],

dp(t)

dt
= −[p(t)− p̂(t)], (4)

where we used t again to denote the continuous time variable.

Because all entries of p(t) and p̂(t) stay in the range of [0, 1],
any equilibrium p

∗ = [p∗1, . . . , p
∗
K ]T of the associated ODE

must satisfy

p
∗ = p̂(p∗). (5)

Suppose that the associated ODE given in (4) has a unique

solution at p∗, then under mild conditions on α(t) and β(t),
p(t) should converge to p

∗ in senses explained in [5, Theorem

1] and [5, Theorem 2]. With these convergence results, the

key question is how to design a distributed MAC algorithm to

satisfy Conditions 1 and 2 and to place the equilibrium of the

associated ODE at a desired point.

In each time slot, the receiver makes message recovery

and collision detection decisions for the data packets without

knowing the transmission status of the users. The receiver

also assumes the existence of a virtual packet, and makes a

decision on whether virtual packet reception should be regarded

as successful or not. Only one virtual packet is assumed in

each time slot, and virtual packets assumed in different time

slots are identical. As explained in [4] [5], a virtual packet

is an assumed packet that is not physically transmitted by any

user. Virtual packet detection essentially checks whether current

operation point of the channel is located inside its fundamental

limit with a pre-determined margin. General considerations on

virtual packet design and detection are explained in [4, Section

4.2] and will not be discussed in this paper. We assume that the

receiver should estimate the success probability of the virtual

packet, denoted by qv(t) for time slot t, and feed it back to

the users. qv(t) should then be used by each user to derive its

target transmission probability.

As introduced in [5], we model the link layer multiple

access channel using two sets of parameters, both can be

theoretically derived from the physical layer channel model and

coding details of the packets. The first parameter set, {Crj}



for j ≥ 0, is termed the “real channel parameter set.” Crj

denotes the conditional success probability of a real packet,

should it be transmitted in parallel with j other real packets. The

second parameter set, {Cvj} for j ≥ 0, is termed the “virtual

channel parameter set.” Cvj denotes the success probability of

the virtual packet should it be transmitted in parallel with j

real packets. We assume that Cvj ≥ Cv(j+1) for all j ≥ 0,

meaning that the virtual packet should not get a better chance

to go through the channel if the number of parallel real packet

transmissions increases. Both {Crj} and {Cvj} are assumed to

be known at the users as well as at the receiver.

III. SUPPORTING A HIERARCHICAL USER STRUCTURE

Let the system have Kp primary users and Ks secondary

users, where the values of Kp and Ks are unknown to the

users. Let K = Kp +Ks. We term qv the “channel contention

measure”, which is the success probability of the virtual packet.

If all users have the same transmission probability p, qv can be

calculated by

qv(p,K) =

K
∑

j=0

(

K

j

)

pj(1 − p)K−jCvj . (6)

Without global information, a primary (secondary) user as-

sumes that the system should only contain an unknown number

of primary (secondary) users. Upon receiving the feedback of

qv , each primary (secondary) user should obtain an estimated

number of users, denoted by K̂ , and then use K̂ to determine

the corresponding transmission probability target. Such an

operation requires each primary (secondary) user to design

two key functions, denoted by p∗p(K̂) and q∗vp(K̂) (p∗s(K̂) and

q∗vs(K̂)), both are functions of K̂. p∗p(K̂) (p∗s(K̂)) represents

the designed transmission probability of the users if the multiple

access system only contains K̂ primary (secondary) users.

q∗vp(K̂) (q∗vs(K̂)), on the other hand, represents the “theoretical

channel contention measure” if the multiple access system

only contains K̂ primary (secondary) users, and all users have

the same transmission probability of p∗p(K̂) (p∗s(K̂)). Both

functions should be designed for all values of K̂ ≥ 0, including

both integer and non-integer values. Define Kpmin (Ksmin) as

the maximum K̂ that maximizes p∗vp(K̂) (p∗vs(K̂)).
Given the two key functions, the distributed MAC algorithm

should operate as follows.

Distributed MAC Algorithm:

1) Each user initializes its transmission probability.

2) Let Q > 0 be a pre-determined integer. Over an interval

of Q time slots, the receiver measures the success prob-

ability of the virtual packet, denoted by qv, and feeds qv
back to all users.

3) Upon receiving qv , each primary (secondary) user should

derive an estimate of the number of users K̂ by solving

the following equation.

q∗vp(K̂) = qv (q∗vs(K̂) = qv). (7)

If a K̂ satisfying (7) cannot be found, a primary (sec-

ondary) user should set K̂ = Kpmin (K̂ = Ksmin) if

qv > max
K̂
q∗vp(K̂) (qv > max

K̂
q∗vs(K̂)), or it should

set K̂ = ∞ otherwise.

4) Each primary (secondary) user, say user kp (ks), updates

its transmission probability by

pkp
= (1− α)pkp

+ αp∗p(K̂),

(pks
= (1− α)pks

+ αp∗s(K̂), ) (8)

where α is the step size parameter for user kp (ks).

5) The process is repeated from Step 2 till transmission

probabilities of all users converge.

We will now introduce the specific design of the two key

functions. Let us first focus on a primary user. We assume that

primary users intend to maximize a symmetric network utility,

denoted by Up(K̂, pp, {Crj}), under the assumption that the

system contains K̂ homogeneous primary users and all users

have the same transmission probability pp. Let x∗
p be obtained

from the following asymptotic utility optimization.

x∗
p = argmax

x

lim
K̂→∞

Up

(

K̂,
x

K̂
, {Crj}

)

. (9)

Based on the utility optimization objective, a primary user

should design its desired transmission probability function

p∗p(K̂) as

p∗p(K̂) =
x∗
p

max{K̂, K̂pmin}+ bp
, (10)

where K̂pmin and bp are design parameters whose values should

be determined by following the guideline given in [5]. Particu-

larly, K̂pmin should take an integer value slightly less than x∗
p,

and bp should be chosen to satisfy bp > max{1, x∗
p − γpǫv},

where γpǫv is a parameter defined in [5, Theorem 4]. We skip

the detailed definition of γpǫv here because usually a good

design should yield x∗
p − γpǫv < 1, and hence the effective

constraint on bp should be simplified to bp > 1 [5, Theorem

5].

With the p∗p(K̂) function given by (10), for integer-valued

K̂, q∗vp(K̂) should equal the actual channel contention measure

when the estimated number of users is accurate and when all

users have the same transmission probability of p∗p(K̂). In other

words, we should have

q∗vp(K̂) = qv(p
∗
p(K̂), K̂), (11)

where qv(p
∗
p(K̂), K̂) can be further calculated using (6). For

non-integer-valued K̂, the “theoretical channel contention mea-

sure” function q∗vp(K̂) should be designed using the following

linear interpolation approach [5].

q∗vp(K̂) =
p∗p(K̂)− p∗p(⌊K̂⌋+ 1)

p∗p(⌊K̂⌋)− p∗p(⌊K̂⌋+ 1)
qv(p

∗
p(K̂), ⌊K̂⌋)

+
p∗p(⌊K̂⌋)− p∗p(K̂)

p∗p(⌊K̂⌋)− p∗p(⌊K̂⌋+ 1)
qv(p

∗
p(K̂), ⌊K̂⌋+ 1),(12)

where ⌊K̂⌋ represents the largest integer below K̂ .

When p∗p(K̂) and q∗vp(K̂) functions are designed according

to (10), (11), and (12), we have the following two monotonicity



properties. On one hand, given K , the channel contention mea-

sure function qv(p
∗
p(K̂),K) is monotonically non-decreasing in

K̂ [5, Theorem 3]. On the other hand, the theoretical channel

contention measure function q∗vp(K̂) is monotonically non-

increasing in K̂ and is strictly decreasing in K̂ for K̂ ≥ K̂pmin

[5, Theorem 4]. The basic considerations behind the design of

p∗p(K̂) and q∗vp(K̂) functions can be briefly explained as follows

[5]. Under the assumption that the system only contains primary

users, setting p∗p(K̂) at p∗p(K̂) ≈
x∗

p

K̂
is asymptotically optimal

(or close to optimal for large K̂) in terms of symmetric utility

maximization. It is also a general observation that setting p∗p(K̂)

at p∗p(K̂) ≈
x∗

p

K̂
should be not far from optimal for all K̂ values

and for most of the utility functions of interest. If we term

p∗p(K̂) ≈
x∗

p

K̂
the ideal solution, then the proposed design given

in (10) should be close to ideal, with the necessary revisions

to achieve the desired monotonicity properties required for

the convergence proof of the distributed MAC algorithm [5,

Theorem 5].

Next, let us switch focus to a secondary user. A secondary

user should also design two key functions, denoted respectively

by p∗s(K̂) and q∗vs(K̂), both are functions of K̂ which repre-

sents the estimated number of users under the assumption that

the system should only contain secondary users. Differs from

the design of a primary user, p∗s(K̂) and q∗vs(K̂) functions need

to be designed to enforce the hierarchical user structure. We will

show later that, a hierarchical user structure can be achieved by

raising the tail of the q∗vs(K̂) function above a pre-determined

threshold qv , i.e. by imposing the following constraint.

lim
K̂→∞

q∗vs(K̂) ≥ qv. (13)

The value of qv should be chosen according to the quality

of service requirement of the primary users. To satisfy the

constraint, let x∗
s be obtained by solving the following equation.

lim
K̂→∞

qv

(

x∗
s

K̂
, K̂

)

= qv, (14)

where qv

(

x∗

s

K̂
, K̂

)

is further defined in (6). A secondary user

should design its desired transmission probability function

p∗s(K̂) as

p∗s(K̂) =
x∗
s

max{K̂, K̂smin}+ bs
, (15)

where K̂smin and bs are design parameters whose values

should be determined by following the guideline given in

[5]. Particularly, K̂smin should take an integer value slightly

less than x∗
s , and bs should satisfy an effective constraint of

bs > 1 [5, Theorem 4]. Similar to the design of a primary

user, a secondary user should design the “theoretical channel

contention measure” function q∗vs(K̂) as

q∗vs(K̂) =
p∗s(K̂)− p∗s(⌊K̂⌋+ 1)

p∗s(⌊K̂⌋)− p∗s(⌊K̂⌋+ 1)
qv(p

∗
s(K̂), ⌊K̂⌋)

+
p∗s(⌊K̂⌋)− p∗s(K̂)

p∗s(⌊K̂⌋)− p∗s(⌊K̂⌋+ 1)
qv(p

∗
s(K̂), ⌊K̂⌋+ 1),(16)

where K̂ can take both integer and non-integer values.

According to [5, Theorem 3], given K , qv(p
∗
s(K̂),K) should

be monotonically non-decreasing in K̂ . Meanwhile, according

to [5, Theorem 4], q∗vs(K̂) should be monotonically non-

increasing in K̂ and should be strictly decreasing in K̂ for

K̂ ≥ K̂smin. Due to (14), we have q∗vs(K̂) ≥ qv for all K̂ .

With the above design, the distributed MAC algorithm sup-

ports the hierarchical primary-secondary user structure in the

following sense.

Theorem 1: Let Kp be the number of primary users in the

system. The value of Kp is unknown to the users as well as

to the receiver. With the proposed MAC algorithm, the system

should possess a unique equilibrium. Let channel contention

measure at the equilibrium be denoted by qv. On one hand, if

Kp is small such that q∗vp(Kp) ≥ qv , then qv ≥ qv must hold

at the equilibrium. On the other hand, if Kp is large such that

q∗vp(Kp) < qv, then transmission probabilities of the secondary

users should equal zero at the equilibrium.

Proof: According to stochastic approximation theory [7] [8],

the system should have at least one equilibrium.

We first show that the equilibrium must be unique. Assume

that this is not true. Let the system contain two equilibria,

whose corresponding channel contention measures equal qv
and q̃v, respectively. Without loss of generality, we assume that

qv < q̃v . Assume that, at the first equilibrium corresponding to

channel contention measure qv , the number of users estimated

by the primary users and by the secondary users equal respec-

tively K̂p and K̂s. At the other equilibrium corresponding to

channel contention measure q̃v , let the estimates equal K̃p and

K̃s, respectively. Consequently, we have

qv = q∗vp(K̂p) = q∗vs(K̂s),

q̃v = q∗vp(K̃p) = q∗vs(K̃s). (17)

Because qv < q̃v , due to the fact that q∗vp(K̂) and q∗vs(K̂)

functions are non-increasing in K̂ [5, Theorem 4], (17) implies

that K̂p ≥ K̃p and K̂s ≥ K̃s. This consequently implies that

p∗p(K̂p) ≤ p∗p(K̃p) and p∗s(K̂p) ≤ p∗s(K̃p). However, if each

user at the first equilibrium should transmit at a probability

no higher than the corresponding probability at the other

equilibrium, we must have qv ≥ q̃v , which contradicts the

assumption that qv < q̃v . Therefore, equilibrium of the system

must be unique.

Let qv be the channel contention measure at the unique

equilibrium. Next, we prove the following statement, which is

equivalent to the conclusion of the theorem. That is, if qv < qv,

we must have q∗vp(Kp) < qv . Otherwise if qv ≥ qv , we must

have q∗vp(Kp) ≥ qv.

According to the proposed MAC algorithm, if qv < qv ≤

q∗vs(K̂) for all K̂ , we must have K̂s = ∞ and all secondary

users should have zero transmission probability at the equilib-

rium. Consequently, the system becomes equivalent to one with

homogeneous (primary) users, as analyzed in [5]. According to

[5, Theorem 5], we should have

qv = qv(p
∗
p(Kp),Kp) = q∗vp(Kp). (18)



In other words, primary users should obtain a correct estimate

of the number of users K̂p = Kp. This implies that q∗vp(Kp) =

q∗vp(K̂p) = qv < qv .

If qv ≥ qv, on the other hand, we have qv = q∗vp(K̂p).

In this case, K̂s < ∞, meaning that secondary users should

transmit with a positive probability. Now assume that we force

all secondary users to exit the system. This action should help

increasing the value of qv at the new equilibrium. We know that,

without the secondary users, contention measure of the new

system equilibrium should equal qv(p
∗
p(Kp),Kp) = q∗vp(Kp).

Consequently, we must have

qv ≤ qv ≤ qv(p
∗
p(Kp),Kp) = q∗vp(Kp). (19)

♦

IV. SIMULATION RESULTS

The example presented in this section is extended from [5,

Example 2]. Consider a random multiple access system over

a simple fading channel. In each time slot, with a probability

of 0.3, the channel can support no more than M1 = 4 parallel

real packet transmissions, and with a probability of 0.7, the

channel can support no more than M2 = 6 parallel real packet

transmissions. In this case, the real channel parameter set {Crj}
is given by Crj = 1 for j < 4, Crj = 0.7 for 4 ≤ j < 6, and

Crj = 0 for j ≥ 6. We design the virtual packet to have the

same coding details of a real packet. Consequently, the virtual

channel parameter set {Cvj} is identical to the real channel

parameter set, i.e., Cvj = Crj for all j ≥ 0.

Assume that the primary users intend to maximize the

symmetric throughput weighted by a transmission energy cost

of of E = 0.3, under the assumption that the system only

contains primary users. With the number of users being K and

all users transmitting with the same probability p, the utility

function of the primary users is given by

U(K, p, {Crj}) = −EKp+
K−1
∑

j=0

K

(

K − 1

j

)

pj+1(1 − p)K−1−jCrj . (20)

As explained in [5, Example 2], with this utility function, pri-

mary users can design their theoretical transmission probability

function as p∗p(K̂) = 3.29
max{K̂,3}+1.01

, which implies x∗
p = 3.29,

K̂pmin = 3, and bp = 1.01. Note that the value of x∗
p is

determined using (9). Such a design is near optimal in terms of

maximizing the chosen utility when the system only contains

homogeneous primary users.

Next, let us consider the secondary users. Assume that the

hierarchical user structure requires qv to be set at qv = 0.88.

This gives x∗
s = 2.655 according to (14). Consequently, we can

design the theoretical transmission probability function of the

secondary users as p∗s(K̂) = 2.655
max{K̂,2}+1.01

. This implies that

bs = 1.01 and Ksmin = 2.

In Figure 1, we plotted the theoretical channel contention

measure functions q∗vp(K̂) for primary users and q∗vs(K̂) for

secondary users. These functions are calculated using (11), (12),
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Fig. 1. Theoretical channel contention measure functions for primary and
secondary users.

and (16). Note that q∗vs(K̂) ≥ qv = 0.88. It can be seen that,

the key idea of supporting the hierarchical user structure is to

raise the tail of the q∗vs(K̂) function for the secondary users

above qv, such that aggregated impact of the secondary users

on the channel contention measure is well controlled no matter

how many secondary users compete for the channel.

In Figure 2, we plotted channel contention measure of the

system at its unique equilibrium as a function of the number

of primary users Kp and the number of secondary users Ks.

The figure shows that, when the number of primary users is

p
Ks

K

v
q

Fig. 2. Channel contention measure as a function of the numbers of primary
and secondary users.

small Kp ≤ 7, we have q∗vp(Kp) > qv = 0.88. In this case,

secondary users can access the channel. But the system keeps

the channel contention measure above qv = 0.88 irrespective of

the number of secondary users. When the number of primary

users is large Kp > 7, on the other hand, we have q∗vp(Kp) <
qv. In this case transmission probabilities of the secondary users

are kept at zero, and therefore qv is not affected by the number

of secondary users.

Next, we assume that the transmission probabilities of all

users are initialized at 0. In each time slot, a user randomly

determines whether to transmit a packet or not. The receiver

uses an exponential moving average approach to measure qv.

More specifically, qv is initialized at qv = 1. In each time



slot, an indicator variable Iv ∈ {0, 1} is used to represent the

success/failure status of the virtual packet reception. qv is then

updated as qv = (1 − 1
300 )qv + 1

300Iv , and is fed back to the

transmitters at the end of each time slot. With the updated qv,

each user adapts its transmission probability according to the

MAC algorithm proposed in Section III with a constant step

size of α = 0.05.

We assume that the system experiences three stages. At the

beginning in Stage one, the system has 4 primary users and 3
secondary users. The system enters Stage two after the 3000th

time slot, when 12 more secondary users enter the system

with their transmission probabilities initialized at 0. After the

6000th time slot, the system enters Stage three when 6 more

primary users enter the system with their transmission proba-

bilities initialized at 0. Convergence behavior in actual channel

contention measure qv is illustrated in Figure 3 together with

the theoretical qv at the corresponding equilibria of the three

stages. The figure demonstrates that the system can quickly
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Fig. 3. Channel contention measure of the system through three stages.

adapt to changes in the number of users and keep the channel

contention at the desired level. In Figure 4, we also illustrated

the transmission probability targets calculated by the primary

and the secondary users. Note that values of the simulated
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Fig. 4. Transmission probabilities of primary and secondary users through three
stages. Dashed lines represent the corresponding values at the equilibrium.

variables presented in Figures 3 and 4 are calculated using the

same exponential averaging approach explained above.

It can be seen that, in Stage 1 when a small number of pri-

mary and secondary users share the channel, the primary users

transmit with a relatively higher probability. Consequently, a

primary user gets an advantage over a secondary user in getting

its packet through the channel. In Stage 2 when a large number

of secondary users join the system, while their activities lead

to lower transmission probabilities for both the primary users

and the secondary users, channel contention measure of the

system is maintained above qv = 0.88, which can be viewed

as a quality of service guarantee to the primary users. In Stage

3 when a significant number of primary users enter the system,

transmission probabilities of all secondary users are driven

down to 0, leading the channel to be exclusively occupied by

the primary users.

V. CONCLUSION

We proposed a distributed MAC framework to support

hierarchical user groups in random multiple access systems.

The MAC algorithms do not require direct message exchange

among users. Users do not need to know the numbers of

primary and secondary users in the system. Users also do not

need the capability of identifying whether a transmitted packet

should belong to a primary user or to a secondary user. The

proposed MAC algorithm adapts the transmission scheme of

each user by comparing the actual channel contention measure

to a theoretical channel contention measure function. With

the simple idea of raising the tail of the theoretical channel

contention measure function for the secondary users to a pre-

determined threshold, aggregated impact of the secondary users

on contention level of the channel is well controlled no matter

how many secondary users compete for the channel. Simulation

results showed that the proposed MAC algorithm can maintain

the hierarchical user structure and can also be reasonably

responsive to a dynamic environment with users joining/exiting

the system.
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