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ABSTRACT

With the fast expansion of communication networks and the

increasing dynamic of wireless communication activities, a

significant proportion of messages in wireless networks are

being transmitted using distributed protocols that feature

opportunistic channel access without full user coordination.

This challenges the basic assumption of long message trans-

missions among coordinated users in classical channel cod-

ing theory. In this monograph, we introduce channel coding

theorems for the distributed communication model where

users choose their channel codes individually. We show that,

although reliable message recovery is not always guaranteed

in distributed communication systems, the notion of funda-

mental limit still exists, and can indeed be viewed as an

extension to its classical correspondence.

Due to historical priority of developing wireline networks,

network architectures tend to achieve system modularity by

compromising communication and energy efficiency. Such a
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choice is reasonable for wireline systems but can be disas-

trous for wireless radio networks. Therefore, to reduce effi-

ciency loss, large scale communication networks often adopt

wireless communication only at the last hop. Because of

such a special structure, architectural inefficiency in wire-

less part of the network can be mitigated by enhancing the

interface between the physical and the data link layers. The

enhanced interface, to be proposed, provides each link layer

user with multiple transmission options, and supports effi-

cient distributed networking by enabling advanced commu-

nication adaptation at the data link layer. In this mono-

graph, we focus on the introduction of distributed channel

coding theory, which serves as the physical layer foundation

for the enhanced physical-link layer interface. Nevertheless,

early research results at the data link layer for the enhanced

interface are also presented and discussed.
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Introduction

A fundamental challenge in wireless networking is to efficiently share

the open wireless channel among highly dynamic users. Classical infor-

mation theory [20] and network theory [11] both have been investigat-

ing this key topic for half a century, but from two different angles and

along two separate paths that have not yet converged [22].

Because wireless medium often needs to be shared among devices

with tight bandwidth and power budgets, communication efficiency is

a central concern in wireless systems. Classical information theory [20],

particularly channel coding theory, addresses the “efficiency” concern

by characterizing the fundamental performance limitation of a wire-

less channel, and this consequently provides design guidance for wire-

less systems to achieve or to approach the theoretical efficiency limits.

However, information theory was originally developed in an environ-

ment when major wireless applications, such as mobile telephony and

TV broadcast, only involved transmitting long messages to or from a

small number of structured users. To achieve optimal efficiency, chan-

nel coding theory suggests that users in a communication party should

jointly choose their channel codes, which includes the joint optimization

of communication parameters such as information rate and transmis-

3
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4 Introduction

sion power [29][21][20]. This is termed the “coordinated” communica-

tion model in this monograph. Classical channel coding theory assumes

that, so long as the messages are long enough and their corresponding

coding schemes are optimized, overhead and possible inefficiency in

coordinating the communication party should be negligible.

Wireless devices nowadays are often connected into communication

networks which typically involve large numbers of users and a wide

range of network functions. Modularized architecture is a crucial re-

quirement for developing such large complex network systems [11]. Clas-

sical network theory addresses the “modularity” concern by proposing

layered network architectures such as the open systems interconnection

(OSI) model and its variations [96][69]. By partitioning communication

functions into abstraction layers with clearly defined interfaces, OSI

model allows system design and optimization to be focused on one or a

small number of neighboring layers without the worry of how the out-

come can fit into the general system. However, modularity usually does

not come without a cost, and compromising low priority resources is a

natural choice for achieving system modularity. Classical network the-

ory was originally developed in an environment when the key demand

was to connect computers to build the wireline internet infrastructure.

For wireline systems, bandwidth of a network cable and communication

power of a computer are relatively abundant. Consequently, classical

network theory emphasizes the support of a wide range of communica-

tion functions in the design of layering interfaces and network protocols,

but pays relatively less attention to the impact that the design propos-

als can have on communication efficiency of the involved systems.

With the computing power of mobile devices and wireless sensors

exceeding previous generation large computers, the demand of wireless

networking applications is increasing at a dramatic pace. However, de-

velopments of advanced wireless networks still suffer from the lack of a

theoretical foundation that addresses both concerns of “efficiency” and

“modularity” simultaneously. Because classical information theory and

network theory each only emphasizes one aspect of the concerns and

ignores the other one that is equally important, the need of a unifi-

cation of the two classical frameworks should be quite apparent [22].
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1.1. The Single-hop Cellular Structure 5

Indeed, such a vision has been recognized for decades, as witnessed by

a long list of publications ranging from cross layer utility optimizations

[76][93][27] to understanding networking phenomena from information

theoretic perspectives [31][60][5][56], from the milestone results on wire-

less network scaling law [38][39][92], to the celebrated development of

fountain channel coding [15][54][74][70][88], and to the historical dis-

covery of network coding [2][52][49][91][43]. These results investigated

efficiency problems in various layers of the network architecture from

different perspectives. However, not all the problems are specific to

wireless networks and therefore are not necessarily among the list of

pressing concerns due to the increasing demand of wireless network-

ing. Most of the research results mentioned above also did not suggest

explicit architectural revisions to address the corresponding efficiency

problems.

The viewpoint that we are going to introduce in this monograph

is unique in the following senses. The associated architectural problem

lies in the physical and the data link layers. It is an efficiency bottleneck,

but only for wireless part of the networks. Furthermore, the research

investigations to be presented are motivated and centered around a

particular proposal of interface enhancement between the physical and

the data link layers. The proposal was originally suggested in [58][87]

and then in [55], but has never been thoroughly presented and ex-

plained. Therefore, this monograph serves as the first rigorous, in a

relative sense, introduction of the research vision and the correspond-

ing research results.

1.1 The Single-hop Cellular Structure

Direct extensions of classical information theoretic and network theo-

retic frameworks to wireless networking have their own inherited chal-

lenges at the bottom two layers, especially when there is a lack of

balanced respect to the efficiency and the modularity concerns. Under-

standing these challenges is essential for identifying the missing pieces

needed for the potential unification of the classical frameworks.

On one hand, channel coding theory provides design guidance by

characterizing performance limitations such as channel capacity of a
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6 Introduction

communication system. While such efforts have been highly successful

in single user [71][72][81] and structured multiuser systems such as mul-

tiple access [1][53][90][94] and broadcast systems [19][9][10][30][89], the

picture does not look so bright when it comes to a general multiuser

network. Deriving channel capacity or capacity region of a general mul-

tiuser system is often extremely challenging. Even if one can be confi-

dent about solving the capacity problems, an equally important concern

is the assumption of the coordinated communication model which has

infiltrated into many aspects of the channel coding problem formula-

tions [22]. More specifically, because a wireless network often involves a

significant number of users with dynamic short message transmissions,

the assumption that all users can be fully coordinated with a negligible

overhead is no longer justified in such an environment. Performance

limitations obtained in classical channel coding theory provide little

guidance to the design and optimizations of distributed and partially

distributed communication systems, which are commonly seen in wire-

less networks [11].

On the other hand, while extending the existing network architec-

ture to wireless systems appeared to be more practical, not all exten-

sions can stand the test of time. With revisions to handle wireless-

specific problems such as the hidden and the exposed nodes problems

[7], wireless devices can be effectively connected to carry out network-

ing functions. Such extension enabled the exponential growth of Wi-Fi

networks [77], which belong to the class of single-hop wireless networks

in the sense that either the transmitter or the receiver in each trans-

mission is directly connected to a wireline network. In Wi-Fi networks,

wireless routers and client devices are often organized into a cellular-

type structure with each micro cell being managed by one router and

with interference between different cells well controlled via channel or

space separations. By scheduling communication activities within each

cell, and exploiting multiple access, broadcast and multiple antenna

communication techniques, communication efficiency can be managed

at an acceptable level. However, when it comes to multi-hop wireless

networks, such as multi-hop bluetooth networks [61] and WiMax net-

works [3], the stories are quite different. While wireless devices can
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1.1. The Single-hop Cellular Structure 7

be connected effectively, most of the proposed multi-hop wireless net-

works failed to become popular mainly due to their low communication

efficiency. Although it is well known that the throughput of wireless sys-

tems often does not scale well [38][39][92], the fact that only Wi-Fi-type

networks can sustain an acceptable level of efficiency is primarily due

to the architectural design details that intentionally or unintentionally

compromised bandwidth and energy efficiency of many of the wireless

systems.

Because of the difficulties in extending classical theoretical frame-

works, major network systems tend to use wireline networks as their

backbone and to use wireless links only at the last hop. Wireless devices

are often organized into a cellular-type structure to best exploit oper-

ational guidance from both classical information theory and classical

network theory. In this monograph, we term this special structure the

“single-hop cellular structure”, as illustrated in Figure 1.1. There have

Figure 1.1: The single-hop cellular structure.

been continuous demands and research efforts to extend wireless sys-

tems beyond the single-hop cellular structure [22][37]. However, most

of these efforts face a clear dilemma. That is, while the inefficiency

of the current network architecture limited its capability in support-

ing complex wireless network structures, a complete redesign of the

network architecture is also in lack of a strong incentive because the

current architecture does work reasonably well for the wireline part of
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8 Introduction

the networks. This dilemma does not necessarily imply that an ultimate

unification of the classical theories will not happen. It does however sug-

gest that consummation of the classical frameworks should be carried

out in well motivated steps.

In the rest of the monograph, we will only consider wireless net-

works with the single-hop cellular structure due to its dominance in

current wireless systems. Because a wireless channel usually has a much

lower capacity than a wireline cable, with the objective of addressing

the throughput bottleneck, we also choose to focus on the bottom two

layers of the network, i.e., the physical and the data link layers. Note

that once a data packet travels one hop into the wireline network, band-

width and energy efficiency is no longer the primary concern, and hence

research challenges at the higher layers become fundamentally different.

Nevertheless, even with just two layers and a special network structure,

the necessity of unifying information theory and network theory for

wireless systems is still quite convincing.

1.2 The Missing Support of Distributed Communication

Data networks often have large numbers of bursty short messages that

need to be disseminated in a timely manner [11][22]. Coordinating all

users in a communication party in such an environment can be infea-

sible or expensive in terms of overhead. A significant proportion of

the messages in current wireless networks are therefore transmitted us-

ing distributed communication protocols, where an individual user can

adjust its communication parameters, such as a transmission/idling de-

cision, without sharing such a decision with other users including its

targeted receiver [58]. Such a communication model is incompatible

with the joint coding design assumption of the classical channel coding

theory. Distributed communication can also cause key issues that do

not appear in a coordinated communication system. For example, with-

out full user coordination, data packets transmitted from multiple users

can experience collision at their receivers [60]. Collision detection and

collision resolution therefore are core problems at the physical and the

data link layers [11]. However, these problems are completely ignored

in classical channel coding theory [20].
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1.2. The Missing Support of Distributed Communication 9

One may think that classical network theory and current network

architecture provide reasonable support for distributed communication

and networking at the bottom two layers. Unfortunately, this is true

only for wireline systems when communication efficiency is not a key

concern. Current layering architecture assumes that a link layer user

can only determine whether a packet should be transmitted or not

[11]. Other communication details are handled at the physical layer.

In distributed communication when physical layer does not have full

capability of joint channel code optimization, data link layer has to get

involved into communication adaptation. A simple example is the col-

lision resolution protocols such as the exponential backoff-based DCF

protocol in IEEE 802.11 [12]. However, with each link layer user only

having binary transmission/idling options, advanced wireless capabil-

ities such as rate, power and antenna beam adaptations all become

irrelevant at the data link layer. This can lead to a quite significant ef-

ficiency reduction in the throughput performance of a wireless system.

For example, let us consider a multiple access system with K ho-

mogenous users and a single receiver. Assume unit channel gain from

each user to the receiver, and additive Gaussian noise with zero mean

and variance N0. Assume that each user has a transmission power of P .

From classical channel coding theory [20], we know that, if each user

encodes its own message at a rate of 1
2 log2

(
1 + P

N0

)
bits/symbol, then

reliable message recovery is only possible if the users transmit sequen-

tially. Sum rate of the system therefore is upper bounded by the single

user channel capacity of C1 = 1
2 log2

(
1 + P

N0

)
bits/symbol, irrespec-

tive of the user number K. Alternatively, if users transmit in parallel

with an individual rate of 1
2K

log2

(
1 + KP

N0

)
, then sum rate of the sys-

tem can approach the sum channel capacity of CK = 1
2 log2

(
1 + KP

N0

)

bits/symbol, which grows unboundedly in K. A similar conclusion ap-

plies to the same system with a distributed communication model as

well. Assume that each user has bursty short messages and cannot

afford the overhead of joint coding optimization. If each message is en-

coded at a rate only slightly less than C1
1, then sum rate of the system

1Note that the rate needs to be smaller than C1 in order to support reliable
decoding with a finite codeword length [28].

Full text available at: http://dx.doi.org/10.1561/1300000063



10 Introduction

is upper bounded by C1 bits/symbol. Alternatively, if messages arrive

with a statistics such that on average K̃ users should have messages

to transmit at any moment, then it is generally beneficial to encode

each message at a rate close to 1
2K̃

log2

(
1 + K̃P

N0

)
to support parallel

transmissions from up to K̃ users. However, because traffic statistics is

unknown at the design stage of a protocol and may also vary in time, in

the case of distributed communication, maintaining a high throughput

efficiency requires users to have reasonable flexibility of adapting their

communication parameters, such as communication rate, at the data

link layer. Such a capability is not supported by the physical-link layer

interface in the current network architecture.

1.3 An Enhanced Physical-Link Layer Interface

The nature of distributed communication implies that communication

parameters cannot be jointly and fully optimized at the physical layer.

However, system traffic at the data link layer may still be more or less

stationary. To improve communication efficiency, data link layer should

exploit advanced wireless capabilities to adapt transmission schemes ac-

cordingly, and this needs to be done under the constraint of maintaining

a layered (or modularized) network architecture.

To achieve such an objective, we propose an enhancement to the

physical-link layer interface [55]. In the enhanced interface, each link

layer user can be equipped with multiple transmission options as op-

posed to the binary transmission/idling options. Different transmission

options may correspond to different communication settings such as

different power, rates or antenna beams. We generally assume that

each link layer user should have a handful of possibly device-dependent

transmission options. To maintain the layered architecture, under the

distributed communication model, we assume that link layer proto-

col should inform the physical layer whether a message needs to be

transmitted, and if so, which transmission option should be used. Such

decisions are not controlled or optimized at the physical layer. We as-

sume that a physical layer receiver should decode the message only if a
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1.3. An Enhanced Physical-Link Layer Interface 11

pre-determined error probability threshold can be met [11][55]. Other-

wise the receiver should report collision to the data link layer. At the

data link layer, we assume that a user can only choose from the list of

provided transmission options, as opposed to being able to adapt the

communication parameters arbitrarily.

While the interface enhancement appears to be minor, it involves

key research questions whose answers cannot be found in the classical

frameworks. At the physical layer, due to possible lack of user coordina-

tion, reliable message delivery cannot always be guaranteed. However,

it is a fundamental requirement in the layered architecture that any

message forwarded to the data link layer must be reliable [11]. Fur-

thermore, because transmission decisions are made at the data link

layer, i.e., they are not controlled by a physical layer protocol, any as-

sumption of such a control, such as information rate optimization, may

not be valid in physical layer channel coding. With these constraints,

whether the notion of fundamental limit still exists for a distributed

communication system is a key question that needs to be answered. In

Sections 2 and 3 of this monograph, we will show that not only the

notion of channel capacity still exists for a distributed system, it can

indeed be viewed as an extension to the corresponding result in clas-

sical channel coding theory. Meanwhile, at the data link layer when

a user is equipped with multiple transmission options, one needs to

understand how packet transmission schemes should be adapted in re-

sponse to the events of transmission success and packet collision. In

existing link layer protocols, when only a single transmission option

(plus an idling option) is available, a common practice in response to

packet collision is to reduce the packet transmission probability of each

user [42][11][12]. From classical channel coding theory, we know that

a more efficient approach could be reducing the communication rate

of each user [20]. However, while transmission options with different

power and rate combinations may be available, there is no guarantee

that the ideal option should be on the list. Furthermore, different link

layer networks may also have different utility optimization objectives.

Whether a general link layer distributed medium access control frame-

work exists to optimize transmission schemes under these constraints
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12 Introduction

is an important question that needs to be answered. Although we are

not yet able to provide rigorous answers to this question, in Section

4, we present early research results to show that a stochastic approx-

imation framework could be a good starting point to investigate the

corresponding link layer problems.
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Channel Capacity in Distributed Communication

Classical channel coding theory assumes the coordinated communica-

tion model [29][21][20]. Each transmitter in a communication party

should be backlogged with an infinite reservoir of traffic. To achieve re-

liable communication, transmitters should jointly determine their code-

books which set values to communication parameters such as trans-

mission power and information rates. Codebook information should be

shared with other transmitters and receiver before the encoded symbols

are transmitted to the receiver continuously over a long time interval.

Channel capacity and channel coding theorems are proved using the

standard argument of jointly typical sequences by taking the codeword

length to infinity [71][72].

In distributed communication, however, users need to prepare their

coding schemes with incomplete and maybe highly limited information

about the communication channel and the communication environment.

Therefore, instead of choosing one code, each user should prepare an en-

semble of codes corresponding to different communication settings such

as different power and rate combinations [58][87][55]. The ensemble can

be shared with other users, for example by specifying it in the physical

layer protocol. When messages become available, depending on deci-

13
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14 Channel Capacity in Distributed Communication

sions from the data link layer protocol, each physical layer transmitter

chooses a particular code to encode its message and to send the corre-

sponding codeword through the channel. The coding choice may be un-

known to other users including the receiver. Because users are not fully

coordinated, reliable message delivery may not always be supported by

the channel. It is the receiver’s responsibility to detect whether reliable

decoding can be achieved or not1. If the answer is positive, the receiver

should decode the messages of interest. Otherwise, the receiver should

report collision. Although the receiver does not always output decoded

messages, expected outcomes at the receiver under different system-

wise communication settings should still be clearly defined. Therefore,

one can generalize the definition of “communication error” from the

classical meaning of erroneous decoding to the generalized meaning

that output of the receiver is different from the expected outcome [55].

With such an extended definition, it is then possible to characterize

asymptotic performance limitation of the system, in the sense of dimin-

ishing error probability when taking the codeword length to infinity, or

to investigate performance tradeoff bounds under the assumption of a

finite codeword length [58][87][55].

In this section, we will introduce coding theorems for the distributed

communication model. We will start by maintaining the assumption

that codeword length of each user can still be taken to infinity and

will postpone the discussions on finite codeword length to Section 3.

Throughout the section, we only present results for channels with finite

input and output alphabets. The results can be easily extended to

channels with continuous input and output alphabets using the same

approach for similar extensions in classical channel coding theory [29].

2.1 Distributed Single User Communication

Let us first consider a single user communication system over a discrete-

time memoryless channel. The channel is modeled by a conditional

distribution function PY |X where X ∈ X is the channel input symbol

1An alternative assumption that the transmitters should tell the receiver about
their transmission/idling status was investigated in [63].
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2.1. Distributed Single User Communication 15

and Y ∈ Y is the channel output symbol. The sets X and Y are the

finite input and output alphabets. We assume that time is slotted with

each slot equaling N symbol durations, which is also the length of

a packet or a codeword. Unless otherwise specified, we will confine

our focus on block channel codes of length N that represents coding

within each packet or each time slot2. Throughout this section, we

assume that the communication channel is time-invariant. We assume

that channel input alphabet X should be known at the transmitter.

Channel distribution function PY |X should be known at the receiver

but unknown at the transmitter.

We assume that the physical layer transmitter is equipped with an

ensemble of random block codes [28] each corresponding to a transmis-

sion/idling option at the data link layer. The ensemble is denoted by

G(N) = {g1, g2, . . . , gM } with a finite cardinality |G(N)| = M . Coding

scheme of the distributed system is described as follows. Note that the

description is extended from a mathematical definition of random cod-

ing introduced in [70]. For g ∈ G(N), let Lg = {Cgθ : θ ∈ Θ(N)} be a

library of codebooks, indexed by a set Θ(N). Each codebook contains

⌊eNrg ⌋ codewords of length N , where rg is a pre-determined parameter

termed the “communication rate” of the corresponding code3. Denote

by [Cgθ(w)]j the jth symbol of the codeword corresponding to message

w in codebook Cgθ. At the beginning of a time slot, the transmitter ran-

domly generates a codebook index θ according to a distribution γ(N).

The distribution γ(N) and the codebooks Cgθ, ∀g ∈ G(N), are chosen

such that random variables Xgwj : θ → [Cgθ(w)]j , ∀j, w and for each g,

are i.i.d. according to a pre-determined input distribution PgX . Note

that input distributions of different codes (i.e., corresponding to differ-

ent g) may be different. We assume that the ensemble of code libraries

and the value of θ should both be known at the receiver. That is, the

receiver knows the randomly generated codebook of each code. This

can be achieved by sharing the random codebook generation algorithm

with the receiver.

2Note that such a focus does not prevent the implementation of other coding
schemes across multiple packets.

3Recall that each codeword represents one single packet, as opposed to multiple
packets, that can be possibly chosen for transmission.
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16 Channel Capacity in Distributed Communication

For example, suppose codebooks of the user are generated using a

pseudo random sequence generator seeded by time and its user identity.

The system can specify the pseudo random algorithm in a physical layer

protocol and share it with the receiver. So long as clocks of the user and

the receiver are synchronized, the receiver only needs the user identity

information to generate the random codebooks [55].

At the beginning of a time slot, depending on a link layer deci-

sion, the transmitter chooses a code g ∈ G(N) from the ensemble. We

assume that such a decision is made arbitrarily in the sense that it

is not controlled by the physical layer, and therefore even statisti-

cal information of the coding choice may be unknown at the phys-

ical layer. More importantly, we assume that g is unknown to the

receiver. Given code index g, the transmitter then uses the random

coding scheme to map a message w into a codeword of N channel

input symbols X
(N)
g (w) = [Xgw1, Xgw2, . . . , XgwN ], and sends the sym-

bols through the channel. Upon receiving the channel output symbols

Y (N) = [Y1, Y2, . . . , YN ], the receiver either outputs an estimated mes-

sage and code index pair (ŵ, ĝ), or reports “collision”.

Note that in the above description, a random block code g is char-

acterized by its communication rate rg and its input distribution PgX .

With an abuse of the notation, we also regard g = (rg, PgX) as a vari-

able representing a rate and distribution pair, which is not a function

of the codeword length N . We will use “code space” to refer to the

space of g, which is the space of rate and distribution pairs.

We assume that the receiver should choose a region R, termed the

“operation region”, in the code space. Note that while R itself is not a

function of the codeword length, for a given codeword length N , R rep-

resents a subset of the random block codes whose rate and distribution

pairs belong to the specified region in the code space. Because the chan-

nel is unknown at the transmitter especially when code ensemble G(N)

is designed, not all codes in the ensemble can support reliable message

delivery over the channel. We assume that, the receiver should “intend”

to decode the message if g ∈ R and to report collision if g 6∈ R. Note

that the receiver does not know g and will need to make a judgement

on whether to decode the message or not based only on the channel
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2.1. Distributed Single User Communication 17

output sequence Y (N). Given the operation region R, and conditioned

on g being the actual code used for transmission, communication er-

ror probability as a function of g for codeword length N is defined as

follows4.

P (N)
e (g) =





maxw Pr{(ŵ, ĝ) 6= (w, g)|(w, g)}, ∀g ∈ R

maxw 1 − Pr

{
“collision” or

(ŵ, ĝ) = (w, g)

∣∣∣∣∣ (w, g)

}
, ∀g 6∈ R

.

(2.1)

Definition 2.1. We say that an operation region R is asymptotically

achievable for the discrete memoryless channel PY |X , if for all finite

M and all code ensemble G = {g1, . . . , gM }, decoding algorithms can

be designed for the sequence of random code ensembles G(N) = G to

achieve

lim
N→∞

P (N)
e (gi) = 0, ∀i ∈ {1, . . . , M}. (2.2)

The following property is implied by the achievability definition.

Theorem 2.1. For a single user discrete memoryless channel PY |X with

finite input and output alphabets, if an operation region R is asymp-

totically achievable, then any subset of the region R̃ ⊆ R is also asymp-

totically achievable.

The following theorem gives the maximum achievable region of the

single user communication channel.

Theorem 2.2. For a single user discrete memoryless channel PY |X with

finite input and output alphabets X and Y, the following region Cd in

the code space is asymptotically achievable

Cd = {g|g = (rg, PgX), rg < Ig(X; Y )}, (2.3)

where Ig(X; Y ) denotes the mutual information between X and Y with

respect to joint distribution PXY = PY |XPgX .

4In error probability definition (2.1), we regard correct message output as one
of the acceptable outcomes for g 6∈ R. Compared with an alternative definition that
only accepts collision report for g 6∈ R, using definition (2.1) does not change the
results of Theorems 2.1 and 2.2. This is because the receiver can always choose to
report collision for g 6∈ R when g can be detected reliably.
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18 Channel Capacity in Distributed Communication

Let Cc
d = {g|g = (rg, PgX), rg ≤ Ig(X; Y )} be the closure of Cd.

The achievable region Cd is maximum in the sense that for any region

R that is asymptotically achievable, we must have R ⊆ Cc
d.

Although Theorem 2.2 is implied by Theorem 2.4, we still provide a

full proof in Appendix A.1 for the sake of easy understanding. The

proof also serves as a reference for understanding the more notation-

complicated proof of Theorem 2.4.

We define Cd as the “distributed capacity” of the discrete time mem-

oryless channel PY |X . Cd coincides with the classical Shannon capacity

C of the same channel [71][20] in the sense that we can regard Shannon

capacity C = {r|r < maxPX
I(X; Y )} as the set of information rates

achievable in the Shannon sense and write its closure as

Cc = {r|∃g ∈ Cc
d, rg = r}. (2.4)

Also note that the same capacity region Cd can have different meanings

in different communication models. In coordinated communication, on

one hand, the transmitter and the receiver can achieve reliable message

delivery at any rate r inside the capacity region using a random block

code g ∈ Cd with rg = r [20]. In distributed communication, on the

other hand, the transmitter chooses an arbitrary code g to transmit its

message. While coding choice is not shared with the receiver, if g ∈ Cd,

the receiver will be able to decode the message and to detect g reliably,

while if g 6∈ Cd, the receiver will be able to report collision reliably5.

2.2 Distributed Multiple Access Communication

Next, let us consider a time-slotted multiple access system with K

transmitters and one receiver. Each time slot equals the length of N

symbols. We use bold font variable to represent a vector whose entries

are the corresponding variables of all users. We model the discrete-

time memoryless multiple access channel by a conditional distribution

PY |X , where X = [X1, . . . , XK ]T ∈ X is the channel input symbol

vector of all users with X being the vector of finite input alphabets,

5According to Corollary 2.7, the receiver should be able to ensure collision report
for g 6∈ Cd.
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and Y ∈ Y is the channel output symbol with Y being the finite output

alphabet. We assume that channel input alphabet Xk is known to user

k, k ∈ {1, . . . , K}. Channel distribution function PY |X is known at the

receiver. Whether the channel is known at the transmitters or not is

irrelevant to the results we are going to present.

Assume that each physical layer transmitter is equipped with an en-

semble of M random block codes [28] each corresponding to a transmis-

sion/idling option at the data link layer. Let G(N) =
[
G(N)

1 , . . . , G(N)
K

]T

denote the vector of code ensembles of the users, where G(N)
k = {gk1, . . .,

gkM } is the ensemble of random block codes of user k, k ∈ {1, . . . , K}6.

We use g to represent a possible code vector chosen by the users.

g ∈ G(N) if for all k ∈ {1, . . . , K}, the kth entry gk of g satisfies

gk ∈ G(N)
k . We also use g = (rg, P gX) to represent the pair of rate and

distribution vectors corresponding to the random code vector. For any

code ensemble vector G(N), we use G to represent the corresponding

ensemble in the code space.

At the beginning of each time slot, a random codebook is generated

for each code and for each user. We assume that the receiver knows the

randomly generated codebooks as this can be achieved by sharing the

codebook generation algorithms with the receiver without requiring

much online information exchange [55]. Depending on decisions from

the link layer protocol, each transmitter chooses a code from its code

ensemble to map a message to a codeword, and then sends the code-

word through the channel. Coding choices of the users are denoted by a

code index vector g. At the physical layer, the value of g is regarded as

“arbitrary”. We assume that g is unknown to the receiver. Given code

index vector g, the transmitters then map a message vector w into

N vectors of channel input symbols, denoted by X(N)
g (w), and send

them through the multiple access channel. Upon receiving the channel

output symbols Y (N) = [Y1, Y2, . . . , YN ], the receiver outputs an esti-

mated message and code index vector pair (ŵ, ĝ) if a pre-determined

error probability requirement can be met, otherwise the receiver reports

6The assumption that code ensembles of all users should have the same cardi-
nality is made to simplify the notations. All theorems remain valid if cardinalities
of code ensembles of different users are different.
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collision. Here, we assume that the receiver should either decode the

messages of all users, or report collision for all users.

We assume that the receiver should choose an “operation region” R

in the code space, or in the space of rate and distribution vector pairs.

Because users are not coordinated, reliable message recovery may not

be possible for all coding choices. We assume that the receiver should

“intend” to decode the messages if g ∈ R, and to report collision if

g 6∈ R. As before, the receiver needs to make a decision on decoding or

collision report without the knowledge of the actual code index vector

g. Given the operation region R and conditioned on g being the actual

code index vector, communication error probability as a function of g

for codeword length N is defined as follows7.

P (N)
e (g) =





maxw Pr{(ŵ, ĝ) 6= (w, g)|(w, g)}, ∀g ∈ R

maxw 1 − Pr

{
“collision” or

(ŵ, ĝ) = (w, g)

∣∣∣∣∣ (w, g)

}
, ∀g 6∈ R

.

(2.5)

Definition 2.2. We say that an operation region R is asymptotically

achievable for the multiple access channel PY |X , if for all finite M and

all code ensemble vectors G, decoding algorithms can be designed for

the sequence of random code ensembles G(N) = G to achieve

lim
N→∞

P (N)
e (g) = 0, ∀g ∈ G. (2.6)

Similar to Theorem 2.1, the following property is implied by the

achievability definition.

Theorem 2.3. For a discrete memoryless multiple access channel PY |X

with finite input and output alphabets, if an operation region R is

asymptotically achievable, then any of its subsets R̃ ⊆ R is also asymp-

totically achievable.

The next theorem gives the maximum achievable region of the mul-

tiple access communication channel.

7As in the previous section, whether we regard correct decoding as an acceptable
outcome for g 6∈ R or not does not change the conclusions of the Theorems in this
section, because the receiver can always choose to report collision for g 6∈ R in cases
when g can be detected reliably.
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Theorem 2.4. For a discrete-time memoryless multiple access channel

PY |X with finite input and output alphabets, the following region Cd

in the code space is asymptotically achievable

Cd =



g

∣∣∣∣∣∣
g = (rg, P gX), ∀S ⊆ {1, . . . , K},

∑

k∈S

rgk
< Ig(XS ; Y |X S̄)



 ,

(2.7)

where XS denotes the channel input symbols for users in S, X S̄ de-

notes the channel input symbols for users not in S, and Ig(XS ; Y |X S̄)

denotes the mutual information between XS and Y given X S̄ with

respect to joint distribution PXY = PY |X
∏K

k=1 PgkXk
.

Let Cc
d be the closure of Cd. The achievable region Cd is maximum

in the sense that for any region R that is asymptotically achievable, we

must have R ⊆ Cc
d.

Theorem 2.4 is implied by Corollary 2.8.

We define Cd as the “distributed capacity” of the multiple access

channel PY |X . Note that Cd coincides with the classical Shannon ca-

pacity C of the same channel [1][53] in the following sense

Cc = convex hull ({r|∃g ∈ Cc
d, rg = r}) , (2.8)

where Cc and Cc
d are the closures of C and Cd, respectively. We also

regard Cd as an extension of the Shannon capacity in a sense similar

to the one explained at the end of Section 2.1.

Note that, similar to classical channel coding theory, Theorem 2.4

holds even if the input and output alphabets of the channel are con-

tinuous [29]. Also similar to classical channel coding theory, one can

pose a constraint in the code space to limit the coding choices of the

users. In this case the result of Theorem 2.4 can be used to obtain the

constrained distributed capacity of the channel. We give two examples

originally presented in [58] to illustrate these cases.

Example 2.1. Let us consider a K-user multiple access system over a

discrete-time memoryless channel with additive Gaussian noise. The

channel is modeled by Y =
∑K

k=1 Xk + V , where V is the Gaussian

noise with zero mean and variance N0.
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22 Channel Capacity in Distributed Communication

Let us pose a constraint that all random coding options for user k,

k ∈ {1, . . . , K}, must have Gaussian input distribution with zero mean

and variance Pk. Let r be the rate vector of the users. Constrained

distributed capacity of the multiple access channel is given by the fol-

lowing region in the space of the rate vectors.

Cd =



rg

∣∣∣∣∣∣
∀S ⊆ {1, . . . , K},

∑

k∈S

rgk
<

1

2
log

(
1 +

∑
k∈S Pk

N0

)
 , (2.9)

The constrained distributed channel capacity is identical to the Shan-

non channel capacity given in [90][20].

When K = 2 and P1 = P2 = 5N0, the capacity region is a pentagon

illustrated in Figure 2.1, where the rates are measured in nats/symbol.
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Figure 2.1: Distributed capacity of a two user Gaussian channel.

Example 2.2. Next, let us consider a K-user distributed multiple access

system over a symbol collision channel. Let n be a non-negative integer.

We model the channel as follows. Let the input alphabet of any user k

be given by Xk = {0, 1, . . . , 2n}, where 0 represents an idling symbol.

The channel output alphabet is given by Y = {0, 1, . . . , 2n, c}, where c
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represents a collision symbol. If all users idle, the receiver receives an

idling symbol Y = 0. If only one user, say user k, transmits a nonzero

symbol Xk, the receiver receives Y = Xk. If multiple users transmit

nonzero symbols, the receiver receives a collision symbol Y = c. As-

sume the constraint that, for any input distribution, probabilities of

transmitting different nonzero symbols must be identical. Consequently,

input distribution PgkXk
can be characterized by a single parameter pgk

,

which is the probability that any particular symbol in the transmitted

codeword takes a nonzero value. PgkXk
is therefore given by

PgkXk
=

{
1 − pgk

Xk = 0
1

2n pgk
Xk = j ∈ {1, . . . , 2n} . (2.10)

In other words, each code vector g = (rg, pg) can be mapped to a point

in the space of rate vector and probability vector pairs.

We define the distributed rate capacity region of the system as

C
(r)
d = {r|∃g ∈ Cd with r = rg}, where the rates are measured in

bits/symbol. By following the proof of [58, Proposition 1], for any user

subset S ⊆ {1, . . . , K}, we have,

lim
n→∞

1

n
Ig(XS ; Y |X S̄) = lim

n→∞

1

n
Hg(Y |X S̄ = 0)Pr{X S̄ = 0}

= Pr{Y 6∈ {0, c}}
∏

j∈S̄

(1 − pj) =
∑

k∈S

pk

∏

j∈S̄

(1 − pj). (2.11)

Therefore, the normalized distributed rate capacity region possesses the

following limiting behavior.

lim
n→∞

1

n
C

(r)
d =

{
λ

∣∣∣∣∣
∃0 ≤ p ≤ 1, ∀k ∈ {1, . . . , K},

λk ≤ pk

∏
j 6=k(1 − pj)

}
. (2.12)

When K = 2, (2.12) gives the throughput, stability and the infor-

mation capacity region of the collision channel [67][44], as illustrated in

Figure 2.2. In this case, the region is non-convex8, and can be written

in a simple form of
{
λ
∣∣√λ1 +

√
λ2 ≤ 1

}
[67][58].

8But it is coordinate convex [58].
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Figure 2.2: Throughput region of a two user collision channel.

2.3 Distributed Communication with Single User Decoding

In the previous section, we assumed that the receiver should either

decode the messages of all users or to report collision for all users. In

this section, we will extend the model further to assume that each

transmitter has its own associated receiver9 [58]. A receiver is only

interested in decoding the message of its associated transmitter even

though it can choose to decode the messages of other users if necessary.

Let us consider the system introduced in Section 2.2 with the as-

sumption that the receiver is now only associated to user 1. That is,

the receiver is only interested in decoding the message of user 1. We

still assume that the randomly generated codebooks of all users are

known at the receiver, and therefore, the receiver can choose to de-

code the messages of any other user if necessary. Let (w, g) be the

actual message vector and code index vector chosen by the transmit-

ters. Upon observing the channel output symbols Y (N), the receiver

outputs an estimated message and code index pair (ŵ1, ĝ1) for user 1 if

9This does not prevent a system from associating the same receiver to multiple
transmitters.
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a pre-determined error probability requirement can be met, otherwise

the receiver reports collision for user 1.

We assume that the receiver should choose an “operation region” R1

in the space of code index vectors10. The receiver “intends” to decode

the message of user 1 if the actual code index vector g ∈ R1 is inside

the operation region, and to report collision for user 1 if g 6∈ R1. Given

the operation region R1 and conditioned on g being the actual code

index vector, communication error probability as a function of g for

codeword length N is defined as follows.

P (N)
e (g) =





maxw Pr{(ŵ1, ĝ1) 6= (w1, g1)|(w, g)}, ∀g ∈ R1

maxw 1 − Pr

{
“collision” or

(ŵ1, ĝ1) = (w1, g1)

∣∣∣∣∣ (w, g)

}
, ∀g 6∈ R1

.

(2.13)

Definition 2.3. We say that an operation region R1 is asymptotically

achievable for the multiple access channel PY |X for user 1, if for all

finite M and all code ensemble vectors G, decoding algorithms can

be designed for the sequence of random code ensembles G(N) = G to

achieve

lim
N→∞

P (N)
e (g) = 0, ∀g ∈ G. (2.14)

Theorem 2.5. For a discrete-time memoryless multiple access channel

PY |X with finite input and output alphabets, if an operation region R1

is asymptotically achievable for user 1, then any subset R̃1 ⊆ R1 is

also asymptotically achievable for user 1.

Unlike similar theorems presented in the previous two sections, the

conclusion of Theorem 2.5 does depend on the error probability defini-

tion (2.13), where we regard correct message decoding as an acceptable

outcome for g 6∈ R1. Because the receiver does not always decode the

messages of users other than user 1, the receiver may not be able to

10Although the receiver is only interested in decoding the message of user 1, the
operation region is still defined in the space of code index vectors involving the code
indices of all users. This is because decodability of the message of user 1 depends
on the transmission status of other users in the system.
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correctly detect the part of the code index vector g corresponding to

the un-decoded users. Therefore, the receiver may not be able to tell

whether the actual code index vector g satisfies g ∈ R1 or not. With

the error probability definition (2.13), correct detection of the full code

index vector is not required. That is, so long as the receiver does not

output an erroneous message for user 1, whether the receiver guarantees

collision report for g 6∈ R1 or not is not a concern to the system.

Alternatively, suppose we only accept collision report for g 6∈ R1,

and define the error probability as

P (N)
e (g) =

{
maxw Pr{(ŵ1, ĝ1) 6= (w1, g1)|(w, g)}, ∀g ∈ R1

maxw 1 − Pr {“collision”| (w, g)} , ∀g 6∈ R1
.

(2.15)

Consequently, the receiver will have to detect whether g ∈ R1 or

g 6∈ R1. Depending on the feasibility of such a detection task, The-

orem 2.5 may no longer hold. That is, even if a region R1 is asymptot-

ically achievable for user 1, there may exist a subset R̃1 ⊆ R1 that is

not asymptotically achievable for user 1. A simple example of such a

situation is illustrated below.

Example 2.3. Consider a distributed multiple access system with two

users. Let X1, X2 be the channel input symbols of the two users, and

let Y be the channel output symbol, all having finite alphabets. As-

sume that input symbol of user 2 has no impact to the channel out-

put. That is, the channel satisfies P (Y |X1, X2) = P (Y |X1). With

the error probability definition of (2.15), according to Theorem 2.2,

the following region R1 =

{
g =

[
g1

g2

]∣∣∣∣∣ rg1 < Ig1(X1; Y )

}
is asymp-

totically achievable for user 1. However, the following subset R̃1 ={
g =

[
g1

g2

]∣∣∣∣∣ rg1 < Ig1(X1; Y ), rg2 < 0.5

}
with R̃1 ⊆ R1 is not achiev-

able for user 1. This is because the receiver has no capability of detect-

ing the communication rate of user 2, and therefore cannot tell whether

rg2 < 0.5 is true or false (or equivalently, whether or not g ∈ R̃1).

Let us come back to the error probability definition of (2.13). The

following theorem gives the maximum achievable region of the multiple

access channel for user 1 [58].
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Theorem 2.6. For a discrete memoryless multiple access channel PY |X

with finite input and output alphabets, the following region Cd1 in the

code space is asymptotically achievable for user 1.

Cd1 =

{
g

∣∣∣∣∣
g = (rg, P gX), ∀S ⊆ {1, . . . , K}, 1 ∈ S, ∃S̃ ⊆ S, 1 ∈ S̃,

such that,
∑

k∈S̃ rgk
< Ig(X S̃ ; Y |X S̄)

}
.

(2.16)

where Ig(X S̃ ; Y |X S̄) denotes the mutual information between X S̃ and

Y given X S̄ with respect to joint distribution corresponding to code

index vector g, i.e., PXY = PY |X
∏K

k=1 PgkXk
.

The achievable region Cd1 is maximum in the sense that for any

region R1 that is asymptotically achievable for user 1, we must have

R1 ⊆ Cc
d1, where Cc

d1 is the closure of Cd1.

The proof of Theorem 2.6 is presented in Appendix A.2.

In fact, the following theorem shows that Cd1 is also achievable for

user 1 under the alternative error probability definition (2.15), although

in this case there is no guarantee that a subset of Cd1 should also be

achievable.

Corollary 2.7. Theorem 2.6 still holds under error probability definition

(2.15).

The proof of Corollary 2.7 is presented in Appendix A.3.

The above results can be further extended to the case when the

receiver is interested in decoding the messages of a user subset.

Definition 2.4. Let S0 ⊆ {1, . . . , K} be a user subset. We say that an

operation region RS0 is asymptotically achievable for the multiple ac-

cess channel PY |X for user subset S0, if ∀k ∈ S0, RS0 is asymptotically

achievable for user k.

The following corollary gives the maximum achievable region for

the multiple access channel for user subset S0.

Corollary 2.8. For a discrete memoryless multiple access channel PY |X

with finite input and output alphabets, let Cdk be the maximum achiev-

able region for user k. The expression of Cdk can be obtained from

(2.16) by replacing user index 1 with user index k. Let S0 ⊆ {1, . . . , K}
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be a user subset. The maximum achievable region for user subset S0 is

given by

CdS0 =
⋂

k∈S0

Cdk =

{
g

∣∣∣∣∣
g = (rg, P gX), ∀S ⊆ {1, . . . , K}, S ∩ S0 6= φ, ∃S̃,

S ∩ S0 ⊆ S̃ ⊆ S, such that,
∑

k∈S̃ rgk
< Ig(X S̃; Y |X S̄)

}
.

(2.17)

where φ is the empty set, and Ig() denotes the mutual information

function calculated with respect to joint distribution corresponding to

code index vector g, i.e., PXY = PY |X
∏K

k=1 PgkXk
.

The proof of Corollary 2.8 is presented in Appendix A.4.

Example 2.4. Consider the K-user distributed multiple access system

with additive Gaussian noise as introduced in Example 2.1. We still

pose the constraint that, for any user k, input distributions of all cod-

ing options must be Gaussian with zero mean and variance Pk. If the

receiver is only associated to user 1, then according to Theorem 2.6,

the maximum achievable region for user 1 is given by

Cd1 =



rg

∣∣∣∣∣∣

∀S ⊆ {1, . . . , K}, 1 ∈ S, ∃S̃ ⊆ S, 1 ∈ S̃,

such that,
∑

k∈S̃ rgk
< 1

2 log

(
1 +

∑
k∈S̃

Pk∑
k∈S\S̃

Pk+N0

)


 .

(2.18)

Similarly, one can also use Theorem 2.6 and Corollary 2.8 to obtain the

maximum achievable region for any other user and for any user group.

When K = 2 and P1 = P2 = 5N0, the maximum achievable region

for user 1 and the maximum achievable region for user 2 are illustrated

respectively in Figure 2.3, where the rates are measured in nats/symbol.

It can be seen that intersection of the two regions equals the constrained

channel capacity, i.e. the pentagon region, as illustrated in Figure 2.1.

2.4 Interfering User and Compound Channel

In a distributed system when users access the communication chan-

nel opportunistically, a receiver often needs to consider users that can
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Figure 2.3: Maximum achievable regions for each individual user of a two user
Gaussian channel.

potentially be active in the area. The system therefore may involve a

significant number of users in its decoding operation. When there is a

lack of user coordination and the receiver is not interested in decoding

the messages of the remotely located users, it is not always reasonable

to assume that codebook information of all users should be known at

the receiver [55]. From a complexity perspective, it is also possible that

the receiver may choose not to fully process codebook information of

all users even if such information is available. Furthermore, without

continuous transmission coverage, it is generally difficult for a receiver

to keep track of the status of the wireless channels from every trans-

mitter. This is especially true for users whose bursty messages are not

decodable at the receiver. Therefore, the assumption that the multiple

access channel should be known precisely at the receiver is not always

valid. In this section, we extend the system model to include interfering

users whose codebook information is not fully known at the receiver,

and also to include the case of distributed communication over a com-

pound channel. We investigate the two problems together because they

actually fall into the same problem formulation [55].

In order to motivate the general system model, let us first consider

the following two examples.

Example 2.5. (Interfering User) Let us start with the time-slotted
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distributed communication system introduced in Section 2.3. We add

one more user into the system, indexed as user 0. Assume that user

0 is equipped with a code ensemble G0 = {g01, . . . , g0M }. Each code

g0i in the ensemble corresponds to a random block code with rate rg0i

and input distribution Pg0iX0 . The memoryless channel is characterized

by a conditional distribution PY |X with finite input alphabets X and

finite output alphabet Y. We term user 0 an “interfering user” in the

following sense. We assume that the receiver only knows the input dis-

tribution information of the code ensemble of user 0, but the randomly

generated codebooks of user 0 are unknown at the receiver. In other

words, it is not possible for the receiver to decode the message of user

0. Denote the actual code index of user 0 by g0. Given g0, the channel

can be characterized by the following marginal conditional distribution

function that only involves the input symbols of users other than user

0, i.e., X
{0}

.

PY |X
{0}

(g0) =
∑

X0∈X0

PY |XPg0X0 . (2.19)

Note that the channel function PY |X
{0}

(g0) is a function of g0. Because

codeword information of user 0 is not available at the receiver, the re-

ceiver should only work with the marginal channel function PY |X
{0}

(g0)

in its decoding operation11.

Example 2.6. (Compound Channel) Let us again start with the

time-slotted distributed communication system introduced in Section

2.3. We assume that the channel is replaced by a compound multiple

access channel with M possible realizations, PY |X ∈ {P
(1)
Y |X , P

(2)
Y |X , . . .,

P
(M)
Y |X}. The receiver knows the ensemble of possible channel realizations

but does not know the particular realization chosen at the beginning

of each time slot. To model such a system, we can introduce a virtual

user, indexed as user 0. We assume that the user is equipped with an

ensemble of M communication options, denoted by G0 = {1, . . . , M}.

At the beginning of each time slot, user 0 chooses a value of its commu-

nication parameter g0 ∈ G0 arbitrarily, and this determines the channel

11Extending the system model to include multiple interfering users is quite
straightforward [55].
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realization by setting PY |X = P
(g0)
Y |X . We can think the channel model

as PY |X(g0) = P
(g0)
Y |X , which is a function of g0. The channel function

and the ensemble G0 are known at the receiver, but the receiver does

not know the value of g0 ∈ G0 chosen at the beginning of each time

slot.

Next, we show that the two examples can actually be covered by

the same general system model presented below.

Consider a time-slotted distributed communication system with

K + 1 transmitters and one receiver. The transmitters (users) are in-

dexed by {0, 1, . . . , K}. We categorize users 1, . . . , K as “regular users”

and user 0 as an “interfering user”. We assume that each regular user

k ∈ {1, . . . , K} is equipped with an ensemble of random block codes,

denoted by Gk = {gk1, . . . , gkM }. Each code gki = (rgki
, PgkiXk

) is char-

acterized by a rate and input distribution pair. At the beginning of

each time slot, regular user k chooses a code index gk ∈ Gk arbitrar-

ily, and then maps a message wk to a codeword sequence X
(N)
gk

(wk)

and sends the sequence of channel input symbols through the multiple

access channel. We assume that the receiver knows the ensemble of

randomly generated codebooks of each regular user k, but the receiver

does not know the value of code index gk. For the interfering user 0,

we assume that the user has a parameter g0 which, for convenience,

is still termed the code index parameter. User 0 is equipped with an

ensemble of communication options, denoted by G0 = {g01, . . . , g0M }.

We assume that, at the beginning of each time slot, the interfering user

should choose g0 ∈ G0 arbitrarily, and this affects the communication

channel model in a sense explained below. We denote the vector of

channel input symbols of the regular users by X, and denote the mes-

sage vector of the regular users by w. We use G to denote the vector of

code ensembles of all users including the interfering user. g ∈ G is used

to denote a vector of code indices of all users including the interfering

user. Once the regular users send their channel input vector sequence

X(N)
g (w) through the multiple access channel, output sequence Y (N)

of the channel is generated according to a conditional distribution func-

tion PY |X(g0), which is a function of the code index parameter g0 of
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the interfering user12. We assume that the receiver should know the

channel function PY |X(g0) and the ensemble G including G0, but the

receiver does not know the code index vector g including g0.

We assume that the receiver is associated to user 1. The receiver

should output an estimated message and code index pair (ŵ1, ĝ1) for

user 1 if a pre-determined error probability threshold can be met, oth-

erwise the receiver should report collision for user 1. Let (w, g) be the

actual message vector and code index vector pair. The receiver should

choose an operation region R1 in the space of code index vectors g.

The receiver intends to decode the message of user 1 if g ∈ R1, and

intends to report collision for user 1 if g 6∈ R1.

The following theorem shows that key results presented in Section

2.3 can be extended to distributed communication with the existence

of an interfering user.

Theorem 2.9. Let g0 be the code index of an interfering user. For a

discrete memoryless multiple access channel PY |X(g0) with finite input

and output alphabets, conclusions of Theorems 2.5, 2.6, and Corollaries

2.7, 2.8 still hold, so long as the following extensions are applied to the

statements in the theorems, corollaries and in their proofs.

1. Channel input vectors X , rate vectors rg, input distribution

vectors P gX should only contain entries corresponding to the regular

users 1, . . . , K.

2. Code index vectors g = (rg, P gX , g0) as well as code ensemble

vector G should contain one more entry corresponding to the code index

of the interfering user.

3. Given code index vector g, mutual information function Ig(),

entropy function Hg(), and probability function pg() should all be com-

puted with respect to joint distribution PXY = PY |X(g0)
∏K

k=1 PgkXk
,

i.e., with a channel function of PY |X(g0).

4. User subsets S ⊆ {1, . . . , K} should only contain the regular

users. The complement set S̄ should be defined as S̄ = {1, . . . , K} \ S,

i.e., the interference user should be excluded from S̄.

12Note that such a function can be defined independently from the communica-
tion option ensemble G0 of the interfering user, i.e., the range of g0 in the definition
can extend beyond the ensemble G0.
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5. The maximum number of possible code index vectors should be

upper bounded by MK+1.

With the above extensions, if error probability is defined as in (2.13),

then any subset of an achievable region should also be achievable, Cd1

given in (2.16) is the maximum asymptotically achievable region for

user 1, CdS0 given in (2.17) is the maximum asymptotically achiev-

able region for user subset S0 ⊆ {1, . . . , K}, and the regions are still

achievable if the error probability definition is changed to (2.15).

Theorem 2.9 can be proven by following the proofs of Theorems 2.5,

2.6, and Corollaries 2.7, 2.8 with the extensions listed above.

Example 2.7. Consider a single user communication system over a

discrete-time memoryless channel with an unknown channel gain and

additive Gaussian noise. The channel is modeled by

Y = hX + V, (2.20)

where h ≥ 0 is the unknown channel gain and V is the Gaussian noise

with zero mean and variance N0.

Let us pose the constraint that input distributions of all coding

options must be zero mean with variance P . We can formulate the

problem by constructing a system with two users. User 1 is the regular

user whose coding options G1 = {r1, . . . , rM1} represent an ensemble

of Gaussian random block codes with the same input distribution but

with different rates. User 0 is a interfering (or virtual) user whose com-

munication options G1 = {h1, . . . , hM0} represent the ensemble of com-

pound gains that can possibly be taken by the channel. Consequently,

distributed capacity region of the system is simply a region in the space

of rate and channel gain pairs given by

Cd1 =

{
(rg1 , h)

∣∣∣∣∣rg1 <
1

2
log

(
1 +

h2P

N0

)}
, (2.21)

where the rate is measured in nats/symbol. The capacity region is il-

lustrated in Figure 2.4 for P = 5N0.

Full text available at: http://dx.doi.org/10.1561/1300000063



34 Channel Capacity in Distributed Communication

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

h

1g
r

÷÷
ø

ö
çç
è

æ
+=

0

2

1log
2

1
1 N

Ph
rg

1dC

(n
at
s/
sy
m
b
o
l)

Figure 2.4: Distributed capacity region of a single user system over a Gaussian
channel with an unknown channel gain.
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3

Performance Bound with A Finite Codeword

Length

Distributed communication often involves transmissions of bursty short

messages, and therefore asymptotic analysis that takes codeword length

to infinity may not be a valid approximation to the practical commu-

nication setting [22]. In this section, we extend the coding theorems to

distributed communication systems with a finite codeword length [87].

While performance bounds on tradeoffs among decoding error prob-

ability, information rate, and codeword length have been extensively in-

vestigated in classical channel coding theory [25][28][73][84][26][13][65],

the distributed communication model brought several new challenges

that must be carefully considered in the formulation and analysis of

the corresponding problems [87][55]. First, because data packets in dis-

tributed communication are relatively short in length, validity of the

obtained tradeoff bounds should not require a large codeword length.

Second, each user in a distributed communication system can choose its

code from the ensemble arbitrarily. Different coding choices may lead

to different types of error events such as decoding error and collision de-

tection error. Therefore, when analyzing error probability performance

of a distributed communication system, one may want to assign differ-

ent weights to the probabilities of different error events. We will see

35
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in the section that, distributed communication can also involve tricky

detection problems (such as collision detection or compound channel

detection) whose performance depends on the decoding algorithm de-

sign at the receiver. If the decoding algorithm is not carefully thought

out, error performance of the system can be dominated by an ill-posed

detection task, which does not necessarily reflect the practical objective

of the system design [55].

3.1 The Generalized Error Performance Measure

Let us again start with a single user system that consists of one trans-

mitter and one receiver. The discrete-time memoryless channel is mod-

eled by a conditional distribution function PY |X with X ∈ X being the

channel input symbol and Y ∈ Y being the channel output symbol. X
and Y are the finite input and output alphabets, respectively. We use

P (Y |X) to denote the conditional probability of channel output sym-

bol Y given channel input symbol X. Time is slotted with each slot

equaling the length of N symbol durations, which is also the length of

a packet. As before, we focus on channel coding within one time slot

or one packet. We assume that the transmitter is equipped with an

ensemble of random block codes, denoted by G = {g1, . . . , gM }, with

cardinality |G| = M . Each code g ∈ G is characterized by a rate and

input distribution pair (rg, PgX). The probability of a channel input

symbol X with respect to input distribution PgX is denoted by Pg(X).

At the beginning of each time slot, the transmitter arbitrarily chooses

a code index g ∈ G, and then encodes a message w into a codeword

X
(N)
g (w) of N symbols and sends the symbols through the channel. We

assume that the receiver knows the randomly generated codebooks of

all codes. But the receiver does not know the value of code index g.

The receiver chooses an operation region R ⊆ G which is a subset of

the code ensemble G. Upon receiving the sequence of channel output

symbols Y (N), the receiver intends to output an estimated message and

code index pair (ŵ, ĝ) if g ∈ R, and to report collision if g 6∈ R.

Let the actual message and code index pair be (w, g). We define the
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conditional error probability as a function of g as

Pe(g) =





maxw Pr{(ŵ, ĝ) 6= (w, g)|(w, g)}, ∀g ∈ R

maxw 1 − Pr

{
“collision” or

(ŵ, ĝ) = (w, g)

∣∣∣∣∣ (w, g)

}
, ∀g 6∈ R

.

(3.1)

Note that whether or not we regard correct message decoding as an

acceptable outcome for g 6∈ R does not make any difference in the

performance of a single user system. This is because the receiver can

always choose to report collision for g 6∈ R when g can be detected

correctly.

Let {αg} be a set of pre-determined weight parameters each being

assigned to a code index g ∈ G. {αg} satisfies
{

αg

∣∣∣∣∣αg ≥ 0, ∀g ∈ G,
∑

g

e−Nαg = 1

}
. (3.2)

We define the “generalized error performance” (GEP) measure1 of the

system as

GEP =
∑

g

Pe(g)e−Nαg . (3.3)

GEP defined in (3.3) is the expected communication error probability

of the system if code index g is chosen with a presumed probability of

e−Nαg .

The following theorem gives an achievable bound of the generalized

error probability.

Theorem 3.1. Consider the single user distributed communication sys-

tem described above. There exists a decoding algorithm such that the

generalized error performance of the system is upper bounded by

GEP ≤
∑

g∈R


∑

g̃∈R

exp(−NEm(g, g̃)) + 2
∑

g̃ 6∈R

exp(−NEi(g, g̃))


 , (3.4)

where Em(g, g̃) and Ei(g, g̃) in the above equation are given by

1Introduction of the GEP measure was originally inspired by the results pre-
sented in [24].
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Em(g, g̃) = max
0<ρ≤1

−ρrg̃ + max
0≤s≤1

− log
∑

Y(
∑

X

Pg(X)[P (Y |X)e−αg ]1−s

)(
∑

X

Pg̃(X)[P (Y |X)e−αg̃ ]
s
ρ

)ρ

,

Ei(g, g̃) = max
0<ρ≤1

−ρrg + max
0≤s≤1−ρ

− log
∑

Y(
∑

X

Pg(X)[P (Y |X)e−αg ]
s

s+ρ

)s+ρ(∑

X

Pg̃(X)P (Y |X)e−αg̃

)1−s

(3.5)

The proof of Theorem 3.1 is provided in Appendix B.1. Although Theo-

rem 3.1 is implied by Theorem 3.2, because the proofs are quite sophisti-

cated, we provide complete proofs for both theorems and organize them

in the same structure so that readers can regard the proof of Theorem

3.1 as a reference to help understanding the more notation-complicated

proof of Theorem 3.2.

Note that the meaning of weight parameters {αg} can be interpreted

in various ways. For example, suppose the system chooses αg = +∞
for all g 6∈ R. On one hand, this can be interpreted as that the system

does not care about its error performance when g 6∈ R. On the other

hand, it can also be interpreted as an assumption that the transmitter

should not choose a code index g with g 6∈ R in the first place.

Furthermore, with appropriate choices of {αg}, GEP can also be

used as a tool to bound other error probability measures of interest.

For example, if one wants to get an achievable bound for maxg Pe(g),

due to the union bound,

max
g

Pe(g) ≤
∑

g

Pe(g) = M × GEP with αg =
1

N
log M. (3.6)

An achievable bound on maxg Pe(g) can be obtained by combining (3.6)

with (3.4).

Compared with a coordinated communication model where trans-

mitter should always choose a coding scheme that supports reliable

decoding, a distributed communication system needs to prepare for
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the situation when transmitter chooses a coding option outside the

operation region or even the capacity region. We already showed that

distributed capacity of a single user channel coincides with the Shannon

capacity in a sense explained after Theorem 2.2. It is intuitive to expect

that certain price must be paid to support the detection of transmission

options outside the operation region in the distributed communication

model. In the following example, we show that such a price can indeed

be seen in the scaling law of error performance bound with respect to

the codeword length.

Example 3.1. Consider a single user communication system over a bi-

nary symmetric channel with crossover probability 0.1. Shannon capac-

ity of the channel is given by C = 0.37 nats/symbol. Assume that the

transmitter has two coding options both with uniform input distribu-

tion. Rates of the two options are r1 < C = 0.37 and r2 = 0.6 > C.

Assume that the operation region contains only the first coding option,

i.e., R = {g = 1}. Let e−Nα1 = e−Nα2 = 0.5. In the case of a large

codeword length, the scaling law of error probability bound (3.4) in the

codeword length is determined by the following error exponent,

Ed = min{Em(g = 1, g̃ = 1), Ei(g = 1, g̃ = 1)}. (3.7)

If we choose e−Nα1 = 1, e−Nα2 = 0 and force the transmitter to use

the first coding option, then the corresponding error exponent becomes

the classical random coding exponent given as in [28] by

Er = Em(g = 1, g̃ = 1). (3.8)

A comparison of Ed and Er as a function of r1 is illustrated in Figure

3.1. It can be seen that the value of Ed is almost half of Er in this

case2.

3.2 Decoder of A User Group

Next, we will extend the result to a multiple access system with K + 1

users, indexed by {0, 1, . . . , K}. Let D ⊆ {0, . . . , K} be a user sub-

set. We assume that users in D are regular users, while users not

2The situation can certainly vary depending on the coding parameters of the
system.
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Figure 3.1: Comparison of achievable distributed communication error exponent
and the classical random coding exponent.

in D are interfering users. We assume that each user, say user k, is

equipped with an ensemble of M communication options, denoted by

Gk = {gk1, . . . , gkM }. For a regular user k ∈ D, Gk represents an ensem-

ble of random block codes, with each code gk ∈ Gk being characterized

by a rate and input distribution pair (rgk
, PgkXk

), where Xk is the chan-

nel input symbol of user k with a finite alphabet Xk. The probability

of a channel input symbol Xk with respect to input distribution PgkXk

is denoted by Pgk
(Xk). For an interfering user k 6∈ D, Gk may or may

not represent a code ensemble. However, for convenience, we still call

Gk the code ensemble and gk ∈ Gk the code index of user k, irrespective

of whether k is a regular user or an interfering user. We use G and g

to denote the vectors of code ensembles and code indices of the users,

respectively. We assume that G should be known at the receiver, but

the receiver does not know the code index vector g chosen at the be-

ginning of each time slot. We also assume that the randomly generated

codebooks of the regular users should be known at the receiver. For the

interfering users, we assume that either there is no message to decode,

or the receiver chooses not to decode their messages.
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Let XD denote the vectors of channel input symbols of the regular

users. Let Y be the channel output symbol with a finite alphabet Y.

The discrete-time memoryless channel is characterized by a conditional

distribution function PY |XD
(gD̄), where gD̄ is the vector of code indices

of the interfering users. In other words, channel statistics experienced

by the regular users depends on the code indices of the interfering users.

We use P (Y |XD, gD̄) to denote the probability of channel output Y

given input vector XD and with code index vector of the interfering

user being gD̄.

At the beginning of each time slot, users choose their code index vec-

tor g ∈ G, the regular users encode their messages wD into a sequence

of N channel input symbol vectors X
(N)
D , and send them through the

channel. Upon receiving the channel output sequence Y (N), the receiver

either outputs an estimated message vector and code index vector pair

(ŵD, ĝD) for the regular users, or reports collision for all regular users.

We assume that the receiver should choose an operation region RD in

the space of the code index vectors. The receiver intends to decode the

messages of the regular users if g ∈ RD. The receiver intends to accept

collision report for all regular users if g 6∈ RD.

Let the actual messages of the regular users be wD, and the actual

code indices of all users be g. We define the conditional error probability

as a function of g as

Pe(g) =

{

maxwD
Pr{(ŵD, ĝD) 6= (wD, gD)|(wD, g)}, ∀g ∈ RD

maxwD
1 − Pr

{
“collision” or

(ŵD, ĝD) = (wD, gD)

∣∣∣∣∣ (wD, g)

}
, ∀g 6∈ RD

.

(3.9)

As before, we still regard correct message decoding as an acceptable

output for g 6∈ RD, which means that collision detection for code index

vectors outside the operation region is not enforced.

Let {αg} be a set of pre-determined weight parameters each being
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assigned to a code index vector g ∈ G. {αg} satisfies
{

αg

∣∣∣∣∣αg ≥ 0, ∀g ∈ G,
∑

g

e−Nαg = 1

}
. (3.10)

We define the “generalized error performance” measure of the system

as

GEPD =
∑

g

Pe(g)e−Nαg . (3.11)

An achievable bound of the generalized error probability of the

multiple access system is given in the following theorem.

Theorem 3.2. Consider the distributed multiple access system

described above. There exists a decoding algorithm such that the

generalized error performance defined in (3.11) is upper bounded by

GEPD ≤
∑

g∈RD

∑

S⊂D


 ∑

g̃∈RD ,g̃S=gS

exp(−NEmD(g, g̃, S))

+2
∑

g̃ 6∈RD ,g̃S=gS

exp(−NEiD(g, g̃, S))

]
, (3.12)

where EmD(g, g̃, S) and EiD(g, g̃, S) for S ⊂ D in the above equation

are given by

EmD(g, g̃, S) =

max
0<ρ≤1

−ρ
∑

k∈D\S

rg̃k
+ max

0≤s≤1
− log

∑

Y

∑

XS

∏

k∈S

Pgk
(Xk)

×

 ∑

XD\S

[
P (Y |XD, gD̄)e−αg

]1−s ∏

k∈D\S

Pgk
(Xk)




×

 ∑

XD\S

[
P (Y |XD, g̃D̄)e−αg̃

] s
ρ
∏

k∈D\S

Pg̃k
(Xk)




ρ

,

EiD(g, g̃, S) =

max
0<ρ≤1

−ρ
∑

k∈D\S

rgk
+ max

0≤s≤1−ρ
− log

∑

Y

∑

XS

∏

k∈S

Pgk
(Xk)

×


∑

XD\S

[
P (Y |XD, gD̄)e−αg

] s
s+ρ

∏

k∈D\S

Pgk
(Xk)




s+ρ
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×

 ∑

XD\S

P (Y |XD, g̃D̄)e−αg̃
∏

k∈D\S

Pg̃k
(Xk)




1−s

. (3.13)

Theorem 3.2 is implied by Theorem 3.3 by setting R̂D = R̄D, which

leads to EiD(g, g̃, D) = ∞ in (3.18).

While the bound given in (3.12) and (3.13) are quite sophisticated

in appearance, it may not always be difficult to evaluate especially

when the number of regular users |D| is relatively small. This will be

explained further in Section 3.5.

3.3 Operation Region and Operation Margin

In the previous section, when the actual code index vector g 6∈ RD is

outside the operation region, we still regard correct message decoding

as one of the acceptable outputs at the receiver. Consequently, when

the receiver forwards a decoded message to the data link layer, it is not

always possible for the link layer to tell whether g is inside or outside

the operation region. The lack of collision report enforcement may cause

problems at the data link layer because many link layer protocols regard

collision report as a key guidance for adapting packet transmission

probabilities of the users [42][12]. As we introduced before, instead of

using error probability definition (3.9), one can regard collision report

as the only acceptable output for g 6∈ RD and adopt the following error

probability definition

Pe(g) =

{

maxwD
Pr{(ŵD, ĝD) 6= (wD, gD)|(wD, g)}, ∀g ∈ RD

maxwD
1 − Pr {“collision”|(wD, g)} , ∀g 6∈ RD

.

(3.14)

Nevertheless, we show in the following example that both (3.9) and

(3.14) could be bad choices for dealing with collision detection.

Example 3.2. Let us consider a single user distributed communication
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system over a compound binary symmetric channel. The channel model

is given by

Y =

{
X with probability 1 − p

X̄ with probability p
. (3.15)

where X, Y ∈ {0, 1} are the input and output symbols and

0 ≤ p ≤ 1 is the crossover probability that can take 9 possible

values p ∈ {0.15, 0.16, 0.17, 0.18, 0.19, 0.20, 0.21, 0.22, 0.23}. Shannon

capacities of the channel corresponding to the possible p values are

given by {0.58, 0.56, 0.54, 0.53, 0.51, 0.50, 0.49, 0.47, 0.46} nats/symbol.

Suppose that the transmitter only has a unique coding option,

which features uniform input distribution with a rate of r = 0.50

nats/symbol.

According to the problem formulation introduced in Section 2.4, the

system model should contain a regular user with a single coding option

and an interfering user with 9 communication options corresponding to

the possible channel realizations. It is easy to see that any operation

region chosen by the receiver must take the form of R = {p|p ≤ p0} for

certain p0. Let us take p0 = 0.17 and R = {p|p ≤ 0.17} for example.

If one chooses error probability definition (3.9) that does not enforce

collision report for p 6∈ R, then the upper layer won’t know much about

the channel if the receiver outputs a decoded message. Alternatively, if

one chooses error probability definition (3.14) that does enforce colli-

sion report for p 6∈ R, then it implies that the receiver must distinguish

channel realization p = 0.17 ∈ R from p = 0.18 6∈ R. Note that they

correspond to channel capacities 0.54 and 0.53, both are reasonably

larger than the rate r = 0.50 of the regular user. Even though mes-

sage decoding can enjoy a low error probability when p ∈ {0.17, 0.18},

error probability on distinguishing these two channel realizations can

be quite high. Consequently, error performance of the system will be

dominated by the difficulty of an unreasonable channel detection task,

which may not reflect the design objective of the system.

Alternatively, we can partition the values of p into three sets. Let

R = {p|p = 0.15, 0.16, 0.17} be termed the operation region. For p ∈ R,

only correct message decoding is regarded as the acceptable output. Let

R̂ = {p|p = 0.18, 0.19} be termed the “operation margin”. For p ∈ R̂,
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both correct message decoding and collision report are regarded as ac-

ceptable outputs. Then for p 6∈ R ∪ R̂, only collision report is regarded

as the acceptable output. With such a choice, channel detection task

is relaxed to the requirement of distinguishing channels p ≤ 0.17 from

p ≥ 0.20, which is relatively less challenging. In the meantime, because

a message decoding implies that p ≤ 0.19 and a collision report implies

that p > 0.17, output at the receiver does carry certain channel infor-

mation that can be used to guide transmission adaptation at the data

link layer.

The above example showed that, in addition to the determination

of an operation region, introducing an operation margin and only en-

forcing collision report outside the operation region and the operation

margin can effectively avoid an ill-posed collision detection problem at

the receiver. With such an understanding, we extend the result of the

previous section as follows.

Consider the multiple access system with K +1 users introduced in

Section 3.2, where users in D ⊆ {0, . . . , K} are regular users and users

not in D are interfering users. Assume that in addition to an operation

region RD, the receiver also chooses an “operation margin” R̂D with

R̂D ∩ RD = φ. Let the actual messages of the regular users be wD,

and the actual code indices of all users be g. We define the conditional

error probability as a function of g as

Pe(g) =

{

maxwD
Pr{(ŵD, ĝD) 6= (wD, gD)|(wD, g)}, ∀g ∈ RD

maxwD
1 − Pr

{
“collision” or

(ŵD, ĝD) = (wD, gD)

∣∣∣∣∣ (wD, g)

}
, ∀g ∈ R̂D

maxwD
1 − Pr {“collision”|(wD, g)} , ∀g 6∈ RD ∪ R̂D

(3.16)

Note that error probability definition (3.16) is general in the sense

that it covers error probability definition (3.9) as a special case with

R̂D = R̄D and also covers error probability definition (3.14) as a special

case with R̂D = φ.
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Let {αg} be a set of pre-determined weight parameters satisfying

(3.10) each being assigned to a code index vector g ∈ G. We maintain

the definition of the “generalized error performance” measure as in

(3.11). With the operation margin added, the following theorem gives

the corresponding achievable bound of the generalized error probability

of the multiple access system.

Theorem 3.3. Consider the distributed multiple access system

described above. There exists a decoding algorithm such that the

generalized error performance defined in (3.11) is upper bounded by

GEPD ≤
∑

g∈RD




∑

S⊂D




∑

g̃∈RD ,g̃S=gS

exp(−NEmD(g, g̃, S))

+2
∑

g̃ 6∈RD ,g̃S=gS

exp(−NEiD(g, g̃, S))

]

+2
∑

g̃ 6∈RD∪R̂D ,g̃D=gD

exp(−NEiD(g, g̃, D))





, (3.17)

where EmD(g, g̃, S), EiD(g, g̃, S) for S ⊂ D and EiD(g, g̃, D) in the

above equation are given by

EmD(g, g̃, S) =

max
0<ρ≤1

−ρ
∑

k∈D\S

rg̃k
+ max

0≤s≤1
− log

∑

Y

∑

XS

∏

k∈S

Pgk
(Xk)

×

 ∑

XD\S

[
P (Y |XD, gD̄)e−αg

]1−s ∏

k∈D\S

Pgk
(Xk)




×

 ∑

XD\S

[
P (Y |XD, g̃D̄)e−αg̃

] s
ρ
∏

k∈D\S

Pg̃k
(Xk)




ρ

,

EiD(g, g̃, S) =

max
0<ρ≤1

−ρ
∑

k∈D\S

rgk
+ max

0≤s≤1−ρ
− log

∑

Y

∑

XS

∏

k∈S

Pgk
(Xk)

×


∑

XD\S

[
P (Y |XD, gD̄)e−αg

] s
s+ρ

∏

k∈D\S

Pgk
(Xk)




s+ρ
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×

 ∑

XD\S

P (Y |XD, g̃D̄)e−αg̃
∏

k∈D\S

Pg̃k
(Xk)




1−s

.

EiD(g, g̃, D) = max
0≤s≤1

− log
∑

Y

∑

XD

∏

k∈D

Pgk
(Xk)

[
P (Y |XD, gD̄)e−αg

]s [
P (Y |XD, g̃D̄)e−αg̃

]1−s
. (3.18)

The proof of Theorem 3.3 is provided in Appendix B.2.

We generally expect that the number of regular users |D| should be

small and therefore the error performance bound given in the theorem is

not necessarily difficult to evaluate. Furthermore, because the purpose

of choosing an operation margin R̂D is to avoid an ill-posed detection

problem, given a particular system, finding an appropriate choice of

R̂D should not be difficult.

3.4 Single User Decoding

With the preparations of the previous three sections, in this section,

we consider the general case of a multiple access system with K +

1 users, indexed by {0, 1, . . . , K}. Let user 0 be an interfering user,

and let other users be regular users. We assume that the receiver is

associated to user 1. The receiver is only interested in decoding the

message of user 1 but it can choose to decode the messages of other

regular users if necessary. As before, we assume that each user, say

user k, is equipped with an ensemble of M communication options,

denoted by Gk = {gk1, . . . , gkM }. For a regular user k 6= 0, Gk represents

an ensemble of random block codes, with each code gk ∈ Gk being

characterized by a rate and input distribution pair (rgk
, PgkXk

), where

Xk is the channel input symbol of user k with a finite alphabet Xk. We

use G and g to denote the vectors of code ensembles and code indices of

all users, respectively. We assume that G and the randomly generated

codebooks of the regular users should be known at the receiver, but the

receiver does not know the code index vector g chosen at the beginning

of each time slot.

Let X denote the vectors of channel input symbols of the regular

users. Let Y be the channel output symbol with a finite alphabet Y.
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The discrete-time memoryless channel is characterized by a conditional

distribution function PY |X(g0), where g0 is the code index (or commu-

nication option) of the interfering user. We use Pgk
(Xk) to denote the

probability of a channel input symbol Xk with respect to input distri-

bution PgkXk
, and use P (Y |X , g0) to denote the probability of channel

output Y given input vector X and with code index of the interfering

user being g0.

At the beginning of each time slot, users choose their code index

vector g ∈ G, the regular users encode their messages w into a sequence

of N channel input symbol vectors X(N), and send them through the

channel. Upon receiving the channel output sequence Y (N), the receiver

either outputs an estimated message and code index pair (ŵ1, ĝ1) for

user 1, or reports collision for user 1. We assume that the receiver

should choose an operation region R1 and an operation margin R̂1

with R1 ∩ R̂1 = φ in the space of the code index vectors. The receiver

intends to decode the message of user 1 if g ∈ R1. The receiver intends

to enforce collision report for user 1 if g 6∈ R1 ∪ R̂1.

Let the actual messages of the regular users be w, and the actual

code indices of all users be g. We define the conditional error probability

as a function of g as

Pe(g) =

{

maxw Pr{(ŵ1, ĝ1) 6= (w1, g1)|(w1, g1)}, ∀g ∈ R1

maxw 1 − Pr

{
“collision” or

(ŵ1, ĝ1) = (w1, g1)

∣∣∣∣∣ (w, g)

}
, ∀g ∈ R̂1

maxw 1 − Pr {“collision”|(w, g)} , ∀g 6∈ R1 ∪ R̂1

(3.19)

Note that we only enforce collision report for g 6∈ R1 ∪ R̂1 and regard

both collision report and correct message decoding as acceptable out-

puts for g ∈ R̂1. As explained in the previous section, the operation

margin should be chosen appropriately to avoid any ill-posed collision

detection problem.

Let {αg} be a set of pre-determined weight parameters satisfying
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(3.10) each being assigned to a code index vector g ∈ G. We define the

“generalized error performance” measure of the system as

GEP =
∑

g

Pe(g)e−Nαg . (3.20)

To obtain an achievable bound of the generalized error probabil-

ity, we will first need to define a special decoder termed a (D, RD)

decoder. While the receiver is only interested in decoding the message

of user 1, the receiver unavoidably faces the decision whether the mes-

sages of some other regular users should also be jointly decoded. Let

D ⊆ {1, 2, . . . , K} be a user subset with 1 ∈ D. Let RD ⊆ R1 be an

operation region. A (D, RD) decoder represents the decision that the

receiver decides to decode messages of all and only the regular users

in D. To do so, the receiver uses an operation region of RD and an

operation margin of R̂D = R1 ∪ R̂1 \ RD. Based on the error proba-

bility definition of (3.16), and the same set of weight parameters {αg},

let generalized error probability of the (D, RD) decoder be denoted by

GEPD as given in (3.11).

An achievable bound of the generalized error probability of the

multiple access system with the receiver being associated only to user

1 is given in the following theorem.

Theorem 3.4. Consider the distributed multiple access system de-

scribed above. Assume that the receiver is only interested in decoding

the message of user 1. Let R1 be the operation region, R̂1 be the

operation margin, and {αg} be the set of weight parameters. Let σ be

a partition of the operation region R1, as described below

R1 =
⋃

D,D⊆{1,...,K},1∈D

RD, RD′ ∩ RD = φ,

∀D, D′ ⊆ {1, . . . , K}, D′ 6= D, 1 ∈ D, D′. (3.21)

There exists a decoding algorithm such that the generalized error per-

formance defined in (3.20) is upper bounded by

GEP ≤ min
σ

∑

D,D⊆{1,...,K},1∈D

GEPD, (3.22)

where GEPD represents the generalized error probability of the (D, RD)

decoder with receiver decoding the messages of all and only the users
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in D, with the operation region being RD and the operation margin

being R̂D = R1 ∪ R̂1 \ RD. Note that GEPD in (3.22) can be further

bounded by (3.17).

The proof of Theorem 3.4 is provided in Appendix B.3.

Note that Theorem 3.4 did not provide an explicit algorithm to

calculate the partition that minimizes either
∑

D,D⊆{1,...,K},1∈D GEPD

or its upper bound obtained from (3.17). To find the optimal partition,

one may need to compute every single term on the right hand sides

of (3.22), (3.17) and (3.18) for all code index vectors and for all user

subsets. Complexity of such calculations can clearly be a concern. While

a detailed complexity analysis is beyond the scope of this monograph,

some of the key points are discussed in the following section.

3.5 Complexity and Code Index Detection

Because error performance bounds presented in the previous sections

are quite sophisticated, it is natural to wonder whether the associated

complexity of these results is always too high to be practical. In this

section, we share some thoughts about such a concern. We begin the

discussion by presenting a basic distributed communication scheme that

is in close proximity to the ones widely seen in wireless networks such

as Wi-Fi networks today [45].

A basic scheme: Consider a time-slotted distributed communica-

tion system where each user in the system has only a single transmission

option plus an idling option. Each user either transmits a data packet

or idles in a time slot. At the receiver when decoding the message of a

particular user, the receiver regards signals from all other users as inter-

ference. In other words, there is no joint message decoding of multiple

users.

Let us look at the system from the perspective of a particular user,

say user 1. Assume that the receiver is associated to user 1. The ba-

sic distributed communication scheme illustrated above falls into the

problem formulations of Sections 3.2, 3.3, and 3.4 with each user having

two coding options, i.e., one transmission option and one idling option,
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and with user 1 being the only regular user in the system3. This indi-

cates that certain systems modeled in the previous sections can indeed

have a complexity low enough to support immediate practical imple-

mentation. Therefore, extensions of the basic scheme, especially those

involving only a handful of coding options for each user and the joint

decoding of a small number of users, do not necessarily have a high

computational complexity.

Due to lack of user coordination, receiver in a distributed commu-

nication system often needs to prepare for users that can potentially

be active in the area. The number of users involved in the decoding

operation of a receiver can therefore significantly exceed the number

of active users. Consequently, when investigating computational com-

plexity of the system, complexity scaling law with respect to the user

number should be an important factor. Furthermore, while packets in

a distributed system should be relatively short in length, they may not

be short enough to completely relieve the classical coding complexity

concern. Complexity scaling law with respect to the codeword length

may remain a factor although its significance in the overall complexity

tradeoff may be different from that of a classical system.

Because distributed channel coding essentially combines a message

recovery task with a code index detection task at the receiver, a sim-

ple way to avoid calculating the likelihood of too many codewords in

channel decoding is to first let the receiver detect the code index vector

of the users using only the distribution information of channel input

and output symbols [55]. The receiver can then process the codewords

corresponding to the detected code indices. Note that, similar to the

discussions presented in Section 3.3, without decoding the codewords,

a receiver may not have the capability to detect the code index vector

precisely. For example, in a multiple access system with homogenous

users, the receiver may be able to tell how many users are transmitting.

But without message decoding, the receiver won’t be able to detect

the identities of the active users. Therefore, an appropriate expecta-

tion is to let the receiver detect whether the code index vector should

3Note that the impact of multiple interfering users can be modeled using one
interfering user only.
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belong to a chosen subset or not. We formulate the detection problem

as follows.

Consider a distributed multiple access system with K users being

indexed by {1, . . . , K}. We do not distinguish regular users and inter-

fering users because the receiver does not decode any codeword in this

step of the operation. We assume that each user, say user k, should

be equipped with an ensemble of M coding or communication options,

denoted by Gk = {gk1, . . . , gkM }. Let g and G be the code index vec-

tor and the code ensemble vector of the users, respectively. g ∈ G if

gk ∈ Gk for all k = 1, . . . , K. Given the code index vector g, we de-

note the conditional distribution of channel output symbol Y ∈ Y by

P (Y |g).

Let R, R̂ ⊆ G with R ∩ R̂ = φ be two code index vector subsets.

We assume that the receiver intends to report a “true/neutral/false”

decision for the code index vector detection problem. The receiver in-

tends to output “true” if g ∈ R and to output “false” if g 6∈ R ∪ R̂.

The receiver intends to accept all outputs if g ∈ R̂. For convenience,

we still term R the operation region and R̂ the operation margin. As

explained in Section 3.3, R̂ is designed to avoid an ill-posed detection

problem. That is, with the operation margin, the receiver only intends

to use a “true” output to claim that g ∈ R ∪ R̂, and to use a “false”

output to claim that g 6∈ R.

Given code index vector g, we define the conditional error proba-

bility of the code index detection problem as follows.

Pe(g) =

{
Pr{false|g}, ∀g ∈ R

Pr {true|g} , ∀g 6∈ R ∪ R̂
. (3.23)

Let {αg} be a set of weight parameters satisfying (3.10) each being

assigned to a code index vector g ∈ G. We define the “generalized

error performance” measure as in (3.20). An achievable bound of the

generalized error performance is given in the following theorem.

Theorem 3.5. Consider the distributed code index vector detection

problem described above. Let R be the operation region, R̂ be the

operation margin, and {αg} be the set of weight parameters. There
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exists a decoding algorithm such that the generalized error performance

defined in (3.20) is upper bounded by

GEP ≤
∑

g∈R

∑

g̃ 6∈R∪R̂

[exp(−NEm(g, g̃)) + exp(−NEm(g̃, g))] , (3.24)

where Em(g, g̃) in the above equation is given by

Em(g, g̃) = max
s≥0

− log

(
∑

Y

[P (Y |g)e−αg ](1−s)[P (Y |g̃)e−αg̃ ]s
)

. (3.25)

The proof of Theorem 3.5 is given in Appendix B.4.

Full text available at: http://dx.doi.org/10.1561/1300000063



4

An Enhanced Physical-Link Layer Interface

Existing network architecture only allows a data link layer user to deter-

mine whether a packet should be transmitted or not [11]. In distributed

networking when communication optimization cannot be done fully at

the physical layer, such a single transmission option (or binary trans-

mitting/idling options) significantly limited the capability of exploiting

advanced wireless adaptations such as power, rate, and antenna adjust-

ments at the data link layer [55]. As introduced in Section 1.3, this

architectural inefficiency can be mitigated by enhancing the physical-

link layer interface to equip each link layer user with multiple transmis-

sion options. Different transmission options can correspond to different

communication settings such as different rate and power combinations.

Distributed channel coding theorems introduced in Sections 2 and 3

provided a basic physical layer foundation to support such an inter-

face enhancement in terms of allowing each physical layer transmitter

to prepare an ensemble of codes corresponding to the link layer trans-

mission/idling options, and giving a link layer protocol full control of

transmission decision without sharing the decision with other users or

with the receiver. In this section, we discuss the support of the inter-

face enhancement at the data link layer. Note that, while navigating

54
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through the provided transmission options enables certain capability

of advanced communication adaptation, due to the layering architec-

ture (or more precisely, the modularity requirement), a link layer pro-

tocol is bounded with the provided transmission options and can only

construct its transmission scheme within this constraint to optimize a

network utility. Therefore, the key question is, for data link layer users

in a distributed network, whether there exists a general framework to

efficiently exploit an arbitrary and often limited set of provided trans-

mission options to optimize a chosen network utility. Unfortunately, a

rigorous answer to this question is not yet available. In the following,

we present some early research results to shed light on this link layer

problem.

Distributed adaptive medium access control (MAC) protocols can

be categorized into splitting algorithms [32][16][33][75][66][95][34] and

back-off approaches [83][42][47][12][17]. In splitting algorithms such as

the FCFS algorithm [32], under the assumption that noiseless channel

feedback is instantly available, users maintain a common virtual in-

terval of their random identity values. The interval is partitioned and

ordered, which determines the transmission schedule of the users, ac-

cording to a sequence of channel feedback messages. While splitting

algorithms can often achieve a relatively high system throughput, their

function depends on the assumptions of instant availability of chan-

nel feedback and correct reception of feedback sequence. Both of the

two conditions, unfortunately, can be violated in a wireless environ-

ment. Theoretical analysis of a splitting algorithm, taking into account

the wireless-related factors such as channel fading, measurement noise,

feedback error, and transmission delay, can be extremely challenging.

Analysis of the back-off algorithms, on the other hand, has proven to

be more trackable [42][41][12]. In back-off algorithms such as the 802.11

DCF protocol [12], conditioned on packet availability, each user should

transmit with a particular probability. In most cases [42][17], a user

should decrease its transmission probability in response to a packet

collision (or transmission failure) event, and increase its transmission

probability in response to a transmission success event. Distributed

probability adaptation in a back-off algorithm often falls into the frame-
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work of stochastic approximation [42][41], whose theoretical analysis

enjoys a rigorous set of mathematical and statistical tools developed in

the literature [68][48][46][50][14]. Practical back-off algorithms can also

be analyzed using Markov models [12]. Most of the existing analysis of

the splitting and the back-off algorithms either assume a throughput

optimization objective and/or a simple collision channel model. While

there has been no analytical framework that can deal with the opti-

mization of a general network utility with a general channel model,

the interesting topic of how collision resolution algorithms should be

revised to work with wireless-related physical layer properties, such

as capture effect and multipacket reception, has attracted significant

research efforts in the literature [62][18][35][36][51][17].

In the rest of this section, we will introduce a distributed MAC

framework abstracted from the back-off algorithms. In order to main-

tain a relatively simple and trackable investigation, we choose to focus

on distributed link-layer multiple access networking with an unknown

number of homogeneous users, and also assume that all users should

have saturated message queues. Motivations of such a focus are ex-

plained as follows. First, the assumption of saturated message queues

is introduced to avoid the complication of random message arrivals.

While bursty message arrival is rather an important character of dis-

tributed network systems [11][22], it is known to create coupling be-

tween transmission activities of the users [82][67], and such coupling of-

ten leads to open research problems in throughput and stability analysis

[4][78][59][56] of systems with a relatively small number of users [6][40].

Results obtained with the assumption of saturated message queues can

often serve as achievable bounds to the corresponding results for sys-

tems with random message arrivals [41][56]. Second, because each user

only interacts with the receiver, the assumption of multiple access net-

working with homogeneous users mainly represents the communication

environment envisioned by each link layer user1. In other words, with-

out further knowledge about the actual networking environment, a link

1Note that the assumption of user symmetry is also reflected in many exist-
ing channel models such as the collision channel model [11] and the multipacket
reception channel model [35][36].
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layer protocol should be designed to help a user to get a fair share of

the multiple access channel under the assumption of user homogeneity.

Early research investigation aims at achieving such a design objective

in the assumed networking environment. Understanding the behavior

of the link layer algorithm in a general networking environment is a fu-

ture research task that is beyond the scope of this monograph. Finally,

because users in a distributed network often access the channel oppor-

tunistically, it is difficult to know how many users are actually active

[41]. We assume that the homogeneous users in a distributed multi-

ple access network should be able to calculate its optimal transmission

scheme if the user number is known, but we would like to develop dis-

tributed algorithms to lead the system to a desired operation point

without the knowledge of the actual user number2. Note that, rather

than developing a practical MAC protocol, our primary objective is to

obtain useful insights about distributed medium access control through

the analysis of systems with/without the enhanced physical-link layer

interface.

4.1 A Stochastic Approximation Framework

Consider a time-slotted distributed multiple access network with a

memoryless channel and K homogeneous users. The length of each

time slot equals the transmission duration of one packet. We assume

that neither the users nor the receiver should know the user number K.

Each user, say user k, is equipped with M transmission options plus

an idling option, denoted by Gk = {gk0, gk1, . . . , gkM } with gk0 being

the idling option. These options correspond to the code ensemble Gk

prepared by the physical layer transmitter of user k, as explained in Sec-

tions 2 and 3. We assume that all users are backlogged with saturated

message queues. At the beginning of each time slot t, according to an as-

sociated probability vector, each user either idles or randomly chooses

a transmission option to send a message. Transmission decisions of the

users are made individually. The decisions are not shared among the

2In back-off algorithms, the necessity of probability adaptation generally implies
the assumption that the number of active users is unknown to the system.
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users or with the receiver. The M -length probability vector associated

to user k in time slot t is denoted by pk(t) = pk(t)dk(t), where pk(t) is

termed the “transmission probability” of user k, and dk(t), termed the

“transmission direction” vector of user k, is an M -length probability

vector whose entries dkm(t), for 1 ≤ m ≤ M , satisfy dkm(t) ≥ 0 and∑M
m=1 dkm(t) = 1.

At the end of each time slot t, based upon available chan-

nel feedback, each user k calculates a target probability vector

p̃k(t) = p̃k(t)d̃k(t). User k then updates its transmission probability

vector by

pk(t + 1) = (1 − α(t))pk(t) + α(t)p̃k(t) = pk(t) + α(t)(p̃k(t) − pk(t)),

(4.1)

where α(t) > 0 is a step size parameter of time slot t. Let P (t) =

[pT
1 (t), pT

2 (t), . . . , pT
K(t)]T be a vector of length MK that consists of the

transmission probability vectors of all users in time slot t. Let P̃ (t) =

[p̃T
1 (t), p̃T

2 (t), . . . , p̃T
K(t)]T be the corresponding target vector. P (t) is

updated by

P (t + 1) = P (t) + α(t)(P̃ (t) − P (t)). (4.2)

Note that (4.2) falls into the framework of stochastic approximation

algorithms [68][48][46], where the actual target transmission probability

vector P̃ (t) is often calculated based upon noisy estimates of certain

system variables.

Define P̂ (t) = [p̂T
1 (t), p̂T

2 (t), . . . , p̂T
K(t)]T as the “theoretical value”

of P̃ (t) when there is no measurement noise and no feedback error in

time slot t, with p̂k(t) being the corresponding theoretical value of p̃k(t),

for 1 ≤ k ≤ K. Let Et[P̃ (t)] be the expectation of P̃ (t) conditioned on

system state at the beginning of time slot t. Let us express Et[P̃ (t)] as

follows

Et[P̃ (t)] = P̂ (t) + G(t) = P̂ (P (t)) + G(P (t)), (4.3)

where G(t) = Et[P̃ (t)] − P̂ (t) is defined as the bias term in the tar-

get probability vector calculation. Given the communication channel,

both P̂ (t) and G(t) are functions of P (t), which is the transmission

probability vector in time slot t.

Next, we present two conditions that are typically required for the

convergence of a stochastic approximation algorithm [68][48][46].
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Condition 1. (Mean and Bias) There exists a constant Km > 0 and

a bounding sequence 0 ≤ β(t) ≤ 1, such that

‖G(P (t))‖ ≤ Kmβ(t). (4.4)

Furthermore, we assume that β(t) should be controllable in the sense

that one can design protocols to ensure β(t) ≤ ǫ for any chosen ǫ > 0

and for large enough t.

Condition 2. (Lipschitz Continuity) There exists a constant Kl > 0,

such that

‖P̂ (P a) − P̂ (P b)‖ ≤ Kl‖P a − P b‖, for all P a, P b. (4.5)

Under these conditions, according to stochastic approximation the-

ory [46][50][14], if the step size sequence α(t) and the bounding sequence

β(t) are small enough, trajectory of the transmission probability vector

P (t) under distributed adaptation given in (4.2) can be approximated

by the following associated ordinary differential equation (ODE),

dP (t)

dt
= −[P (t) − P̂ (t)], (4.6)

where, with an abuse of notation, we also used t to denote the contin-

uous time variable. Because all entries of P (t) and P̂ (t) stay in the

range of [0, 1], any equilibrium P of the associated ODE given in (4.6)

must satisfy

P = P̂ (P ). (4.7)

Suppose that the solution to (4.7), which is also the equilibrium

of (4.6), is unique at P ∗ = [p∗T
1 , . . . , p∗T

K ]T . According to stochastic

approximation theory, if the step size sequence α(t) and the bounding

sequence β(t) are small in value, we have the following convergence

results.

Theorem 4.1. For distributed transmission probability adaptation

given in (4.2), assume that the associated ODE given in (4.6) has a

unique stable equilibrium at P ∗. Suppose that α(t) and β(t) satisfy

the following conditions
∞∑

t=0

α(t) = ∞,

∞∑

t=0

α(t)2 < ∞,

∞∑

t=0

α(t)β(t) < ∞. (4.8)

Under Conditions 1 and 2, P (t) converges to P ∗ with probability one.

Full text available at: http://dx.doi.org/10.1561/1300000063



60 An Enhanced Physical-Link Layer Interface

Theorem 4.1 is implied by [50, Theorem 4.3].

Theorem 4.2. For distributed transmission probability adaptation

given in (4.2), assume that the associated ODE given in (4.6) has

a unique stable equilibrium at P ∗. Let Conditions 1 and 2 be met.

Then for any ǫ > 0, there exists a constant Kw > 0, such that, for any

0 < α < α < 1 satisfying the following constraint

∃T0 ≥ 0, α ≤ α(t) ≤ α, β(t) ≤
√

α, ∀t ≥ T0, (4.9)

P (t) converges to P ∗ in the following sense

lim sup
t→∞

Pr {‖P (t) − P ∗‖ ≥ ǫ} < Kwα. (4.10)

Theorem 4.2 can be obtained by following the proof of [14, Theorem

2.3] with minor revisions.

Note that, for simplicity, our system model assumed the same step

size sequence α(t) and the same bounding sequence β(t) for all users.

We also assumed that all users should update their transmission proba-

bility vectors (synchronously) in each time slot. However, by following

the literature of stochastic approximation theory [46][50], it is easy to

show that different users can use different step sizes and bounding se-

quences, and can also adapt their probability vectors asynchronously.

So long as the step sizes and bounding sequences of all users satisfy the

same constraints given in (4.8) and (4.9), and they also update their

probability vectors frequently enough, then convergence results stated

in Theorems 4.1 and 4.2 should remain valid.

With convergence of the probability vectors guaranteed by Theo-

rems 4.1 and 4.2, the key objective of the system design is to develop

distributed MAC algorithms to satisfy Conditions 1 and 2 and to place

the unique equilibrium of the associated ODE at the desired point. Un-

fortunately, achieving such an objective is not always easy especially

when the enhanced physical-link layer interface is introduced. Because

users are homogeneous, due to symmetry, if an equilibrium of the sys-

tem is unique, transmission probability vectors of the users at the equi-

librium must be identical. We choose to enforce such a property by

guaranteeing that all users should obtain the same target transmission
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probability vector in each time slot. The corresponding part of the

system design is introduced below.

In each time slot, we assume that there is a set of V virtual packets

being transmitted through the channel. The virtual packet set remains

the same over different time slots. Each virtual packet in the set is an

assumed packet whose coding parameters are known to the users and

to the receiver, but it is not physically transmitted in the system, i.e.,

the packet is “virtual”. We assume that, without knowing the transmis-

sion status of the users, the receiver can detect whether the reception

of each virtual packet should be regarded as successful or not, and

therefore can estimate the success probability of each virtual packet.

For example, suppose that the link layer channel is a collision channel,

and a virtual packet has the same coding parameters of a real packet.

Then, the virtual packet reception should be regarded as successful if

and only if no real packet is transmitted in a time slot. Success proba-

bility of the virtual packet in this case equals the idling probability of

the collision channel. For another example, if all packets including the

virtual packets are encoded using random block codes, given the phys-

ical layer channel model, reception of each virtual packet corresponds

to a detection task that judges whether or not code index vector of the

real users should belong to a specific operation region. Such detection

tasks and their performance bounds have been extensively discussed in

the previous sections.

Let qv(t) be a V -length vector whose entry qvi(t), for 1 ≤ i ≤ V ,

is the success probability of the ith virtual packet in time slot t. We

assume that the receiver should measure and feed the estimated qv(t)

back to all users (transmitters). Upon receiving the estimated qv(t),

each user should calculate the M -length target transmission probability

vector as the same function of the qv(t) estimate. Denote the theoretical

target probability vector by p̂(qv(t)). The target transmission probabil-

ity vectors of all users is given by P̂ (t) = 1⊗ p̂(qv(t)), where 1 denotes

a K-length vector of all 1’s and ⊗ represents the Kronecker product.

Consequently, according to (4.6), if P ∗ is an equilibrium of the system,

we must have P ∗ = 1⊗p∗. Because qv is a function of the transmission

probability vectors, we must have P ∗ = 1⊗p∗ = 1⊗p̂(p∗), where p̂(p∗)
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denotes the theoretical target probability vector of the users given that

all users have the same transmission probability vector p∗.

We want to point out that, the introduction of virtual packets and

the assumption of feeding back qv(t) to the transmitters are rather

rare both in the literature of MAC algorithms and in practical MAC

protocols. The key purpose of such a system design is to feed back a

measure that is common to all users. This enables users to calculate

the same target transmission probability vector and consequently guar-

antees that transmission probability vectors of all users at any system

equilibrium must be identical. As we will see in the following sections,

such a property can significantly simplify the design and analysis of the

distributed MAC algorithm. If a user only knows the success/failure

status of its own packets on the other hand, as commonly assumed

in existing MAC algorithms, then guaranteeing identical transmission

probability vector at the equilibrium under our problem formulation

can become a challenging task.

In a practical system, the measurement of qv(t) is likely to experi-

ence measurement noise and feedback error. We assume that, if users

keep P at a constant vector, and qv is measured over an interval of Q

time slots, then the measurement should converge to its true value with

probability one as Q is taken to infinity. Other than this assumption,

system noise is not involved in the discussions of the design objectives,

i.e., to meet Conditions 1 and 2 and to place the unique equilibrium

of the associated ODE at the desired point. Therefore, in the following

sections, we assume that qv(t) can be measured precisely at the receiver

and be fed back to the users. This leads to P̃ (t) = P̂ (t) = 1 ⊗ p̂(t). To

simplify the notation, we will also skip time index t in the rest of the

discussions.

4.2 Single Transmission Option

Let us first consider the simple case of classical physical-link layer in-

terface, where each user only has a single transmission option plus an

idling option. Each user, say user k, should maintain a scalar transmis-

sion probability parameter pk, which specifies the probability at which

user k transmits a packet in a time slot. Transmission probabilities of
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all users are listed in a K-length vector p. In this section, we show that,

with a general channel model and without knowing the user number

K, a distributed MAC algorithm can be designed to lead the system

to a unique equilibrium that is not far from optimal with respect to a

chosen symmetric network utility.

Given the physical layer channel and the provided transmission op-

tions, we specify the link layer multiple access channel using two sets

of channel parameters. Define {Crj} for j ≥ 0 as the “real channel pa-

rameter set”, where Crj is the conditional success probability of a real

packet should it be transmitted in parallel with j other real packets.

We also assume that there is a single virtual packet being transmitted

in each time slot. Virtual packets transmitted in different time slots

are identical. Given coding parameters of the virtual packet, we define

{Cvj} for j ≥ 0 as the “virtual channel parameter set”, where Cvj is

the success probability of the virtual packet should it be transmitted

in parallel with j real packets. Assume Cvj ≥ Cv(j+1) for all j ≥ 0,

which means that, if the number of parallel real packet transmissions

increases, the virtual packet should have a non-increasing chance of

getting through the channel. Let ǫv > 0 be a pre-determined small

constant. Define Jǫv as the minimum integer such that CvJǫv
is strictly

larger than Cv(Jǫv +1) + ǫv, i.e.,

Jǫv = arg min
j

Cvj > Cv(j+1) + ǫv. (4.11)

We assume that both the real and the virtual channel parameter sets

should be known at the users and at the receiver. Note that, while

{Crj} has nothing to do with the virtual packet, {Cvj} is dependent

on the coding parameters of the virtual packet.

We assume that users intend to maximize a symmetric network

utility, denoted by U(K, p, {Crj}). Under the assumption that all users

should transmit with the same probability, i.e., p = p1, system utility is

a function of the unknown user number K, the common transmission

probability p, and the real channel parameter set {Crj}. For exam-

ple, if we choose sum throughput of the system as the utility function,
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U(K, p, {Crj}) should be given by

U(K, p, {Crj}) = K
K−1∑

j=0

(
K − 1

j

)
pj+1(1 − p)K−1−jCrj . (4.12)

For most of the utility functions of interest, such as the sum through-

put function given above, an asymptotically optimal solution should

roughly keep the expected load of the channel at a constant [35][36].

Therefore, if p∗
K is the optimum transmission probability for user num-

ber K, we should have limK→∞ Kp∗
K = x∗, where x∗ > 0 is obtained

from the following asymptotic utility optimization.

x∗ = arg max
x

lim
K→∞

U

(
K,

x

K
, {Crj}

)
. (4.13)

Note that virtual packet is not involved in the calculation of x∗.

Without knowing the actual user number K, we will show next that

it is possible to set the system equilibrium at p∗ = min{pmax, x∗

K+b
}1,

where b ≥ 1 is a pre-determined design parameter, and pmax is defined

as

pmax = min

{
1,

x∗

Jǫv + b

}
. (4.14)

We will also show later that, when the optimum transmission proba-

bilities satisfies limK→∞ Kp∗
K = x∗, setting the equilibrium at p∗ =

min{pmax, x∗

K+b
}1 is often not far from optimal even when the user

number is small.

We intend to design a distributed MAC algorithm to maximize

U(K, p, {Crj}) by maintaining channel contention at a desired level.

Let qv denote the success probability of the virtual packet, measured

at the receiver. We term qv the “channel contention measure” because

it is a measurement of the contention level of the system. Note that

qv(p, K) is a function of user number K and the transmission probabil-

ity vector p. Because qv(p, K) equals the summation of a finite number

of polynomial terms, qv(p, K) should be Lipschitz continuous in p for

any finite K. When the transmission probabilities of all users are equal,

i.e., p = p1, we also write success probability of the virtual packet as

qv(p, K) =
K∑

j=0

(
K

j

)
pj(1 − p)K−jCvj , (4.15)
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where {Cvj} is the set of virtual channel parameters. We assume that,

upon obtaining qv from the receiver, each user should first obtain a user

number estimate, denoted by K̂, and then set the corresponding trans-

mission probability target at p̃ = p̂ = min
{

pmax, x∗

K̂+b

}
, where x∗ > 0

is obtained from (4.13). We will show that, for any x∗ > 0, without

knowing K, one can always choose an appropriate b and design a dis-

tributed MAC algorithm to ensure system convergence to the desired

equilibrium of p∗ = min{pmax, x∗

K+b
}1.

Convergence of the MAC algorithm to be introduced depends on

two key monotonicity properties presented below. First, the following

theorem shows that, given user number K, qv(p, K) is non-increasing

in p.

Theorem 4.3. Under the assumption that Cvj ≥ Cv(j+1) for all j ≥ 0,

qv(p, K) given in (4.15) satisfies ∂qv(p,K)
∂p

≤ 0. Furthermore, ∂qv(p,K)
∂p

< 0

holds with strict inequality for K > Jǫv and p ∈ (0, 1).

The proof of Theorem 4.3 is given in Appendix C.1.

Given that p̂ = x∗

K̂+b
. Let N = ⌊K̂⌋ be the largest integer below K̂.

We define a continuous function q∗
v(p̂), which can also be viewed as a

function of K̂, as follows

q∗
v(p̂) =

p̂ − pN+1

pN − pN+1
qN (p̂) +

pN − p̂

pN − pN+1
qN+1(p̂), (4.16)

where pN = min
{

pmax, x∗

N+b

}
, pN+1 = min

{
pmax, x∗

N+1+b

}
, and

qN (p) =
N∑

j=0

(
N

j

)
pj(1 − p)N−jCvj ,

qN+1(p) =
N+1∑

j=0

(
N + 1

j

)
pj(1 − p)N+1−jCvj . (4.17)

We term q∗
v(p̂) the “theoretical channel contention measure” because it

serves as a reference to the theoretical contention level of the system in

the following sense. If user number of the system indeed equals K = K̂

with K̂ ≥ Jǫv , then q∗
v(p̂) defined in (4.16) equals the actual channel
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contention measure at the desired equilibrium p∗ = x∗

K+b
1 = x∗

K̂+b
1

when all users transmit with the same probability p̂ = x∗

K̂+b
.

The following theorem gives the second monotonicity property,

which shows that, given an arbitrary x∗ > 0, with an appropriate

choice of b, q∗
v(p̂) is non-decreasing in p̂.

Theorem 4.4. Let x∗ > 0. Let b ≥ max{1, x∗ − γǫv}, with γǫv being

defined as

γǫv = min
N,N≥Jǫv ,N≥x∗−b

∑N
j=0 j

(N
j

) ( pN+1

1−pN+1

)j
(Cvj − Cv(j+1))

∑N
j=0

(N
j

) ( pN+1

1−pN+1

)j
(Cvj − Cv(j+1))

. (4.18)

Then q∗
v(p̂) defined in (4.16) is non-decreasing in p̂. Furthermore, if

b > max{1, x∗ − γǫv } holds with strict inequality, then q∗
v(p̂) is strictly

increasing in p̂ for p̂ ∈ (0, pmax).

The proof of Theorem 4.4 is given in Appendix C.2.

Note that, if ǫv is small enough to satisfy Cvj = Cv(j+1) for all

j < Jǫv , then we have γǫv = Jǫv . Otherwise, γǫv ≤ Jǫv is generally true.

With the two key monotonicity properties, we are now ready to

propose the following distributed MAC algorithm.

Distributed MAC algorithm:

1) Initialize the transmission probabilities of all users. Let the trans-

mission probability of user k be denoted by pk.

2) Let Q ≥ 1 be a pre-determined integer. Over an interval of Q time

slots, the receiver measures the success probability of a virtual

packet, denoted by qv, and feeds qv back to all transmitters.

3) Upon receiving qv, each user (transmitter) derives a transmission

probability target p̂ by solving the following equation

q∗
v(p̂) = qv. (4.19)

If a p̂ ∈ [0, pmax] satisfying (4.19) cannot be found, each user sets

p̂ at p̂ = pmax when qv > q∗
v(pmax), or at p̂ = 0 when qv < q∗

v(0).

Full text available at: http://dx.doi.org/10.1561/1300000063



4.2. Single Transmission Option 67

4) Each user, say user k, then updates its transmission probability

by

pk = (1 − α)pk + αp̂, (4.20)

where α > 0 is the step size parameter for user k.

5) The process is repeated from Step 2 till probabilities of all users

converge.

Convergence of the proposed MAC algorithm is stated in the fol-

lowing theorem.

Theorem 4.5. Consider the K-user distributed multiple access network

presented in this section. Given x∗ > 0 and ǫv > 0. Suppose that

b is chosen to satisfy b > max{1, x∗ − γǫv } where γǫv is defined in

(4.18). With the proposed MAC algorithm, associated ODE of the sys-

tem given in (4.6) has a unique equilibrium at p∗ = min{pmax, x∗

K+b
}1.

Furthermore, probability target p̂(p) as a function of the transmission

probability vector p satisfies Conditions 1 and 2. Consequently, the

distributed probability adaptation converges to the equilibrium in the

sense specified in Theorems 4.1 and 4.2.

The proof of Theorem 4.5 is given in Appendix C.3.

In the above analysis, we did not pose any design constraint on the

coding parameters of the virtual packet. Convergence of the distributed

MAC algorithm is guaranteed so long as parameter b is chosen to satisfy

b > max{1, x∗ − γǫv }, where γǫv = Jǫv if ǫv is small enough. However,

one should note that optimality of the MAC algorithm can be affected

by the value of b and Jǫv . Both b and Jǫv are determined by the vir-

tual channel parameter set {Cvj} which is dependent on the virtual

packet design. Assume that setting the transmission probabilities of all

users at p = min
{

1, x∗

K

}
is an ideal choice for optimizing the chosen

utility, which is indeed the case for sum throughput optimization over

a collision channel [41][35]. Because the proposed MAC algorithm sets

system equilibrium at p∗ = min{pmax, x∗

K+b
}1, there are two optimality

concerns. On one hand, for a large user number K, it is a general pref-

erence that one should design the virtual packet to allow a relatively

small value of b, which implies that γǫv and Jǫv should not be much
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smaller than x∗. On the other hand, for a small user number K, one

should also design the virtual packet to support a Jǫv value not much

larger than x∗, so that pmax = min{1, x∗

Jǫv +b
} can be as close to 1 as

possible. Considering both optimality concerns, a general guideline is

to design coding parameters of the virtual packets such that Jǫv (and

γǫv ) should be slightly smaller than x∗, and b should be close to 1.

Example 4.1. Consider distributed multiple access networking over a

multi-packet reception channel. We assume that all packets should be

received successfully if the number of users transmitting in parallel is

no more than M̂ = 5. Otherwise, the receiver should report collision to

all users. The real channel parameter set {Crj} in this case is given by

Crj = 1 for j < 5 and Crj = 0 for j ≥ 5. We assume that users intend

to optimize the symmetric throughput of the system. Consequently,

if the user number equals K and all users transmit with an identical

probability of p, system utility U(K, p, {Crj}) is given by

U(K, p, {Crj}) =

min{K−1,4}∑

j=0

K

(
K − 1

j

)
pj+1(1 − p)K−1−j. (4.21)

Let Uopt(K) be the optimal sum throughput of the system under the

assumption that K is known.

Uopt(K) = max
p

U(K, p, {Crj}). (4.22)

From the asymptotic utility optimization given in (4.13), we obtain

x∗ = 3.64. According to the design guideline presented above, we

assume that a virtual packet should be equivalent to the combina-

tion of 2 real packets. Consequently, the virtual channel parameter

set {Cvj} is given by Cvj = 1 for j < 4 and Cvj = 0 for j ≥ 4.

Choose ǫv = 0.01, which implies γǫv = Jǫv = 3, and hence we can set

b = 1.01 > max{1, x∗ −γǫv}. We use U∗(K) to denote the sum through-

put of the system when transmission probabilities of all users are set

at p = min{pmax, x∗

K+b
}, where pmax = min{1, x∗

Jǫv +b
}.

Figure 4.1 illustrated the two utility values, Uopt(K) and U∗(K), as

functions of user number K. It can be seen that U∗(K) is reasonably

close to Uopt(K) when user number K is not close to M̂ . Note that
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Figure 4.1: Sum throughput of the system as functions of the user number.

Uopt(K) is not necessarily achievable without the knowledge of user

number K.

Example 4.2. In this example, we consider distributed multiple access

networking over a simple fading channel. Assume that the system has

K = 8 users and one receiver. In each time slot, with a probability

of 0.3, the channel can support no more than M̂1 = 4 parallel real

packet transmissions, and with a probability of 0.7, the channel can

support no more than M̂2 = 6 parallel real packet transmissions3. The

real channel parameter set {Crj} in this case is given by Crj = 1 for

j < 4, Crj = 0.7 for 4 ≤ j < 6, and Crj = 0 for j ≥ 6. Assume that

users intend to optimize the symmetric system throughput weighted

by a transmission energy cost of E = 0.3. If user number equals K and

all users transmit with a probability of p, system utility U(K, p, {Crj})

is given by

U(K, p, {Crj}) =
K−1∑

j=0

K

(
K − 1

j

)
pj+1(1 − p)K−1−jCrj − EKp. (4.23)

3Such a channel can appear if there is an interfering user that transmits a packet
with a probability of 0.3 in each time slot. One packet from the interfering user is
equivalent to the combination of two packets from a regular user.
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Consequently, x∗ can be obtained from the asymptotic utility optimiza-

tion (4.13) as x∗ = 3.29.

Assume that a virtual packet should have the same coding param-

eters as those of a real packet. Consequently, the virtual channel pa-

rameter set {Cvj} is identical to the real channel parameter set, i.e.,

Cvj = Crj for all j ≥ 0. With ǫv = 0.01, we have γǫv = Jǫv = 3 and

hence we can set b = 1.01 > max{1, x∗ − γǫv }.

We initialize the transmission probabilities of all users at 0. In each

time slot, a channel state flag is randomly generated to indicate whether

the channel can support the parallel transmissions of no more than

M̂1 = 4 packets or M̂2 = 6 packets. Each user also randomly determines

whether a packet should be transmitted according to its own transmis-

sion probability parameter. Consequently, whether a real packet and

the virtual packet can go through the channel successfully or not is de-

termined using the corresponding channel model. We use the following

exponential moving average approach to measure qv
4, which is the suc-

cess probability of the virtual packet. qv is initialized at qv = 1. In each

time slot, if the virtual packet can be received successfully, an indicator

variable Iv is set at Iv = 1. If the virtual packet reception fails, we set

Iv = 0. Success probability of the virtual packet is then updated by

qv = (1 − 1
300 )qv + 1

300Iv. The rest of the probability updates proceeds

according to the distributed MAC algorithm introduced before with a

constant step size of α = 0.05. Convergence behavior in system utility

is illustrated in Figure 4.2, where system utility is measured using the

same exponential moving average approach as the measurement of qv

except that initial value of the utility is set at 0. Two reference values

are shown in the figure. Uopt(K) is the optimal utility as defined in

(4.22), while U∗(K) is the theoretical utility at the designed equilib-

rium.

4While this approach is different from the one proposed in the distributed MAC
algorithm, simulations show that an exponential averaging measurement of qv can
often lead system to the designed equilibrium in a relatively small number of time
slots.
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Figure 4.2: Convergence in sum utility of a K = 8 user multiple access network
over a simple fading channel.

4.3 Multiple Transmission Options, Single Virtual Packet

In this section, we consider the case when each user is equipped with

M transmission options plus an idling option. Each user, say user k,

should maintain an M -length transmission probability vector pk =

pkdk, where pk is the transmission probability and dk is the transmis-

sion direction vector. Transmission probability vectors of all users are

listed in an MK-length vector P = [pT
1 , . . . , pT

K ]T . As in the previous

section, with a general channel model and without knowing the user

number K, the objective is to design a distributed MAC algorithm

to lead the system to a unique equilibrium that maximizes a chosen

symmetric network utility.

Given the physical layer channel and the transmission options, we

specify the link layer multiple access channel using two sets of channel

parameter functions. Assume that all users have the same transmission

direction vector d. Define {Crij(d)} for 1 ≤ i ≤ M and j ≥ 0 as the

“real channel parameter function set”, where Crij(d) is the conditional

success probability of the ith real packet, should it be transmitted in

parallel with other j real packets. Because each packet can be generated
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from a randomly chosen transmission option, Crij(d) is a function of d.

We still assume that there is a single virtual packet being transmitted in

each time slot. Virtual packets being transmitted in different time slots

are identical. Given coding parameters of the virtual packet, under the

assumption that all users should have the same transmission probability

vector p = pd, we define {Cvj(d)} as the “virtual channel parameter

function set”, where Cvj(d) is the success probability of the virtual

packet, should it be transmitted in parallel with j real packets. We

assume that Cvj(d) ≥ Cv(j+1)(d) should hold for all j ≥ 0 and for all d.

That is, under the same transmission direction vector d, if the number

of parallel real packet transmissions increases, the chance of a virtual

packet getting through the channel should not increase. Let ǫv > 0

be a pre-determined small constant. We define Jǫv (d) as the minimum

integer such that CvJǫv
(d) is ǫv larger than Cv(Jǫv +1)(d), i.e.,

Jǫv (d) = arg min
j

Cvj(d) > Cv(j+1)(d) + ǫv. (4.24)

Both the real and the virtual channel parameter function sets are as-

sumed to be known at the transmitters and at the receiver.

We assume that users intend to maximize a symmetric network

utility, denoted by U(K, pd, {Crij(d)}). Under the assumption that all

users should have the same transmission probability vector p, system

utility is a function of the unknown user number K, the common trans-

mission probability vector p = pd, and the real channel parameter

function set {Crij(d)}. For example, if the ith real packet has a commu-

nication rate of ri (in units/time slot), and we choose sum throughput

of the system as the utility function, then U(K, p, {Crij(d)}) should be

given by

U(K, p, {Crij(d)}) = K

M∑

i=1

diri

K−1∑

j=0

(
K − 1

j

)
pj+1(1 − p)K−1−jCrij(d)

(4.25)

We intend to design a distributed MAC algorithm to maximize

U(K, p, {Crij(d)}) by maintaining channel contention at a desired level.

Let qv denote the success probability of the virtual packet. As before,

we term qv the “channel contention measure” because it is used to mea-

sure the contention level of the system. qv(P , K) is a function of the
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user number K and the MK-length transmission probability vector P .

Because qv(P , K) equals the summation of a finite number of polyno-

mial terms, it should be Lipschitz continuous in P for any finite K.

When all users have the same transmission probability vector p = pd,

we also write qv as

qv(p, K) =
K∑

j=0

(
K

j

)
pj(1 − p)K−jCvj(d). (4.26)

Upon obtaining qv from the receiver, we assume that each user

should first derive a user number estimate K̂ by comparing qv with a

“theoretical channel contention measure” q∗
v(K̂), which is a function of

K̂. A user should then set its transmission probability vector target

p̂ according to a designed theoretical vector parameter function p(K̂).

To understand key properties that the p(K̂) function should possess,

let us first take a look at the following simple example.

Example 4.3. Consider a distributed multiple access network with K

homogeneous users. Assume that each user has two transmission op-

tions plus an idling option. The two transmission options are labeled

as the “high rate” option and the “low rate” option, respectively. If

users transmit with the low rate option only, then the channel can sup-

port the parallel transmissions of no more than 12 packets. Assume

that a high rate packet is equivalent to the combination of 4 low rate

packets. Therefore, if nl low rate packets and nh high rate packets

are transmitted in parallel, the packets can be received successfully if

and only if nl + 4nh ≤ 12. Assume that users intend to optimize the

sum throughput of the network, and transmission probability vectors

of the users should be identical at the equilibrium. When all users have

the same probability vector p = [ph, pl]
T , system utility, denoted by

U(K, p) as a function of K and p, is given by

U(K, p) =

∑

nh ≥ 0, nl ≥ 0,

nh + nl ≤ K − 1,

4(nh + 1) + nl ≤ 12

4K

(
K − 1

nh, nl

)
p

nh+1
h p

nl

l (1 − ph − pl)
K−1−nh−nl
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+
∑

nh ≥ 0, nl ≥ 0,

nh + nl ≤ K − 1,

4nh + nl + 1 ≤ 12

K

(
K − 1

nh, nl

)
p

nh

h p
nl+1
l (1 − ph − pl)

K−1−nh−nl .

(4.27)

Given user number K, let p∗ = arg maxp U(K, p) be the optimal trans-

mission probability vector. p∗
h and p∗

l as functions of user number K

are illustrated in Figure 4.3. We can see that, if we write p∗ = p∗d∗,
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Figure 4.3: Optimal transmission probabilities of a K-user multiple access system
with each user having two transmission options.

then we have d∗ = [1, 0]T for K ≤ 4, and d∗ = [0, 1]T for K ≥ 10. d∗

transits from [1, 0]T to [0, 1]T in the region of 4 ≤ K ≤ 10.

According to the above observation, we assume that the vector pa-

rameter function p(K̂) to be designed should possess the following prop-

erties termed the “Head and Tail Condition”.

Condition 3. (Head and Tail) Let ǫv > 0 be a pre-determined con-

stant. Let Jǫv be defined in (4.24). There exist two integer-valued con-

stants 0 < K ≤ K, such that,

1) d(K̂) = d(K), for all K̂ ≤ K, K ≥ Jǫv (d(K)).

Full text available at: http://dx.doi.org/10.1561/1300000063



4.3. Multiple Transmission Options, Single Virtual Packet 75

2) d(K̂) = d(K), for all K̂ ≥ K, K > Jǫv (d(K)).

Condition 3 indicates that, when K̂ ≤ K is small enough or when

K̂ ≥ K is large enough, d(K̂) should stop changing in K̂. In these two

regimes, the system with multiple transmission options becomes equiv-

alent to a system with a single transmission option. The virtual channel

parameter set of the equivalent system is given by {Cvj} = {Cvj(d)}.

Calculation of the real channel parameter set of the equivalent system,

on the other hand, depends on the chosen utility function. If the util-

ity function is the sum throughput given in (4.25) for example, the

equivalent real channel parameter set {Crj} should be obtained by

Crj =
∑M

i=1 diriCrij(d), for j ≥ 0. We assume that core parameter

functions of the MAC algorithm, i.e., the theoretical channel contention

measure q∗
v(K̂) and the probability target function p(K̂), should be de-

signed according to the guideline given in Section 4.2, for K̂ ≤ K and

K̂ ≥ K. We choose not to repeat the corresponding details in this

section.

Let us temporarily assume that the vector parameter function p(K̂)

has been determined completely, not just for K̂ ≤ K and K̂ ≥ K, but

also for K < K̂ < K. To present the distributed MAC algorithm, we

need to define the theoretical channel contention measure q∗
v(K̂) as

follows. Let N = ⌊K̂⌋ be the largest integer below K̂. For K̂ ≤ K and

K̂ ≥ K, q∗
v(K̂) is defined by

q∗
v(K̂) =

p(K̂) − p(N + 1)

p(N) − p(N + 1)
qv(p(K̂), N)

+
p(N) − p(K̂)

p(N) − p(N + 1)
qv(p(K̂), N + 1), (4.28)

which is consistent with (4.16). For K ≤ K̂ ≤ K, q∗
v(K̂) is defined by

q∗
v(K̂) = (N + 1 − K̂)qv(p(K̂), N)

+(K̂ − N)qv(p(K̂), N + 1). (4.29)

In other words, if K̂ is integer-valued, q∗
v(K̂) = qv(p(K̂), K̂) equals the

channel contention measure when all users have the same transmission

probability vector p(K̂) and the user number equals K = K̂. If K̂ is
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not integer-valued, on the other hand, q∗
v(K̂) is a linear interpolation

between qv(p(K̂), ⌊K̂⌋) and qv(p(K̂), ⌊K̂⌋ + 1). Note that the interpo-

lation approach used for K̂ ≤ K and K̂ ≥ K is different from the one

used for K ≤ K̂ ≤ K.

Next, we present the distributed MAC algorithm below.

Distributed MAC algorithm:

1) Initialize the transmission probability vectors of all users. Let the

transmission probability vector of user k be denoted by pk.

2) Let Q ≥ 1 be a pre-determined integer. Over an interval of Q time

slots, the receiver measures (or estimates) the success probability

of the virtual packet, denoted by qv, and feeds qv back to all

transmitters.

3) Upon receiving qv, each user (transmitter) derives a user number

estimate K̂ by solving the following equation

q∗
v(K̂) = qv. (4.30)

If a K̂ satisfying (4.30) cannot be found, user k sets

K̂ = Jǫv (d(K)) if qv > q∗
v(Jǫv (d(K))), and sets K̂ = ∞

otherwise.

4) Each user, say user k, then updates its transmission probability

vector by

pk = (1 − α)pk + αp(K̂), (4.31)

where α > 0 is the step size parameter for user k.

5) The process is repeated from Step 2 till transmission probability

vectors of all users converge.

We intend to design the distributed MAC algorithm with the fol-

lowing convergence property. If K ≥ Jǫv (d(K)), we intend to have

K̂ = K at the equilibrium, while if K < Jǫv (d(K)), we intend to have

K̂ = Jǫv (d(K)) at the equilibrium. In order to ensure convergence of

the proposed MAC algorithm, we require that the vector parameter

function p(K̂) and the corresponding theoretical channel contention

measure q∗
v(K̂) should satisfy the following “Monotonicty and Gradi-

ent Condition” for K ≤ K̂ ≤ K.
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Condition 4. (Monotonicity and Gradient) For K ≤ K̂ ≤ K,

1) p(K̂) = p(K̂)d(K̂) should be Lipschitz continuous in K̂, i.e.,

there exists a constant Kg > 0, such that for all K̂a, K̂b ∈ [K, K],

we have

‖p(K̂a) − p(K̂b)‖ ≤ Kg|K̂a − K̂b|. (4.32)

2) q∗
v(K̂) should be continuous and be strictly decreasing in K̂.

There exists a positive constant ǫq > 0, such that for all

K̂a, K̂b ∈ [K, K ], we have

|q∗
v(K̂a) − q∗

v(K̂b)| ≥ ǫq|K̂a − K̂b|. (4.33)

3) There exists a constant ǫv > 0, such that K̂ > Jǫv (d(K̂)) should

be satisfied for all K̂ ∈ [K, K].

4) There exist constants 0 < p < p < 1, such that p ≤ p(K̂) ≤ p

should be satisfied for all K̂ ∈ [K, K].

As a special case, it can be verified that, if one fix d(K̂) = d(K) =

d(K) and design p(K̂) according to the guideline given in Section 4.2,

the resulting p(K̂) and q∗
v(K̂) functions do satisfy the Monotonicity

and Gradient Condition for K ≤ K̂ ≤ K.

Convergence of the distributed MAC algorithm is stated in the

following theorem.

Theorem 4.6. Consider a multiple access system with K users adopt-

ing the proposed distributed MAC algorithm to update their transmis-

sion probability vectors. Under Condition 3, let p(K̂) and q∗
v(K̂) be

designed for K̂ ≤ K and K̂ ≥ K according to the guideline given in

Section 4.2. Let p(K̂) and q∗
v(K̂) be designed to satisfy Condition 4 for

K ≤ K̂ ≤ K. Then, associated ODE of the system given in (4.6) has a

unique equilibrium at P ∗ = 1 ⊗ p(K). The probability target p̂(P ) as

a function of the transmission probability vector P satisfies Conditions

1 and 2. Consequently, the distributed probability vector adaptation

converges to the unique equilibrium in the sense specified in Theorems

4.1 and 4.2.
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Theorem 4.6 is implied by Theorem 4.8.

Note that, in the Monotonicity and Gradient Condition 4, while

we still require q∗
v(K̂) to be strictly decreasing in K̂, being different

from the single option case, we no longer require qv(p(K̂), K) to be

strictly increasing in K̂ for a given K. Also being different from the

single option case where the p(K̂) function is completely specified in a

closed form, Condition 4 did not explain how p(K̂) should be designed

to satisfy the conditions.

Next, we will show that, so long as one can manually design p(K̂)

for a set of chosen points with integer-valued K̂ to satisfy a set of

“Pinpoints Condition”, then there is a simple approach to complete the

p(K̂) function for K ≤ K̂ ≤ K to satisfy Condition 4.

Condition 5. (Pinpoints) Let K = K̂0 < K̂1 < . . . < K̂L = K be

a collection of integer-valued points. For i = 1, . . . , L, and 0 ≤ λ < 1,

define

K̂iλ = (1 − λ)K̂i−1 + λK̂i

diλ = (1 − λ)d(K̂i−1) + λd(K̂i)

q∗
viλ = (1 − λ)q∗

v(K̂i−1) + λq∗
v(K̂i). (4.34)

We have the following conditions.

1) There exists a positive constant ǫq > 0, such that, for all i =

1, . . . , L, q∗
v(K̂i−1) − q∗

v(K̂i) ≥ ǫq.

2) There exists a constant ǫv > 0, such that for all i = 1, . . . , L and

0 ≤ λ < 1, K̂iλ > Jǫv (diλ), where Jǫv (diλ) is defined in (4.24).

3) There exist 0 < p < p < 1, such that p ≤ p(K̂i) ≤ p should be

satisfied for all i = 1, . . . , L.

3) Extend the definition of qv(p, K̂) to non-integer-valued K̂ as

qv(p, K̂) = (⌊K̂⌋ + 1 − K̂)qv(p, ⌊K̂⌋)

+(K̂ − ⌊K̂⌋)qv(p, ⌊K̂⌋ + 1). (4.35)

The following inequality should be satisfied for all i = 1, . . . , L

and for all 0 ≤ λ < 1.

qv

(
pdiλ, K̂iλ

)
≤ q∗

viλ ≤ qv

(
pdiλ, K̂iλ

)
. (4.36)
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The next “Interpolation Approach” shows that, so long as p(K̂)

is designed for the pinpoints, it is easy to complete the whole p(K̂)

function for K ≤ K̂ ≤ K.

Interpolation Approach: Assume that p(K̂) is designed for a

given set of pinpoints {K̂i}, i = 0, . . . , L, with K̂0 = K < K̂1, < . . . <

K̂L = K, to satisfy Condition 5. For i = 1, . . . , L and 0 ≤ λ < 1, let

K̂iλ, diλ and q∗
viλ be defined in (4.34). Let qv(p, K̂) be defined in (4.35).

We choose p(K̂iλ) to satisfy

qv(p(K̂iλ)d(K̂iλ), K̂iλ) = q∗
viλ. (4.37)

Consequently, p(K̂iλ) is designed as p(K̂iλ) = p(K̂iλ)diλ.

Note that according to (4.36), a solution of p ≤ p(K̂iλ) ≤ p satis-

fying (4.37) must exist. Effectiveness of the Interpolation Approach is

stated in the following theorem.

Theorem 4.7. Assume that p(K̂) is designed for a set of L + 1 pin-

points {K̂i}, i = 0, . . . , L, with K̂0 = K < K̂1, < . . . < K̂L = K, to

satisfy Condition 5. After completing the function using the Interpo-

lation Approach, p(K̂) and q∗
v(K̂) functions satisfy the Monotonicity

and Gradient Condition 4 for K ≤ K̂ ≤ K.

Theorem 4.7 is implied by Theorem 4.9.

Note that, in the single transmission option case discussed in Sec-

tion 4.2, p(K̂) is specified in a closed form with a small number of

design parameters. Monotonicity property of q∗
v(K̂) is proven theoreti-

cally. With multiple transmission options, however, such a direct-design

approach faces a key challenge. Due to generality of the system model,

when d(K̂) changes in K̂ and consequently affects the channel param-

eters, it is often difficult to theoretically characterize its impact on

the q∗
v(K̂) function. Alternatively, we switched to a search-assisted ap-

proach to first manually design p(K̂) for a set of pinpoints to satisfy

Condition 5, and then to use the Interpolation Approach to complete

the p(K̂) function. Note that the Interpolation Approach only ensures

convergence of the proposed MAC algorithm. It pays no attention to the

optimality, in terms of the utility value, of the design outcome. There-

fore, one often needs to carefully adjust the design of the pinpoints to

direct the p(K̂) function toward a near optimal solution.
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Example 4.4. Let us use the system introduced in Example 4.3 to illus-

trate the design procedure of the p(K̂) function. First, we consider the

“Head” and the “Tail” regimes when K̂ is either small or large in value.

We will add subscript “H” to parameters of the “Head” regime, and add

subscript “T” to parameters of the “Tail” regime. Without specifying

the values of K and K, we first determine the optimal transmission

directions in these two regimes, dH = [1, 0]T and dT = [0, 1]T . In other

words, users should only use the high rate option in the “Head” regime

and only use the low rate option in the “Tail” regime. In the “Head”

regime, the channel can support the parallel transmissions of no more

than 3 high rate packets. The real channel parameter set for the equiv-

alent single option system is given by {Crj}H with Crj = 1 for j ≤ 2

and Crj = 0 otherwise. By following the single option system design

guideline, we get x∗
H = arg maxx(x+x2 + x3

2 )e−x = 2.27. We design the

virtual packet to be equivalent to a real high rate packet. Consequently,

virtual channel parameter set for the equivalent single option system is

given by {Cvj}H = {Crj}H . With ǫv = 0.01, we get γǫvH = JǫvH = 2,

and bH = 1.01. In the “Tail” regime, on the other hand, the channel

can support the parallel transmissions of no more than 12 low rate

packets. The real channel parameter set for the equivalent system is

given by {Crj}T with Crj = 1 for j ≤ 11 and Crj = 0 otherwise. This

yields x∗
T = arg maxx

∑11
i=0

xi+1

i! e−x = 8.82. Because we already chose

the virtual packet to be equivalent to a high rate real packet, virtual

channel parameter set in this case is given by {Cvj}T with Cvj = 1

for j ≤ 8 and Cvj = 0 otherwise. Therefore, with ǫv = 0.01, we have

γǫvT = JǫvT = 8, and luckily, this supports bT = 1.01.

To determine the values of K and K, we compare the following two

schemes. In the first “high rate option only” scheme, we fix d(K̂) at

[1, 0]T for all K̂, and set p(K̂) = min
{

pmax H ,
x∗

H

K̂+bH

}
, where pmax H =

x∗
H

JǫvH +bH
. In the second “low rate option only” scheme, we fix d(K̂) at

[0, 1]T for all K̂, and set p(K̂) = min
{

pmax T ,
x∗

T

K̂+bT

}
, where pmax T =

x∗
T

JǫvT +bT
. By comparing the utility values and the theoretical channel

contention measures of the two schemes, we choose K = 4 and K = 10.

Now consider the design conditions for K ≤ K̂ ≤ K. For transmis-
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sion directions d with d1 > 0, we generally have Jǫv = 2. Therefore,

so long as d(K̂) does not transit too quickly to [0, 1]T , the condition

of K̂ > Jǫv (d(K̂)) should hold true. Consequently, only two other key

conditions need to be satisfied. The first condition is that q∗
v(K̂) of

the selected pinpoints must be strictly decreasing in K̂. The second

condition is that p(K̂) found in the Interpolation Approach should be

bounded away from 0 and 1. From the optimal scheme, we can see that

d(K̂) should transit toward [0, 1]T faster than a linearly transition from

K to K.

With these considerations, we choose the following 4 pinpoints. At

the edge of the “Head” and the “Tail” regimes, we have K̂0 = K = 4

with p(4) =
x∗

H

K+bH
[1, 0]T and K̂3 = K = 10 with p(10) =

x∗
T

K+bT
[0, 1]T .

For the other two pinpoints, K̂1 = 5 and K̂2 = 6, we set their trans-

mission directions at the corresponding optimal transmission direction

vectors, i.e., direction vectors extracted from the optimal p vectors that

maximize the sum throughput at K = 5 and K = 6, respectively. Trans-

mission probabilities of these two pinpoints are chosen such that the

resulting q∗
v(K̂) equals K−K̂

K−K
q∗

v(K)+ K̂−K

K−K
q∗

v(K). The purpose of includ-

ing K̂1 = 5 and K̂2 = 6 in the pinpoint set is to force d(K̂) to transit

quickly toward [0, 1]T . The rest of the p(K̂) function is completed using

the Interpolation Approach. Theoretical channel contention measure

q∗
v(K̂) of the designed system is illustrated in Figure 4.4 as a function

of the user number.

In Figure 4.5, we illustrated the theoretical sum system throughput

as a function of user number K for the following four different scenar-

ios: optimum p(K), designed p(K), p(K) from the high rate option

only scheme, and p(K) from the low rate option only scheme. Assume

that the high rate option only scheme should be reasonably good in

the “Head” regime while the low rate option only scheme should be

reasonably good in the “Tail” only regime. It can be seen that the de-

signed p(K̂) function can help to bridge the two simple schemes and to

efficiently exploit the benefit of the two transmission options. Note that

the optimal utility illustrated in Figure 4.5 is not necessarily achievable

without the knowledge of user number K.
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Figure 4.4: Theoretical channel contention measure q∗
v as a function for the user

number.
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Figure 4.5: Sum throughput of the system as functions of the user number.

Example 4.5. Following Example 4.4, assume that the system has 8

users initially. Transmission probabilities of the users are initialized at

[0, 0]T . In each time slot, according to its own transmission probability

vector, each user randomly determines whether to transmit a packet
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or not, and if the answer is positive, which option should be used. The

receiver uses the following exponential moving average approach to

measure qv. qv is initialized at qv = 1. In each time slot, an indicator

variable Iv ∈ {0, 1} is used to represent the success/failure status of the

virtual packet reception. qv is then updated as qv = (1− 1
300 )qv + 1

300Iv,

and is fed back to the transmitters at the end of each time slot. Each

user then adapts its transmission probability vector according to the

proposed MAC algorithm with a constant step size of α = 0.05.

We assume that the system experiences three stages. At the begin-

ning in Stage one, the system has 8 users. The system enters Stage

two at the 3001th time slot, when 6 more users enter into the system

with their transmission probability vectors initialized at [0, 0]T . Then at

the 6001th time slot, the system enters Stage three when 8 users exit

the system. Convergence behavior in sum throughput of the system

is illustrated in Figure 4.6, together with the corresponding optimal

throughput and the theoretical throughput at the equilibrium being

provided as references. In Figure 4.7, we also illustrates entries of the
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Figure 4.6: Convergence in sum throughput of the system. User number changes
from 8 to 14 and then to 6 in three stages.

transmission probability vector target calculated by the users together

with the corresponding theoretical values being provided as references.
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Note that the simulated probability values presented in the figure are

calculated using the same exponential averaging approach explained

above.
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Figure 4.7: Entries of the transmission probability vector taget and their corre-
sponding theoretical values.

Figures 4.6 and 4.7 demonstrated that, with the proposed MAC

algorithm and the designed p(K̂), q∗
v(K̂) functions, users have the ca-

pability to quickly adapt to the changes of stages and adjust their

transmission probability vectors to the new equilibrium.

According to the Head and Tail Condition 3, the system degrades to

an equivalent single option system when K ≤ K or K ≥ K. In Example

4.4, while d(K) 6= d(K), we found a virtual packet design that supports

bH = 1.01 in the “Head” regime and bT = 1.01 in the “Tail” regime.

One may think that such a lucky result should not always happen for

a general system. Surprisingly, according to our observations, in most

of the problems of interest, even if one may not be able to get the ideal

result of bH = bT ≈ 1, a single virtual packet can often be designed to

support close to ideal performance in both the “Head” and the “Tail”

regimes.
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4.4 Multiple Transmission Options, Multiple Virtual Packets

Following the system model introduced in Section 4.3, in this section,

we assume that there is a set of V virtual packets being transmitted

in each time slot. We present such a model extension not only because

it enables extra flexibility in system design, but also because obtaining

the corresponding technical results is nontrivial.

We assume that virtual packet sets being transmitted in different

time slots should be identical. The link layer multiple access channel is

still specified using two sets of channel parameter functions. Definition

of the “real channel parameter function set” {Crij(d)} remains the same

as in Section 4.3. Given coding parameters of the virtual packets, under

the assumption that all users should have the same transmission direc-

tion vector d, we define {Cvij(d)} as the “virtual channel parameter

function set”, where Cvij(d) is the success probability of the ith virtual

packet, should it be transmitted in parallel with other j real packets.

We assume that Cvij(d) ≥ Cvi(j+1)(d) should hold for all 1 ≤ i ≤ V , for

all j ≥ 0 and for all d. Both the real and the virtual channel parameter

function sets are assumed to be known at the transmitters and at the

receiver.

Let qv denote the vector of success probabilities of the virtual pack-

ets. We term qv(P , K) the “channel contention measure vector”, which

is a function of the user number K and the MK-length transmission

probability vector P . Because qv(P , K) equals the summation of a fi-

nite number of polynomial terms, it should be Lipschitz continuous in

P for any finite K. When all users have the same transmission probabil-

ity vector p = pd, success probability of the ith virtual packet, denoted

by qvi for 1 ≤ i ≤ V , is also written as

qvi(p, K) =
K∑

j=0

(
K

j

)
pj(1 − p)K−jCvij(d). (4.38)

Let us introduce a new design parameter w, termed the “observa-

tion vector”. w is a V -length vector whose entries satisfy wi ≥ 0 for all

1 ≤ i ≤ V and
∑V

i=1 wi = 1. Upon receiving qv from the receiver, users

calculate the “channel contention measure” qv as qv = wT qv. Note that,
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given observation vector w and the common transmission direction vec-

tor d, the system is equivalent to one with a single transmission option.

Calculation of the equivalent real channel parameter set {Crj}, which

is dependent on the chosen system utility U(K, pd, {Crij(d)}), remains

the same as explained in Section 4.3. The equivalent virtual channel

parameter set {Cvj} is given by Cvj =
∑V

i=1 wiCvij(d). Let ǫv > 0 be

a pre-determined small constant. We define Jǫv (w, d) as the minimum

integer such that CvJǫv
is ǫv larger than Cv(Jǫv +1), i.e.,

Jǫv (w, d) = arg min
j

V∑

i=1

wiCvij(d) >

V∑

i=1

wiCvi(j+1)(d) + ǫv. (4.39)

We intend to design two vector parameter functions w(K̂) and

p(K̂), both are functions of the user number estimate K̂. As will be

explained later, upon receiving qv, a user will use w(K̂) and p(K̂)

to jointly determine a user number estimate K̂, and then to set the

transmission probability vector target at p̂ = p(K̂). As in Section 4.3,

we assume that the vector parameter functions w(K̂) and p(K̂) to be

designed should satisfy the following “Head and Tail Condition”.

Condition 6. (Head and Tail) Let ǫv > 0 be a pre-determined con-

stant. Let Jǫv be defined in (4.39). There exist two integer-valued con-

stants 0 < K ≤ K, such that,

1) d(K̂) = d(K) and w(K̂) = w(K), for all K̂ ≤ K with K ≥
Jǫv (w(K), d(K)).

2) d(K̂) = d(K) and w(K̂) = w(K) for all K̂ ≥ K with K >

Jǫv (w(K), d(K)).

Condition 6 indicates that, when K̂ ≤ K or K̂ ≥ K, w(K̂) and

d(K̂) should stop changing in K̂. As explained in Section 4.3, in these

two regimes, the system with multiple transmission options become

equivalent to one with a single transmission option. We assume that

core parameter functions of the MAC algorithm, i.e., the theoretical

channel contention measure q∗
v(K̂) and the probability target function

p(K̂), should be designed according to the guideline given in Section

4.2.
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Let us temporarily assume that the vector parameter functions

w(K̂) and p(K̂) have been completely determined for all K̂ values.

To present the distributed MAC algorithm, we need to define the theo-

retical channel contention measure q∗
v(K̂) as follows. Let N = ⌊K̂⌋ be

the largest integer below K̂. For K̂ ≤ K and K̂ ≥ K, q∗
v(K̂) is defined

by

q∗
v(K̂) =

p(K̂) − p(N + 1)

p(N) − p(N + 1)
w(K̂)T qv(p(K̂), N)

+
p(N) − p(K̂)

p(N) − p(N + 1)
w(K̂)T qv(p(K̂), N + 1), (4.40)

which is consistent with (4.16). For K ≤ K̂ ≤ K, q∗
v(K̂) is defined by

q∗
v(K̂) = (N + 1 − K̂)w(K̂)T qv(p(K̂), N)

+(K̂ − N)w(K̂)T qv(p(K̂), N + 1). (4.41)

Next, we present the distributed MAC algorithm below.

Distributed MAC algorithm:

1) Initialize the transmission probability vectors of all users. Let the

transmission probability vector of user k be denoted by pk.

2) Let Q ≥ 1 be a pre-determined integer. Over an interval of Q

time slots, the receiver measures (or estimates) the success prob-

abilities of all virtual packets, denoted by qv, and feeds qv back

to all transmitters.

3) Upon receiving qv, each user (transmitter) derives a user number

estimate K̂ by solving the following equation

q∗
v(K̂) = w(K̂)T qv. (4.42)

If a K̂ satisfying (4.42) cannot be found, then each user should

set K̂ = Jǫv (w(K), d(K)) if w(K)T qv > q∗
v(Jǫv (w(K), d(K))),

each user should set K̂ = ∞ otherwise.

4) Each user, say user k, then updates its transmission probability

vector by

pk = (1 − α)pk + αp(K̂), (4.43)

where α > 0 is the step size parameter for user k.
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5) The process is repeated from Step 2 till transmission probability

vectors of all users converge.

We intend to design the distributed MAC algorithm to possess a

unique equilibrium at K̂ = max{K, Jǫv (w(K), d(K))}. In order to

ensure convergence, we require the virtual packet design, the vector

parameter function w(K̂) and the q∗
v(K̂) function should satisfy the

following “Majorization Condition”.

Condition 7. (Majorization)

1) Channel contention measure vector qv should satisfy qvi ≤ qvj for

all i < j. This condition can be met, for example, by assuming

that all virtual packets should be encoded using random block

codes with the same input distribution, but with rate parameters

satisfying rvi ≥ rvj for all 1 ≤ i < j ≤ V .

2) Observation vector function w(K̂) should be Lipschitz continuous

in K̂. There exists a constant ǫw > 0, such that w(K̂) and q∗
v(K̂)

should satisfy the following majorization constraint

V∑

i=j

wi(K̂1) −
V∑

i=j

wi(K̂2) ≤ (1 − ǫw)[q∗
v(K̂1) − q∗

v(K̂2)],

∀j ≤ V, and ∀K̂1 ≤ K̂2. (4.44)

Note that, because we generally require q∗
v(K̂) to be monotonically

decreasing in K̂, (4.44) can be replaced by the following stronger con-

dition

V∑

i=j

wi(K̂1) ≤
V∑

i=j

wi(K̂2), ∀j ≤ V, and ∀K̂1 ≤ K̂2, (4.45)

which does not involve the evaluation of q∗
v(K̂).

Furthermore, we also require that the vector parameter functions

p(K̂), w(K̂), and the corresponding theoretical channel contention

measure q∗
v(K̂) should satisfy the following “Monotonicty and Gradient

Condition” for K ≤ K̂ ≤ K.

Condition 8. (Monotonicity and Gradient) For K ≤ K̂ ≤ K,
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1) p(K̂) = p(K̂)d(K̂) should be Lipschitz continuous in K̂, i.e.,

there exists a constant Kg > 0 to satisfy (4.32).

2) q∗
v(K̂) should be continuous and be strictly decreasing in K̂.

There exists a positive constant ǫq > 0 to satisfy (4.33).

3) There exists a constant ǫv > 0, such that K̂ > Jǫv (w(K̂), d(K̂))

should be satisfied for all K̂ ∈ [K, K].

4) There exist constants 0 < p < p < 1, such that p ≤ p(K̂) ≤ p

should be satisfied for all K̂ ∈ [K, K].

Convergence of the distributed MAC algorithm is stated in the

following theorem.

Theorem 4.8. Consider a multiple access system with K users adopt-

ing the proposed distributed MAC algorithm to update their transmis-

sion probability vectors. Under Condition 6, let p(K̂) and q∗
v(K̂) be

designed for K̂ ≤ K and K̂ ≥ K according to the guideline given in

Section 4.2. Let virtual packets, w(K̂), p(K̂), and q∗
v(K̂) be designed

to satisfy Conditions 7 and 8. Then, associated ODE of the system

given in (4.6) has a unique equilibrium at P ∗ = 1 ⊗ p(K). The target

probability vector p̂(P ) as a function of P satisfies Conditions 1 and 2.

Consequently, the distributed probability vector adaptation converges

to the equilibrium in the sense specified in Theorems 4.1 and 4.2.

The proof of Theorem 4.8 is given in Appendix C.4.

Next, we will show that, so long as one can manually design w(K̂)

and p(K̂) for a set of chosen points with integer-valued K̂ to satisfy

the following “Pinpoints Condition”, then p(K̂) can be completed using

the “Interpolation Approach” to satisfy Condition 8.

Condition 9. (Pinpoints) Let K = K̂0 < K̂1 < . . . < K̂L = K be a

set of integer-valued points. For i = 1, . . . , L, and 0 ≤ λ < 1, define

K̂iλ = (1 − λ)K̂i−1 + λK̂i

wiλ = (1 − λ)w(K̂i−1) + λw(K̂i)

diλ = (1 − λ)d(K̂i−1) + λd(K̂i)
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q∗
viλ = (1 − λ)q∗

v(K̂i−1) + λq∗
v(K̂i). (4.46)

We have the following conditions.

1) There exists a positive constant ǫq > 0, such that, for all i =

1, . . . , L, q∗
v(K̂i−1) − q∗

v(K̂i) ≥ ǫq.

2) There exists a constant ǫv > 0, such that for all i = 1, . . . , L and

0 ≤ λ < 1, K̂iλ > Jǫv (wiλ, diλ), where Jǫv (wiλ, diλ) is defined in

(4.39).

3) There exist 0 < p < p < 1, such that p ≤ p(K̂i) ≤ p should be

satisfied for all i = 1, . . . , L.

3) Extend the definition of qv(p, K̂) to non-integer-valued K̂ as

qv(p, K̂) = (⌊K̂⌋ + 1 − K̂)qv(p, ⌊K̂⌋)

+(K̂ − ⌊K̂⌋)qv(p, ⌊K̂⌋ + 1). (4.47)

The following inequality should be satisfied for all i = 1, . . . , L

and for all 0 ≤ λ < 1.

wT
iλqv

(
pdiλ, K̂iλ

)
≤ q∗

viλ ≤ wT
iλqv

(
pdiλ, K̂iλ

)
. (4.48)

Interpolation Approach: Assume that p(K̂) is designed for a

given set of pinpoints {K̂i}, i = 0, . . . , L, with K̂0 = K < K̂1, < . . . <

K̂L = K, to satisfy Conditions 7 and 9. For i = 1, . . . , L and 0 ≤ λ < 1,

let K̂iλ, wiλ, diλ and q∗
viλ be defined in (4.46). Let qv(p, K̂) be defined

in (4.47). We choose p(K̂iλ) to satisfy

wT
iλqv(p(K̂iλ)d(K̂iλ), K̂iλ) = q∗

viλ. (4.49)

Consequently, p(K̂iλ) is designed as p(K̂iλ) = p(K̂iλ)diλ.

Note that existence of a solution with p ≤ p(K̂iλ) ≤ p to (4.49)

is guaranteed by (4.48). The following theorem shows that, combined

with the Interpolation Approach, the Majorization Condition 7 and the

Pinpoints Condition 9 imply the Monotonicity and Gradient Condition

8.
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Theorem 4.9. Assume that w(K̂) and p(K̂) are designed for a set

of L + 1 pinpoints {K̂i}, i = 0, . . . , L, with K̂0 = K < K̂1, < . . . <

K̂L = K. Let Conditions 7 and 9 be met for the pinpoints. After com-

pleting the function using the Interpolation Approach, w(K̂), p(K̂),

and q∗
v(K̂) functions satisfy both the Majorization Condition 7 and the

Monotonicity and Gradient Condition 8 for K ≤ K̂ ≤ K.

The proof of Theorem 4.9 is given in Appendix C.5.

Let us consider the case when all virtual packets are encoded using

random block codes with the same input distribution but with their rate

parameters satisfying rv1 > rv2 > . . . > rvV . The Majorization Con-

dition enables the system to shift observation weights, as K̂ increases,

either toward the low rate virtual packets (by using the simplified con-

dition given in (4.45)) or toward the high rate virtual packets (by using

(4.44)). Such flexibility can help to move the system equilibrium closer

to its ideal value. Nevertheless, according to our observations, for most

of the cases of interest, performance gain obtained by varying the obser-

vation vector in K̂ is often minor compared with a carefully optimized

system design either using a single virtual packet or using multiple

virtual packets but with a constant observation vector.
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Summary

As opposed to their relative abundance in wireline communication,

transmission power and channel bandwidth are the most precious re-

sources to wireless systems. Due to this reason, architectural problems

faced by wireless part of the networks are fundamentally different from

those of the wireline networks. While both “efficiency” and “modular-

ity” are critical to the operation of a wireless network, classical infor-

mation theory and network theory each only emphasizes one side of

the core concerns.

This monograph addressed the architectural inefficiency problem

at the bottom two layers of a wireless network. Due to the “single-

hop cellular structure” widely seen in wireless systems, we considered

a multiple access communication environment. Technical results of the

monograph are centered around a proposal to mitigate the correspond-

ing architectural inefficiency by enhancing the interface between the

physical and the data-link layers. In the enhanced physical-link layer

interface, a link layer user can be equipped with multiple transmis-

sion options corresponding to different communication settings such

as different power, rate, and antenna beam combinations. Navigation

through these transmission options gives data link layer users the capa-

92
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bility of exploiting advanced wireless properties such as power and rate

adjustments in communication adaptation. This is particularly impor-

tant to the efficiency of distributed networking systems when commu-

nication optimization cannot be done fully at the physical layer.

5.1 Key Technical Results

At the physical layer, we considered multiple access communication

over a discrete-time memoryless channel, and focused on channel coding

within one time slot. Assume that each transmitter is equipped with an

ensemble of channel codes, and can arbitrarily choose a code from the

ensemble to encode its message. Coding decisions are not shared among

the transmitters or with the receiver. With channel and code ensemble

information, the receiver either decodes the messages of interest or

reports collision. The receiver should choose an “operation region” in

the space of the coding vectors. The receiver is expected to decode the

messages reliably if the vector of coding decisions of the transmitters

happens to locate inside the operation region, and to report collision

reliably if the coding decision vector happens to locate outside the

operation region.

With a key extension on the definition of “communication error”

from its classical meaning of correct message decoding to the revised

meaning of providing the expected outcome (which may include cor-

rect message decoding and collision report), we were able to define the

asymptotic achievability of an operation region by taking the codeword

length (or time slot length) to infinity. The maximum achievable region

was defined as the distributed capacity of the discrete-time memoryless

channel and was shown to coincide with the classical Shannon chan-

nel capacity in a sense explained in the monograph. We obtained dis-

tributed capacities of the channel under various communication models

including joint message decoding, single user message decoding, commu-

nication with the existence of an interfering user, and communication

over a compound channel.

When the codeword length is finite, we derived achievable perfor-

mance bounds by considering the tradeoff between the choice of the
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operation region (including the extended consideration of operation re-

gion and operation margin) and the generalized error performance of

the system. The performance bounds are valid for any codeword length.

They become tight when the codeword length is large in value.

At the data link layer, we considered the problem of distributed

medium access control with each link layer user having multiple trans-

mission options. To simplify the problem, we assumed that the multiple

access network should consist of an unknown number of homogeneous

users each having a saturated message queue. In each time slot, a user

should randomly determine its transmission activity according to an

associated probability vector whose entries correspond to the available

transmission and idling options. The receiver is assumed to make a

judgement on the success/failure status of one or multiple presumed

virtual packet transmissions. Success probabilities of the virtual pack-

ets are estimated and fed back to the users. We developed a distributed

medium access control framework that can adapt the transmission prob-

ability vectors of the users to a unique equilibrium that is not far from

optimal with respect to a chosen symmetric network utility. We showed

that the framework can incorporate a general link layer channel model

and can be used to optimize a general symmetric network utility. Sim-

ulation results are provided to demonstrate the optimality and conver-

gence performance of the proposed distributed medium access control

algorithm.

A key step that supported the correct functioning of the proposed

medium access control algorithm is the development of a proper con-

tention measure of the multiple access channel. The contention mea-

sure, being common to all users, enabled the users to estimate the user

number in the system and to adjust their transmission schemes to a

common target.

5.2 Research Timeline

The first investigation of the extended channel coding theory was due to

Luo and Emphremides [57][58]. The original motivation was to develop

channel coding theorems to model bursty message arrivals (which even-

tually was translated into an arbitrary choice of communication rate)
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and to also incorporate collision detection at the receiver. The basic

idea of extending the communication error definition from correct mes-

sage decoding to providing the expected communication outcome was

proposed. Coding theorems also covered the cases of joint message de-

coding as well as single user message decoding. Unfortunately, [57][58]

tried to characterize fundamental performance limitation of the system

using a rate region and also to give a transmitter the freedom of gen-

erating each single codeword using a specific input distribution. These

efforts unnecessarily complicated the theorems and their corresponding

proofs.

In [85], Wang and Luo considered the case of finite codeword length,

and derived a set of achievable bounds for the tradeoff between the

choice of the operation region and the error performance of the sys-

tems. Error performance measure was originally chosen in [85] as the

maximum probability of all types of error events. In [86], the results

were extended to distributed communication over a compound chan-

nel. The idea of using an interfering user (or a virtual user) to model

the impact of the compound channel was proposed. These results were

jointly presented later in [87]. While derivations of the error probabil-

ity bounds given in [85][86][87] are more or less standard, revising the

exponential bound used in [28] turned out to be challenging. The cor-

responding approach present in [87] was inspired by the key reference

of [64], which is still listed as an “unpublished” paper.

In [55], Luo presented a set of relatively clean results for the achiev-

able regions and the achievable error performance bounds. Achievable

region was first defined in the space of the coding vectors. Recogniz-

ing the existence of multiple types of communication error events, a

generalized error performance measure was introduced to support the

assignment of different weights to different error types. For the purpose

of complexity reduction, a two step decoding approach was proposed

to first detect the coding vector and then to decode the messages of

interest.

Finally, in this monograph, we defined the achievable region as a

property of the communication channel, without depending it on the

choice of the code ensembles of the transmitters. Such a revision en-
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abled the converse proof of the maximum achievable region, which led

to the definition and the characterization of the distributed channel ca-

pacity. From the detailed derivations of the error performance bounds

given in [55], it can be seen that there are numerous ways to obtain

different achievable error performance bounds of the system. In this

monograph, we improved the bounds given in [55] in a way that we be-

lieve is the most relevant to the potential applications of these results.

Compared with the physical layer research, where analytical ap-

proaches were extended from the existing tools developed in the classi-

cal channel coding literature, research on the data link layer problems

faced a different set of challenges due to the lack of similar prior in-

vestigation in the literature. In [80], Tang, Zhao, and Luo formulated

the distributed medium access control problem from a game theoretic

perspective and analyzed the condition for the existence of a unique

Nash equilibrium. In [79], we formulated the problem using a stochas-

tic approximation model. A virtual packet was introduced to establish a

channel contention measure that is common to all users. This approach

guaranteed the equality of the transmission probabilities of all users at

any equilibrium, and consequently simplified the theoretical analysis of

the system. However, due to the difficult of proving a key monotonicity

property of the theoretical channel contention measure, we were only

able to develop the distributed medium access control algorithm for a

class of multi-packet reception channels with the assumption that each

user should only have a single transmission option. The framework was

later extended to a system with a general link layer channel model

and a general symmetric network utility. Finally, with the relaxation

of a key monotoniticy property, and the change from a direct-design

approach to a search-assisted approach, we were able to extend the

proposed medium access control framework to distributed link layer

networking with each user being equipped with multiple transmission

options. A majorization condition was introduced to enable the use of

multiple virtual packets in the system model.
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A

Proofs of Theorems in Section 2

A.1 Proof of Theorem 2.2

The basic idea of the achievability proof follows Shannon’s typical se-

quence arguments, and the converse proof is based on Fano’s inequality.

Because both approaches are more or less standard, we will go through

the proof briefly with explanations only on details specific to the dis-

tributed communication model.

A.1.1 The Achievability Part

Consider an arbitrary random code ensemble G with a finite cardinality

|G| = M . Given codeword length N , code ensemble corresponding to

the codeword length is denoted by G(N). We will first show the existence

of a decoding algorithm to achieve limN→∞ P
(N)
e (g) = 0 for all g ∈ G.

Let ǫ > 0 be a small constant. We define the set A
(N)
ǫ (g) of jointly

typical channel input and output sequences (X(N), Y (N)) for code index

g as follows

A(N)
ǫ (g) =

{
(X(N), Y (N)) ∈ X (N) × Y(N)

∣∣∣
∣∣∣∣−

1

N
log pg(X(N)) − Hg(X)

∣∣∣∣ < ǫ,

99
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∣∣∣∣−
1

N
log pg(Y (N)) − Hg(Y )

∣∣∣∣ < ǫ,

∣∣∣∣−
1

N
log pg(X(N), Y (N)) − Hg(X, Y )

∣∣∣∣ < ǫ,

∣∣∣∣−
1

N
log pY (N)(Y (N)) − Hg(Y )

∣∣∣∣ < ǫ

}
, (A.1)

where Hg() and pg() denote respectively the entropy function and the

probability function with respect to joint distribution PXY = PY |XPgX ,

i.e., with respect to input distribution PgX , while pY (N)() denotes the

probability function with respect to the empirical distribution obtained

from sequence Y (N).

Note that the definition of typical sequence set given in (A.1) is

stronger than the classical Shannon’s definition [71], but it is weaker

than the definition of strong typical sequence set given in [8] and [21].

The reason we added the condition involving the empirical distributions

in (A.1) is that, it enables us to bridge probability bounds of a chan-

nel input and output sequence pair that appears in multiple typical

sequence sets corresponding to different code indices.

Let X
(N)
g (w) denote the randomly generated codeword correspond-

ing to message w and code index g. Upon observing channel output

sequence Y (N), the receiver searches for all message and code index

pairs (ŵ, ĝ) such that ĝ ∈ Cd and (X
(N)
ĝ (ŵ), Y (N)) ∈ A

(N)
ǫ (ĝ). If one

and only one message and code index pair is found, the receiver out-

puts (ŵ, ĝ) as its decoding outcome. Otherwise, the receiver reports

collision.

Denote the actual message and code index pair by (w, g). It is easy

to see that

lim
N→∞

Pr{(X(N)
g (w), Y (N)) ∈ A(N)

ǫ (g)} = 1. (A.2)

We define an event “Error1” as follows,

Error1 : ∃(w̃, g̃) with g̃ ∈ Cd, (w̃, g̃) 6= (w, g),

and (X
(N)
g̃ (w̃), Y (N)) ∈ A(N)

ǫ (g̃). (A.3)

Depending on the value of g, there are two types of communication

errors. First, if g ∈ Cd, according to (A.2), the receiver will find (w, g) as
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one of the decoding candidates. The receiver should output (w, g) unless

event “Error1” happens, in which case the receiver will be confused and

will report collision. Second, if g 6∈ Cd, because we do not regard correct

decoding as an error event, communication error in this case refers to

the event that the receiver outputs an erroneous decoding estimate

(w̃, g̃) 6= (w, g). A necessary condition for the error event is again the

event of “Error1”.

Next, we will show that limN→∞ Pr{Error1} = 0, irrespective of

whether g ∈ Cd or not. Let us assume that event “Error1” does happen.

Because g̃ ∈ Cd, according to the definition of Cd, we have

rg̃ < Ig̃(X; Y ). (A.4)

Also because (w̃, g̃) 6= (w, g), X
(N)
g̃ (w̃) and the channel output sequence

are generated independently. Therefore, according to the standard typ-

ical sequence argument [71][20], for each message and code index pair

(w̃, g̃) and for large enough N , the probability that the receiver will find

(X
(N)
g̃ (w̃), Y (N)) ∈ A

(N)
ǫ (g̃) should satisfy the following upper bound

1

N
log[Pr{(X

(N)
g̃ (w̃), Y (N)) ∈ A(N)

ǫ (g̃)}]

≤ (Hg̃(X, Y ) + ǫ) − (Hg̃(X) − ǫ) − (Hg(Y ) − ǫ)

≤ (Hg̃(X, Y ) + ǫ) − (Hg̃(X) − ǫ) − (Hg̃(Y ) − 3ǫ)

= −Ig̃(X; Y ) + 5ǫ, (A.5)

where the last term in the first inequality is due to the fact that the

channel sequence is generated using code index g, and the probability

bound is translated in the second inequality to one corresponding to

code index g̃ because both entropy bounds are associated with the same

output sequence Y (N) with the same empirical distribution.

Therefore, according to the union bound, for large enough N , prob-

ability of event “Error1” can be upper bounded by

Pr{Error1} ≤
∑

g̃∈Cd

∑

w̃

Pr{(X
(N)
g̃ (w̃), Y (N)) ∈ A(N)

ǫ (g̃)}

≤
∑

g̃∈Cd

exp [N (rg̃ − Ig̃(X; Y ) + 5ǫ)] . (A.6)
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This implies that we can find a small enough ǫ to ensure

lim
N→∞

Pr{Error1} = 0 (A.7)

Achievability of Cd then follows.

A.1.2 The Converse Part

Consider an operation region R that is asymptotically achievable. Let

g ∈ R be an arbitrary point in R. We will show that g ∈ Cc
d must be

true.

Let (w, g) be the actual message vector and code index vector pair.

We assume that g is known to the receiver. We will also skip g in the

subscription to simplify the notations. Because g ∈ R, according to the

definition of achievable region, the receiver should output ŵ = w with

an asymptotic probability of one. Or in other words, limN→∞ P
(N)
e = 0.

Let ǫ > 0 be an arbitrary small constant. According to Fano’s in-

equality [23][20], for large enough N , we have

rg ≤ 1

N
H(w) + ǫ

=
1

N
H
(
w|Y (N)

)
+

1

N
I
(
w; Y (N)

)
+ ǫ

<
1

N
+

1

N
P (N)

e log(|w|) +
1

N
I
(
w; Y (N)

)
+ ǫ

≤ 1

N
I
(
w; Y (N)

)
+ 2ǫ

≤ 1

N
I
(
X(N); Y (N)

)
+ 2ǫ

= I (X; Y ) + 2ǫ, (A.8)

where the inequality in the second line from the last is obtained due

to the data processing inequality [20], and equality in the last line is

due to the fact that the channel is memoryless and codeword symbols

are generated independently. By taking N to infinity and taking ǫ to

0, (A.8) implies that rg ≤ I (X; Y ). Therefore we must have g ∈ Cc
d.

Because g ∈ R is chosen arbitrarily, R ⊆ Cc
d must be true.
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A.2 Proof of Theorem 2.6

This proof is purposely organized in the same structure as the proof

of Theorem 2.2, so that readers can use the proof of Theorem 2.2 as

a reference to help navigating through the more notation-complicated

derivations presented in this proof.

A.2.1 The Achievability Part

Consider an arbitrary random code ensemble G with a finite cardi-

nality |Gk| = M , ∀k ∈ {1, . . . , K}. Given codeword length N , code

ensemble corresponding to the codeword length is denoted by G(N).

We will first show the existence of a decoding algorithm to achieve

limN→∞ P
(N)
e (g) = 0 for all g ∈ G.

Let ǫ > 0 be a small constant. We define the set A
(N)
ǫ (g) of typical

sequences (X(N), Y (N)) for code index g as follows

A(N)
ǫ (g) =

{
(X(N), Y (N)) ∈ X (N) × Y(N)

∣∣∣ ∀S ⊆ {1, . . . , K},
∣∣∣∣−

1

N
log pg(X

(N)
S ) − Hg(XS)

∣∣∣∣ < ǫ,

∣∣∣∣−
1

N
log pg(X

(N)
S , Y (N)) − Hg(XS , Y )

∣∣∣∣ < ǫ,

∣∣∣∣−
1

N
log p

(X
(N)
S

,Y (N))
(X

(N)
S , Y (N)) − Hg(XS , Y )

∣∣∣∣ < ǫ

}
, (A.9)

where Hg() and pg() denote respectively the entropy function and the

probability function with respect to joint distribution PXY under input

distribution PgX , i.e., PXY = PY |X
∏K

k=1 PgkXk
, while p

(X
(N)
S

,Y (N))
() de-

notes the probability function with respect to the empirical distribution

obtained from vector sequence pair (X
(N)
S , Y (N)).

As explained in the proof of Theorem 2.2, the definition of typical

sequence set given in (A.9) is stronger than the classical Shannon’s

definition [71], but it is weaker than the definition of strong typical

sequence set given in [8] and [21]. The reason we added the condi-

tion involving the empirical distributions in (A.9) is that, it enables

us to bridge probability bounds of a partial channel input and output
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sequence pair that appears in multiple typical sequence sets correspond-

ing to different code index vectors.

Let X(N)
g (w) denote the randomly generated codeword vector se-

quence corresponding to message vector w and code index vector g.

Upon observing channel output sequence Y (N), the receiver searches

for all message vector and code index vector pairs (ŵ, ĝ) such that

ĝ ∈ Cd1 and (X
(N)
ĝ

(ŵ), Y (N)) ∈ A
(N)
ǫ (ĝ). If only one message vector

and code index vector pair is found, or, if multiple vector pairs are

found but all vector pairs correspond to the same message and code

index pair (ŵ1, ĝ1) for user 1, then the receiver outputs (ŵ1, ĝ1) as its

decoding outcome. Otherwise, the receiver reports collision for user 1.

Denote the actual message vector and code index vector pair by

(w, g). It is easy to see that

lim
N→∞

Pr{(X(N)
g (w), Y (N)) ∈ A(N)

ǫ (g)} = 1. (A.10)

We define an event “Error1” as follows,

Error1 : ∃(w̃, g̃) with g̃ ∈ Cd1, (w̃1, g̃1) 6= (w1, g1),

and (X
(N)
g̃ (w̃), Y (N)) ∈ A(N)

ǫ (g̃). (A.11)

Depending on the value of g, there are two types of communication

errors. First, if g ∈ Cd1, according to (A.10), the receiver will find

(w1, g1) as one of the decoding candidates. The receiver should output

(w1, g1) unless event “Error1” happens, in which case the receiver will

be confused and will report collision. Second, if g 6∈ Cd1, because we

do not regard correct decoding for user 1 as an error event, communi-

cation error in this case refers to the event that the receiver outputs an

erroneous decoding estimate (w̃1, g̃1) 6= (w1, g1). A necessary condition

for the error event is again the event of “Error1”.

Next, we show that limN→∞ Pr{Error1} = 0, irrespective of

whether g ∈ Cd1 or not. To do that, we first need to define another

event “Error1S”, for an arbitrary user subset S ⊆ {1, . . . , K} with

1 ∈ S, as follows

Error1S : ∃(w̃, g̃) with g̃ ∈ Cd1, (w̃S̄ , g̃S̄) = (wS̄ , gS̄),

and with (w̃k, g̃k) 6= (wk, gk), ∀k ∈ S,
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such that (X
(N)
g̃ (w̃), Y (N)) ∈ A(N)

ǫ (g̃). (A.12)

Event “Error1S” represents the situation that the receiver finds a de-

coding candidate (w̃, g̃). (w̃, g̃) is identical to the actual vector pair

(w, g) on the part corresponding to users not in S, while (w̃, g̃) differs

from (w, g) on the part corresponding to users in S. We will show that

limN→∞ Pr{Error1S} = 0, ∀S, which implies limN→∞ Pr{Error1} = 0.

Let us assume that event “Error1S” does happen for a given S ⊆
{1, . . . , K} with 1 ∈ S. Because g̃ ∈ Cd1, according to the definition of

Cd1, we can find a user subset S̃ ⊆ S with 1 ∈ S̃, such that
∑

k∈S̃

rg̃k
< Ig̃(X S̃; Y |X S̄). (A.13)

Consider part of the vectors corresponding to user subset S̃ ∪ S̄. We

say that a partial codeword vector sequence X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄) is jointly

typical with Y (N) with respect to code index vector g̃, denoted by

(X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A
(N)
ǫ (g̃), if there exists a codeword vector se-

quence X(N) with X
(N)

S̃∪S̄
= X

(N)
g̃S̃∪S̄

(w̃S̃∪S̄), such that (X(N), Y (N)) ∈
A

(N)
ǫ (g̃).

Because (w̃k, g̃k) 6= (wk, gk) for all k ∈ S̃ ⊆ S, X
(N)
g̃S̃

(w̃S̃) and the

channel output sequence are generated independently. Therefore, ac-

cording to the standard typical sequence argument [71][20], for each par-

tial message vector and code index vector pair (w̃S̃∪S̄ , g̃) and for large

enough N , the probability of finding (X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A
(N)
ǫ (g̃)

should satisfy the following upper bound

1

N
log[Pr{(X

(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A(N)
ǫ (g̃)}]

≤ (Hg̃(X S̃ , X S̄ , Y ) + ǫ) − (Hg̃(X S̃) − ǫ) − (Hg(X S̄ , Y ) − ǫ)

≤ (Hg̃(X S̃ , X S̄ , Y ) + ǫ) − (Hg̃(X S̃) − ǫ) − (Hg̃(X S̄ , Y ) − 3ǫ)

= −Ig̃(X S̃ ; X S̄ , Y ) + 5ǫ

= −Ig̃(X S̃ ; Y |X S̄) + 5ǫ, (A.14)

where the last term in the first inequality is due to the fact that the

corresponding channel input and output sequences are generated us-

ing code index vector g, and the probability bound is translated in
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the second inequality to one corresponding to code index vector g̃ be-

cause both entropy bounds are associated with the same partial vector

sequence (X(N)
gS̄

(wS̄), Y (N)) with the same empirical distribution.

By assumption, we have (w̃S̄ , g̃S̄) = (wS̄ , gS̄). Therefore, according

to the union bound, for large enough N , Pr{Error1S} can be upper

bounded by

Pr{Error1S} ≤
∑

g̃S ,g̃∈Cd1

∑

w̃S̃

Pr{(X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A(N)
ǫ (g̃)}

≤
∑

g̃S ,g̃∈Cd1

exp


N


∑

k∈S̃

rg̃k
− Ig̃(X S̃ ; X S̄ , Y ) + 5ǫ




 . (A.15)

This implies that we can find a small enough ǫ to ensure

lim
N→∞

Pr{Error1S} = 0. (A.16)

Consequently, limN→∞ Pr{Error1} = 0. Achievability of Cd1 for user

1 then follows.

A.2.2 The Converse Part

Consider an operation region R1 that is asymptotically achievable for

user 1. Let g ∈ R1 be an arbitrary code index vector in R1. We will

show that g ∈ Cc
d1 must be true.

Let (w, g) be the actual message vector and code index vector pair.

We assume g is known to the receiver. We will skip g in the subscrip-

tion to simplify the notations. Because g ∈ R1, according to the defini-

tion of achievable region, the receiver should output ŵ1 = w1 with an

asymptotic probability of one.

Let S ⊆ {1, . . . , K} be an arbitrary user subset with 1 ∈ S. Assume

that codewords of users in S̄ are known at the receiver. Because the

message of user 1 is correctly decoded with an asymptotic probability

of one, there must exist a user subset S̃ ⊆ S with 1 ∈ S̃ such that,

with an asymptotic probability of one, the receiver can jointly decode

the messages of users in S̃ by regarding the input symbols from users

in S \ S̃ as interference. Denote the probability that the receiver is

not able to recover the message of all users in S̃ as P
(N)
e (S̃), we have

limN→∞ P
(N)
e (S̃) = 0.
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Let ǫ > 0 be an arbitrary small constant. According to Fano’s in-

equality, for large enough N , we have

∑

k∈S̃

rgk
≤ 1

N
H(wS̃) + ǫ =

1

N
H
(
wS̃ |X(N)

S̄
(wS̄)

)
+ ǫ

=
1

N
H
(
wS̃ |X(N)

S̄
(wS̄), Y (N)

)
+

1

N
I
(
wS̃ ; Y (N)|X(N)

S̄
(wS̄)

)
+ ǫ

<
1

N
+

1

N
P (N)

e (S̃) log(|wS̃ |) +
1

N
I
(
wS̃ ; Y (N)|X(N)

S̄
(wS̄)

)
+ ǫ

≤ 1

N
I
(
wS̃ ; Y (N)|X(N)

S̄
(wS̄)

)
+ 2ǫ

≤ 1

N
I
(
X

(N)

S̃
; Y (N)|X(N)

S̄
(wS̄)

)
+ 2ǫ

= I
(
X S̃; Y |X S̄

)
+ 2ǫ, (A.17)

where inequality in the second line from the last is obtained due to

the data processing inequality [20], and equality in the last line is due

to the fact that the channel is memoryless and codeword symbols are

generated independently. By taking N to infinity and taking ǫ to 0,

(A.17) implies that
∑

k∈S̃ rgk
≤ I

(
X S̃ ; Y |X S̄

)
. Because this holds for

every user subset S ⊆ {1, . . . , K} with 1 ∈ S, we must have g ∈ Cc
d1.

Because g ∈ R1 is chosen arbitrarily, R1 ⊆ Cc
d1 therefore must be true.

A.3 Proof of Corollary 2.7

Note that, if a region is achievable under the alternative error prob-

ability definition (2.15), it is also achievable under error probability

definition (2.13). Therefore, converse part of the corollary is implied by

the converse part of Theorem 2.6.

Let G be the code ensemble vector of the users. Given G, we first

find a small positive constant σ > 0, such that for all g ∈ G, either

g 6∈ Cd1 or g ∈ C
(σ)
d1 , where C

(σ)
d1 is defined as follows

C
(σ)
d1 =

{
g

∣∣∣∣∣
g = (rg, P gX), ∀S ⊆ {1, . . . , K}, 1 ∈ S, ∃S̃ ⊆ S, 1 ∈ S̃,

such that,
∑

k∈S̃ rgk
< Ig(X S̃ ; Y |X S̄) − σ

}
.

(A.18)

Let (w, g) be the actual message vector and code index vector pair. In

the proof of Theorem 2.6, we already showed that, the probability for
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the receiver to output an erroneous message for user 1 is asymptotically

zero. To prove the corollary, we need to show that, if g 6∈ Cd1, then the

probability for the receiver to output the correct message for user 1, as

opposed to reporting collision, is also asymptotically zero. Therefore,

in the rest of the proof, we assume g 6∈ Cd1.

Let ǫ > 0 be a small positive constant. Define the set A
(N)
ǫ (g)

of typical sequences (X(N), Y (N)) for code index g as in (A.9). Let

S ⊆ {1, . . . , K} be an arbitrary user subset with 1 ∈ S. We define

event “Error2S” as follows

Error2S : ∃(w̃, g̃) with g̃ ∈ C
(σ)
d1 ,

(w̃S̄∪{1}, g̃S̄∪{1}) = (wS̄∪{1}, gS̄∪{1}),

and with (w̃k, g̃k) 6= (wk, gk), ∀k ∈ S \ {1},

such that (X
(N)
g̃ (w̃), Y (N)) ∈ A(N)

ǫ (g̃). (A.19)

Event “Error2S” represents the situation that the receiver finds a de-

coding candidate (w̃, g̃). (w̃, g̃) is identical to the actual vector pair

(w, g) on the part corresponding to users in S̄ ∪ {1}, while (w̃, g̃) dif-

fers from (w, g) on the part corresponding to users not in S̄ ∪ {1}. We

will show that limN→∞ Pr{Error2S} = 0 for all S.

Suppose that event “Error2S” does happen for a given S with 1 ∈ S.

To obtain limN→∞ Pr{Error2S} = 0, our key objective is to show that

there exists a user subset S̃ ⊆ S with 1 ∈ S̃ and S̃ \ {1} 6= φ, such that
∑

k∈S̃\{1}

rg̃k
< Ig̃(X S̃\{1}; Y |X S̄∪{1}) − σ + 4ǫ. (A.20)

Consider part of the vectors corresponding to user subset S̃ ∪ S̄.

As in Section A.2, we say that a partial codeword vector sequence

X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄) is jointly typical with Y (N) with respect to code index

vector g̃, denoted by (X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A
(N)
ǫ (g̃), if there exists

a codeword vector sequence X(N) with X
(N)

S̃∪S̄
= X

(N)
g̃S̃∪S̄

(w̃S̃∪S̄), such

that (X(N), Y (N)) ∈ A
(N)
ǫ (g̃).

Note that, for each partial message vector and code index vector

pair (w̃S̃∪S̄ , g̃) and for large enough N , the probability that the receiver
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will find (X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A
(N)
ǫ (g̃) should satisfy the following

upper bound

1

N
log[Pr{(X

(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A(N)
ǫ (g̃)}]

≤ (Hg̃(X S̃\{1}, X S̄∪{1}, Y ) + ǫ) − (Hg̃(X S̃\{1}) − ǫ)

−(Hg(X S̄∪{1}, Y ) − ǫ)

≤ (Hg̃(X S̃\{1}, X S̄∪{1}, Y ) + ǫ) − (Hg̃(X S̃\{1}) − ǫ)

−(Hg̃(X S̄∪{1}, Y ) − 3ǫ)

= −Ig̃(X S̃\{1}; X S̄∪{1}, Y ) + 5ǫ. (A.21)

According to the union bound, if (A.20) is true, for large enough N ,

Pr{Error2S} should be upper bounded by

Pr{Error2S}
≤

∑

g̃S\{1},g̃∈C
(σ)
d1

∑

w̃S̃\{1}

Pr{(X
(N)
g̃S̃∪S̄

(w̃S̃∪S̄), Y (N)) ∈ A(N)
ǫ (g̃)}

≤
∑

g̃S\{1},g̃∈C
(σ)
d1

exp


N


 ∑

k∈S̃\{1}

rg̃k
− Ig̃(X S̃\{1}; X S̄∪{1}, Y )

+5ǫ

)]

< M |S|−1 exp[N(−σ + 9ǫ)]. (A.22)

Given σ, (A.22) implies that we can find a small enough ǫ to ensure

limN→∞ Pr{Error2S} = 0.

Next, we prove that (A.20) indeed holds. We first show that, there

exists a user subset S1 with S1 ∩ S = φ, such that for all user subsets

S2 ⊆ S̄ \ S1, we have
∑

k∈S2

rgk
+ rg1 ≥ Ig(XS2∪{1}; Y |XS1). (A.23)

Because g 6∈ Cd1, according to (2.16), there exists a user subset S3

with 1 ∈ S3, such that the following bound holds for all user subsets

S̃3 ⊆ S3 with 1 ∈ S̃3,
∑

k∈S̃3

rgk
≥ Ig(X S̃3

; Y |X S̄3
). (A.24)
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In fact, (A.23) holds if we choose S1 = S̄3 ∩ S̄. To see this, note that

with S1 = S̄3 ∩ S̄, for any user subset S2 ⊆ S̄ \ S1, we must have

S2 ∩ S̄3 = φ and 1 6∈ S2. In other words, {1} ∪ S2 ⊆ S3. Consequently,

according to (A.24), we have
∑

k∈S2

rgk
+ rg1 ≥ Ig(XS2∪{1}; Y |X S̄3

)

= Hg(XS2∪{1}) − Hg(XS2∪{1}|Y, X S̄3
)

≥ Hg(XS2∪{1}) − Hg(XS2∪{1}|Y, XS1)

= Ig(XS2∪{1}; Y |XS1), (A.25)

where inequality in the third line is due to the fact that S1 ⊆ S̄3.

Now, let S1 be the user subset that satisfies (A.23). If the receiver

outputs another message vector and code index vector pair (w̃, g̃) with

g̃ ∈ C
(σ)
d1 , (w̃S̄∪{1}, g̃S̄∪{1}) = (wS̄∪{1}, gS̄∪{1}), and (w̃k, g̃k) 6= (wk, gk)

for all k ∈ S \ {1}, it implies that partial codeword vector sequence

and channel output sequence pair
(
X(N)

gS̄∪{1}
(wS̄∪{1}), Y (N)

)
are jointly

typical with respect to both A
(N)
ǫ (g) and A

(N)
ǫ (g̃). Therefore, for all

user subsets S2 ⊆ S̄ \ S1, we can translate the bounds of (A.23) to the

following one associated with g̃.
∑

k∈S2

rg̃k
+ rg̃1 ≥ Ig(XS2∪{1}; Y |XS1)

= Hg(XS2∪{1}) − Hg(XS2∪{1}|Y, XS1)

= Hg(XS2∪{1}) − Hg(XS2∪{1}, XS1 , Y ) + Hg(XS1 , Y )

≥ Hg̃(XS2∪{1}) − [Hg̃(XS2∪{1}, XS1 , Y ) + 2ǫ]

+[Hg̃(XS1 , Y ) − 2ǫ]

≥ Hg̃(XS2∪{1}) − [Hg̃(XS2∪{1}|Y, XS1) + 4ǫ]

= Ig̃(XS2∪{1}; Y |XS1) − 4ǫ. (A.26)

By assumption, g̃ ∈ C
(σ)
d1 , and therefore we can find a user subset

S̃ ∪ S2 with S̃ ⊆ S, {1} ∈ S̃, and S2 ⊆ S̄ \ S1, such that
∑

k∈S2∪S̃

rg̃k
< Ig̃(XS2∪S̃ ; Y |XS1) − σ. (A.27)

Subtracting (A.26) from (A.27), we get
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∑

k∈S̃\{1}

rg̃k
< Ig̃(XS2∪S̃ ; Y |XS1) − σ − Ig̃(XS2∪{1}; Y |XS1) + 4ǫ

= Ig̃(X S̃\{1}; Y |XS2∪S1∪{1}) − σ + 4ǫ

= Hg̃(X S̃\{1}) − Hg̃(X S̃\{1}|Y, XS2∪S1∪{1}) − σ + 4ǫ

≤ Hg̃(X S̃\{1}) − Hg̃(X S̃\{1}|Y, X S̄∪{1}) − σ + 4ǫ

= Ig̃(X S̃\{1}; Y |X S̄∪{1}) − σ + 4ǫ. (A.28)

Note that (A.28) implies S̃\{1} 6= φ, because otherwise
∑

k∈S̃\{1} rg̃k =

Ig̃(X S̃\{1}; Y |X S̄∪{1}) = 0, with a small enough ǫ, (A.28) leads to an

invalid inequality of 0 < 0 − σ + 4ǫ < 0.

With the proof of (A.20), conclusion of the corollary then follows.

A.4 Proof of Corollary 2.8

From the definition, it is easy to see that CdS0 ⊆ ⋂
k∈S0

Cdk. Next, we

will show that CdS0 ⊇ ⋂
k∈S0

Cdk. In other words, if g is a code index

vector satisfying g ∈ Cdk for all k ∈ S0, we will show that g ∈ CdS0

must be true.

For any user subset S with S∩S0 6= φ, let k̃ ∈ S∩S0 be an arbitrary

user in S ∩ S0. Because g ∈ Cdk̃, according to (2.16), we can find a

subset S̃1 ⊆ S with k̃ ∈ S̃1 ∩ S0, such that
∑

k∈S̃1

rgk
< Ig(X S̃1

; Y |X S̄). (A.29)

Now consider user subset S \ S̃1. If (S \ S̃1) ∩ S0 6= φ, for the same

reason explained above, we can find another user subset S̃2 ⊆ S \ S̃1

with S̃2 ∩ S0 6= φ such that
∑

k∈S̃2

rgk
< Ig(X S̃2

; Y |X
S\S̃1

). (A.30)

Apply this procedure recursively. That is, if for an integer j > 0 such
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that (S \ S̃1 \ . . . \ S̃j−1) ∩ S0 6= φ, we can find user subset S̃j ⊆
S \ S̃1 \ . . . \ S̃j−1 with S̃j ∩ S0 6= φ, such that

∑

k∈S̃j

rgk
< Ig(X S̃j

; Y |X
S\S̃1\...\S̃j−1

). (A.31)

Let the procedure be carried out till we find an integer J > 0 with

(S \ S̃1 \ . . . \ S̃J) ∩ S0 = φ. Define S̃ =
⋃J

j=1 S̃j. Because (A.31) holds

for all j ≤ J , and user subsets S̃j for j = 1, . . . , J are mutually exclusive,

we must have

∑

k∈S̃

rgk
<

J∑

j=1

Ig(X S̃j
; Y |X

S\S̃1\...\S̃j−1
) = Ig(X S̃; Y |X S̄). (A.32)

This implies that user subset S̃ with S ∩ S0 ⊆ S̃ ⊆ S can be found

to satisfy (A.32) for any user subset S with S ∩ S0 6= φ. Consequently,

g ∈ CdS0 must be true.
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Proofs of Theorems in Section 3

B.1 Proof of Theorem 3.1

Given the sequence of channel output symbols Y (N), for any channel in-

put sequence X(N) and code index g, we define the weighted likelihood

of the channel input sequence Lg

(
X(N), Y (N)

)
as follows.

Lg

(
X(N), Y (N)

)
= P (Y (N)|X(N))e−Nαg . (B.1)

Also define a constraint set R of message and code index pairs, where

each code index should belong to the operation region and the weighted

likelihood of the corresponding codeword should stay above a pre-

determined threshold.

R =
{

(w, g)|g ∈ R and ∀g̃ 6∈ R, Lg

(
X(N)

g (w), Y (N)
)

> e−Nτ[g,g̃](Y
(N))

}

(B.2)

where τ[g,g̃](Y
(N)) is a threshold function whose value will be specified

later.

We assume that the following decoding algorithm is used at the

receiver. Given Y (N), the receiver calculates the constraint set R. If R is

empty, the receiver reports collision. Otherwise, the receiver outputs the

113

Full text available at: http://dx.doi.org/10.1561/1300000063



114 Proofs of Theorems in Section 3

message and code index pair (ŵ, ĝ) ∈ R with the maximum weighted

likelihood value. In other words,

(ŵ, ĝ) = argmax
(w,g)∈R

Lg

(
X(N)

g (w), Y (N)
)

. (B.3)

We define the probabilities of the following three types of error

events. First, under the assumption that (w, g) with g ∈ R is the ac-

tual message and code index pair, we define Pm[g,g̃] as the probability

that the weighted likelihood of (w, g) is no larger than that of another

message and code index pair (w̃, g̃) corresponding to code index g̃ ∈ R.

Pm[g,g̃] = Pr
{

∃w̃, (w̃, g̃) 6= (w, g), such that

Lg

(
X(N)

g (w), Y (N)
)

≤ Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)}
, for g, g̃ ∈ R.

(B.4)

Second, again under the assumption that (w, g) with g ∈ R is the

actual message and code index pair, we define Pt[g,g̃] as the probability

that the weighted likelihood of (w, g) is no larger than the threshold

associated with code index g̃ 6∈ R.

Pt[g,g̃] = Pr
{

Lg

(
X(N)

g (w), Y (N)
)

≤ e−Nτ[g,g̃](Y
(N))

}
, for g ∈ R, g̃ 6∈ R

(B.5)

Third, under the assumption that (w̃, g̃) with g̃ 6∈ R is the actual mes-

sage and code index pair, we define Pi[g̃,g] as the probability that there

exists at least one message and code index pair (w, g) with g ∈ R,

such that the weighted likelihood of (w, g) is larger than the threshold

associated with code index g̃.

Pi[g̃,g] = Pr
{

∃w with Lg

(
X(N)

g (w), Y (N)
)

> e−Nτ[g,g̃](Y
(N))

}
,

for g̃ 6∈ R, g ∈ R. (B.6)

With the above probability definitions, generalized error perfor-

mance of the system can be upper bounded by

GEP ≤
∑

g∈R


∑

g̃∈R

Pm[g,g̃]e
−Nαg +

∑

g̃ 6∈R

(
Pt[g,g̃]e

−Nαg + Pi[g̃,g]e
−Nαg̃

)

 .

(B.7)

Next, we will derive upper-bounds for each of the three terms on

the right hand side of (B.7).
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Step I: Upper-bounding Pm[g,g̃]e
−Nαg .

Under the assumption that (w, g) with g ∈ R is the actual message

and code index pair, and with g̃ ∈ R, we write Pm[g,g̃]e
−Nαg as follows

Pm[g,g̃]e
−Nαg = EX(N)


∑

Y (N)

Lg

(
X(N)

g (w), Y (N)
)

φm[g,g̃]


 , (B.8)

where EX(N) [.] denotes the expectation operation over the random code-

book generation, and φm[g,g̃] is an indicator function with φm[g,g̃] = 1 if

there exists a w̃ with (w̃, g̃) 6= (w, g) such that Lg

(
X

(N)
g (w), Y (N)

)
≤

Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)
, and φm[g,g̃] = 0 if such a message w̃ cannot be

found.

Let ρ > 0 and s ≥ 0 be two arbitrary constants. As shown in [64],

we can upper bound φm[g,g̃] by

φm[g,g̃] ≤




∑
w̃

[
Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)] s
ρ

[
Lg

(
X

(N)
g (w), Y (N)

)] s
ρ




ρ

. (B.9)

Substitute (B.9) into (B.8) yields

Pm[g,g̃]e
−Nαg ≤ EX(N)


∑

Y (N)

[
Lg

(
X(N)

g (w), Y (N)
)]1−s

×
(
∑

w̃

[
Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)] s
ρ

)ρ]

=
∑

Y (N)

EX(N)

[[
Lg

(
X(N)

g (w), Y (N)
)]1−s

]

×EX(N)

[(
∑

w̃

[
Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)] s
ρ

)ρ]
, (B.10)

where the last equality is due to the assumption that (w̃, g̃) 6= (w, g),

and therefore codewords X
(N)
g̃ (w̃) and X

(N)
g (w) are generated indepen-

dently.

Now assume that 0 < ρ ≤ 1, we can further bound Pm[g,g̃]e
−Nαg by

Full text available at: http://dx.doi.org/10.1561/1300000063



116 Proofs of Theorems in Section 3

Pm[g,g̃]e
−Nαg ≤

∑

Y (N)

EX(N)

[[
Lg

(
X(N)

g (w), Y (N)
)]1−s

]

×
(
∑

w̃

EX(N)

[[
Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)] s
ρ

])ρ

= eNρrg̃
∑

Y (N)

EX(N)

[[
Lg

(
X(N)

g , Y (N)
)]1−s

]

×
(

EX(N)

[[
Lg̃

(
X

(N)
g̃ , Y (N)

)] s
ρ

])ρ

, (B.11)

where in the last equality we removed w̃ in the notation because the

corresponding terms are not functions of the messages after taking the

expectation operations.

Let X
(N)
n and Y

(N)
n denote the nth symbols of X(N) and Y (N) re-

spectively. By following a derivation similar to the one presented in [28,

Section II], we have

EX(N)

[[
Lg

(
X(N)

g , Y (N)
)]1−s

]

=
∑

X(N)

[
P (Y (N)|X(N))e−Nαg

]1−s
Pg(X(N))

=
∑

X(N)

N∏

n=1

[
P (Y (N)

n |X(N)
n )e−αg

]1−s
Pg(X(N)

n )

=
N∏

n=1

∑

X

[
P (Y (N)

n |X)e−αg

]1−s
Pg(X). (B.12)

Meanwhile, we also have,
(

EX(N)

[[
Lg̃

(
X

(N)
g̃ , Y (N)

)] s
ρ

])ρ

=

(
N∏

n=1

∑

X

[
P (Y (N)

n |X)e−αg̃

] s
ρ

Pg̃(X)

)ρ

=
N∏

n=1

(
∑

X

[
P (Y (N)

n |X)e−αg̃

] s
ρ

Pg̃(X)

)ρ

. (B.13)
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Therefore, (B.11) implies that

Pm[g,g̃]e
−Nαg ≤ eNρrg̃

∑

Y (N)

N∏

n=1

(
∑

X

[
P (Y (N)

n |X)e−αg

]1−s
Pg(X)

)

×
(
∑

X

[
P (Y (N)

n |X)e−αg̃

] s
ρ

Pg̃(X)

)ρ

= eNρrg̃

{
∑

Y

(
∑

X

[
P (Y |X)e−αg

]1−s
Pg(X)

)

×
(
∑

X

[
P (Y |X)e−αg̃

] s
ρ Pg̃(X)

)ρ}N

= exp

(
−N

[
−ρrg̃ − log

∑

Y

(
∑

X

[
P (Y |X)e−αg

]1−s
Pg(X)

)

×
(
∑

X

[
P (Y |X)e−αg̃

] s
ρ Pg̃(X)

)ρ])
. (B.14)

Because (B.14) holds for all 0 < ρ ≤ 1 and s ≥ 0, and becomes

trivial for s > 1, we conclude that

Pm[g,g̃]e
−Nαg ≤ exp(−NEm(g, g̃)), (B.15)

where Em(g, g̃) is given in (3.5).

Step II: Upper-bounding Pt[g,g̃]e
−Nαg .

Under the assumption that (w, g) with g ∈ R is the actual message

and code index pair, we write Pt[g,g̃]e
−Nαg as follows

Pt[g,g̃]e
−Nαg = EX(N)



∑

Y (N)

Lg

(
X(N)

g (w), Y (N)
)

φt[g,g̃]


 , (B.16)

where φt[g,g̃] is an indicator function with

φt[g,g̃] =

{
1 if Lg

(
X

(N)
g (w), Y (N)

)
≤ e−Nτ[g,g̃](Y

(N))

0 otherwise
. (B.17)

Let s1 ≥ 0 be an arbitrary constant. We can upper bound φt[g,g̃] by

φt[g,g̃] ≤ e−Ns1τ[g,g̃](Y
(N))

[
Lg

(
X

(N)
g (w), Y (N)

)]s1
. (B.18)

Substitute (B.18) into (B.16), we get
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Pt[g,g̃]e
−Nαg

≤ EX(N)


∑

Y (N)

[
Lg

(
X(N)

g (w), Y (N)
)]1−s1

e−Ns1τ[g,g̃](Y
(N))




=
∑

Y (N)

EX(N)

[[
Lg

(
X(N)

g , Y (N)
)]1−s1

]
e−Ns1τ[g,g̃](Y

(N)). (B.19)

We again removed w in the notation because the result after taking the

expectation operation is not a function of the message.

Step III: Upper-bounding Pi[g̃,g]e
−Nαg̃ .

Under the assumption that (w̃, g̃) with g̃ 6∈ R is the actual message

and code index pair, with g ∈ R, we write Pi[g̃,g]e
−Nαg̃ as follows

Pi[g̃,g]e
−Nαg̃ = EX(N)


∑

Y (N)

∑

g̃ 6∈R

Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)
φi[g,g̃]


 , (B.20)

where φi[g,g̃] is an indicator function with

φi[g,g̃] =

{
1 if ∃w, Lg

(
X

(N)
g (w), Y (N)

)
> e−Nτ[g,g̃](Y

(N))

0 otherwise
. (B.21)

Let s2 ≥ 0 and ρ̃ > 0 be two arbitrary constants. We can upper

bound φi[g,g̃] by

φi[g,g̃] ≤




∑
w

[
Lg

(
X

(N)
g (w), Y (N)

)] s2
ρ̃

e
−N

s2
ρ̃

τ[g,g̃](Y (N))




ρ̃

. (B.22)

Substitute (B.22) into (B.20) to obtain

∑

g̃ 6∈R

Pi[g̃,g]e
−Nαg̃ ≤ EX(N)



∑

Y (N)

∑

g̃ 6∈R

Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)

×
(
∑

w

[
Lg

(
X(N)

g (w), Y (N)
)] s2

ρ̃

)ρ̃

eNs2τ[g,g̃](Y
(N))




=
∑

Y (N)

EX(N)



∑

g̃ 6∈R

Lg̃

(
X

(N)
g̃ (w̃), Y (N)

)


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×EX(N)



(
∑

w

[
Lg

(
X(N)

g (w), Y (N)
)] s2

ρ̃

)ρ̃

 eNs2τ[g,g̃](Y

(N)),

(B.23)

where the last equality is due to the assumption that (w̃, g̃) 6= (w, g),

and therefore codewords X
(N)
g̃ (w̃) and X

(N)
g (w) are generated indepen-

dently.

Now assume that 0 < ρ̃ ≤ 1, (B.23) further implies that

∑

g̃ 6∈R

Pi[g̃,g]e
−Nαg̃ ≤

∑

Y (N)

EX(N)



∑

g̃ 6∈R

Lg̃

(
X

(N)
g̃ , Y (N)

)



×eNρ̃rg

(
EX(N)

[[
Lg

(
X(N)

g , Y (N)
)] s2

ρ̃

])ρ̃

eNs2τ[g,g̃](Y
(N)).

(B.24)

Step IV: Choosing τ[g,g̃](Y
(N)).

Given g ∈ R, g̃ 6∈ R, Y (N), and auxiliary variables s1 ≥ 0, s2 ≥ 0,

0 < ρ̃ ≤ 1, we choose τ[g,g̃](Y
(N)) to match the following pairs of terms

on the right hand sides of (B.19) and (B.24),

EX(N)

[[
Lg

(
X(N)

g , Y (N)
)]1−s1

]
e−Ns1τ[g,g̃](Y

(N))

= eNs2τ[g,g̃](Y
(N))EX(N)

[
Lg̃

(
X

(N)
g̃ , Y (N)

)]

×eNρ̃rg

(
EX(N)

[[
Lg

(
X(N)

g , Y (N)
)] s2

ρ̃

])ρ̃

. (B.25)

(B.25) implies that

e−Nτ[g,g̃](Y
(N)) =

(
EX(N)

[[
Lg

(
X(N)

g , Y (N)
)]1−s1

])− 1
s1+s2

×
(

EX(N)

[[
Lg

(
X(N)

g , Y (N)
)] s2

ρ̃

]) ρ̃
s1+s2

×
(
EX(N)

[
Lg̃

(
X

(N)
g̃ , Y (N)

)]) 1
s1+s2 e

N
ρ̃

s1+s2
rg

. (B.26)

Substitute (B.26) into (B.19), we get
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Pt[g,g̃]e
−Nαg ≤

∑

Y (N)

(
EX(N)

[[
Lg

(
X(N)

g , Y (N)
)]1−s1

]) s2
s1+s2

×
(

EX(N)

[[
Lg

(
X(N)

g , Y (N)
)] s2

ρ̃

]) s1ρ̃

s1+s2

×
(
EX(N)

[
Lg̃

(
X

(N)
g̃ , Y (N)

)]) s1
s1+s2 e

N
s1ρ̃

s1+s2
rg

. (B.27)

Let s2 < ρ̃ and s1 = 1 − s2
ρ̃

1. Do a variable change with ρ = ρ̃(ρ̃−s2)
ρ̃−(1−ρ̃)s2

and s = 1− ρ̃−s2

ρ̃−(1−ρ̃)s2
. We have 1−s1 = s2

ρ̃
= s

s+ρ
, s2

s1+s2
= s, s1ρ̃

s1+s2
= ρ,

s1
s1+s2

= 1 − s. Inequality (B.27) then becomes

Pt[g,g̃]e
−Nαg ≤

∑

Y (N)

(
EX(N)

[[
Lg

(
X(N)

g , Y (N)
)] s

s+ρ

])s+ρ

×
(
EX(N)

[
Lg̃

(
X

(N)
g̃ , Y (N)

)])1−s
eNρrg . (B.28)

Let X
(N)
n and Y

(N)
n denote the nth symbols of X(N) and Y (N) re-

spectively. We have

(
EX(N)

[[
Lg

(
X(N)

g , Y (N)
)] s

s+ρ

])s+ρ

=


∑

X(N)

[
P (Y (N)|X(N))e−Nαg

] s
s+ρ

Pg(X(N))




s+ρ

=


∑

X(N)

N∏

n=1

[
P (Y (N)

n |X(N)
n )e−αg

] s
s+ρ

Pg(X(N)
n )




s+ρ

=

(
N∏

n=1

∑

X

[
P (Y (N)

n |X)e−αg

] s
s+ρ

Pg(X)

)s+ρ

=
N∏

n=1

(
∑

X

[
P (Y (N)

n |X)e−αg

] s
s+ρ

Pg(X)

)s+ρ

. (B.29)

Similarly,

1This implies that s1 + s2 > 0 in (B.26) and (B.27).
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(
EX(N)

[
Lg̃

(
X

(N)
g̃ , Y (N)

)])1−s

=

(
N∏

n=1

∑

X

P (Y (N)
n |X)e−αg̃ Pg̃(X)

)1−s

=
N∏

n=1

(
∑

X

P (Y (N)
n |X)e−αg̃ Pg̃(X)

)1−s

. (B.30)

Consequently, (B.28) implies that

Pt[g,g̃]e
−Nαg ≤

∑

Y (N)

N∏

n=1

(
∑

X

[
P (Y (N)

n |X)e−αg

] s
s+ρ

Pg(X)

)s+ρ

×
(
∑

X

P (Y (N)
n |X)e−αg̃ Pg̃(X)

)1−s

eNρrg

=




∑

Y

(
∑

X

[
P (Y |X)e−αg

] s
s+ρ Pg(X)

)s+ρ

×
(
∑

X

P (Y |X)e−αg̃ Pg̃(X)

)1−s




N

eNρrg

= exp


−N


−ρrg − log


∑

Y

(
∑

X

[
P (Y |X)e−αg

] s
s+ρ Pg(X)

)s+ρ

×
(
∑

X

P (Y |X)e−αg̃ Pg̃(X)

)1−s





 . (B.31)

Similarly, by substituting (B.26) into (B.24), and with the same deriva-

tions, we also get the same bound for Pi[g̃,g]e
−Nαg̃ .

Because s and ρ can take any value with the constraints of 0 < ρ ≤ 1

and 0 ≤ s ≤ 1 − ρ, the bounds further lead to

Pt[g,g̃]e
−Nαg ≤ exp(−NEi(g, g̃))

Pi[g̃,g]e
−Nαg̃ ≤ exp(−NEi(g, g̃)), (B.32)

where Ei(g, g̃) is given in (3.5).

Finally, substituting (B.15) and (B.32) into (B.7) yields the conclu-

sion of the theorem.
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B.2 Proof of Theorem 3.3

Given the sequence of channel output symbols Y (N), for any chan-

nel input vector sequence X
(N)
D and code index vector g, we define

the weighted likelihood of the channel input sequence, denoted by

Lg

(
X

(N)
D , Y (N)

)
, as follows.

Lg

(
X

(N)
D , Y (N)

)
= P (Y (N)|X(N)

D , gD̄)e−Nαg . (B.33)

For every user subset S ⊆ D, we define a constraint set RS of

message vector and code index vector pairs. Each code index vector in

the constraint set should belong to the operation region and weighted

likelihood of the corresponding codeword vector should stay above a

pre-determined threshold.

RS =

{
(wD, g) |g ∈ RD and ∀g̃ 6∈ RD with gS = g̃S ,

Lg

(
X

(N)
D , Y (N)

)
> e−Nτ[g,g̃,S](X

(N)
S

,Y (N))
}

, (B.34)

where τ[g,g̃,S](X
(N)
S , Y (N)) is a threshold function whose value depends

on X
(N)
S and Y (N) and will be specified later. We further define con-

straint set RP as the intersection of RS for all S.

RP =
⋂

S⊆D

RS. (B.35)

Assume the following decoding algorithm at the receiver. Given

Y (N), the receiver first calculates constraint sets RS for all S ⊆ D to

obtain constraint set RP . The receiver reports collision for all regular

users if RP is empty. Otherwise, the receiver outputs (ŵD, ĝ) ∈ RP

with the maximum weighted likelihood value. In other words,

(ŵD, ĝ) = argmax
(ŵD ,ĝ)∈RP

Lg

(
X(N)

gD
(wD), Y (N)

)
. (B.36)

Next, we need to define the notation (wD, g)
S
= (w̃D, g̃) that will

be extensively used to simplify the expressions in the proof.
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(wD, g)
S
= (w̃D, g̃) : (wS , gS) = (w̃S , g̃S),

(wk, gk) 6= (w̃k, g̃k), ∀k ∈ D \ S. (B.37)

In other words, (wD, g)
S
= (w̃D, g̃) means that the two message vec-

tor and code index vector pairs are equal for regular users in S and

are different for regular users not in S. The term does not imply any

assumption on the code indices of the interfering users.

We now define the probabilities of the following three types of error

events.

First, assume that (wD, g) with g ∈ RD is the actual message

vector and code index vector pair. For any user subset S ⊂ D, we

define Pm[g,g̃,S] as the probability of the error event that the weighted

likelihood of (wD, g) is no larger than that of another message vector

and code index vector pair (w̃D, g̃) with (w̃D, g̃)
S
= (wD, g) and g̃ ∈

RD.

Pm[g,g̃,S] = Pr
{

∃w̃D, (w̃D, g̃)
S
= (wD, g), such that

Lg

(
X(N)

gD
(wD), Y (N)

)
≤ Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)}

for g, g̃ ∈ RD with gS = g̃S . (B.38)

Second, again assume that (wD, g) with g ∈ RD is the actual

message vector and code index vector pair. For any user subset S ⊆ D,

we define Pt[g,g̃,S] as the probability of the error event that the weighted

likelihood of (wD, g) is no larger than the threshold associated with

code index g̃ 6∈ RD with gS = g̃S and user subset S.

Pt[g,g̃,S] = Pr

{
Lg

(
X(N)

gD
(wD), Y (N)

)
≤ e−Nτ[g,g̃,S](X

(N)
S

,Y (N))
}

,

for g ∈ RD, g̃ 6∈ RD with gS = g̃S .(B.39)

Third, assume that (w̃D, g̃) with g̃ 6∈ RD is the actual message

vector and code index vector pair. For any user subset S ⊆ D, we

define Pi[g̃,g,S] as the probability of the error event that there exists

at least one message vector and code index vector pair (wD, g) with

(wD, g)
S
= (w̃D, g̃) and g ∈ RD, such that the weighted likelihood of
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(wD, g) is larger than the threshold associated with code index g̃ and

user subset S.

Pi[g̃,g,S] = Pr
{

∃w̃D, (w̃D, g̃)
S
= (wD, g), such that

Lg

(
X(N)

gD
(wD), Y (N)

)
> e−Nτ[g,g̃,S](X

(N)
S

,Y (N))
}

for g̃ 6∈ RD, g ∈ RD with gS = g̃S . (B.40)

Note that, when g̃ ∈ R̂D, a decoding output with (wD, g)
D
=

(w̃D, g̃) is not considered as an error. While if g̃ 6∈ RD ∪ R̂D, all

decoding outputs are considered as error events. Consequently, with

the above probability definitions, generalized error performance of the

system can be upper bounded by

GEPD ≤
∑

g∈RD




∑

S⊂D


 ∑

g̃∈RD,g̃S=gS

Pm[g,g̃,S]e
−Nαg

+
∑

g̃ 6∈RD ,g̃S=gS

(
Pt[g,g̃,S]e

−Nαg + Pi[g̃,g,S]e
−Nαg̃

)



+
∑

g̃ 6∈RD∪R̂D ,g̃D=gD

(
Pt[g,g̃,D]e

−Nαg + Pi[g̃,g,D]e
−Nαg̃

)




.(B.41)

Next, we will derive upper-bounds for each of the terms on the

right-hand side of (B.41).

Step I: Upper-bounding Pm[g,g̃,S]e
−Nαg , with S ⊂ D.

Under the assumption that (wD, g) with g ∈ RD is the actual

message vector and code index vector pair, and with g̃ ∈ RD, we write

Pm[g,g̃,S]e
−Nαg as follows

Pm[g,g̃,S]e
−Nαg = E

X
(N)
D


∑

Y (N)

Lg

(
X(N)

gD
(wD), Y (N)

)
φm[g,g̃,S]


 ,

(B.42)

where E
X

(N)
D

[.] denotes the expectation operation over the random code-

book generation, and φm[g,g̃,S] is an indicator function with φm[g,g̃,S] = 1

if there exists a w̃D with (w̃D, g̃)
S
= (wD, g) and g̃ ∈ RD such that
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Lg

(
X(N)

gD
(wD), Y (N)

)
≤ Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)
, and φm[g,g̃,S] = 0 if

such a message vector w̃D cannot be found.

Let ρ > 0 and s ≥ 0 be two arbitrary constants. As shown in [64],

we can upper bound φm[g,g̃,S] by

φm[g,g̃,S] ≤




∑
w̃D ,(w̃D ,g̃)

S
=(wD,g)

[
Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)] s

ρ

[
Lg

(
X(N)

gD
(wD), Y (N)

)] s
ρ




ρ

(B.43)

Substitute (B.43) into (B.42) yields

Pm[g,g̃,S]e
−Nαg ≤ E

X
(N)
D


∑

Y (N)

[
Lg

(
X(N)

gD
(wD), Y (N)

)]1−s

×




∑

w̃D ,(w̃D ,g̃)
S
=(wD,g)

[
Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)] s

ρ




ρ


=
∑

Y (N)

E
X

(N)
S

[
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
(wD), Y (N)

)]1−s
]

× E
X

(N)

D\S







∑

w̃D,(w̃D,g̃)
S
=(wD ,g)

[
Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)] s

ρ




ρ



 ,

(B.44)

where the last equality is due to the assumption that (w̃k, g̃k) 6= (wk, gk),

∀k ∈ D \ S, and therefore codewords X
(N)
g̃D\S

(w̃D\S) and X(N)
gD\S

(wD\S)

are generated independently.

Now assume that 0 < ρ ≤ 1, we can further bound Pm[g,g̃,S]e
−Nαg

by

Pm[g,g̃,S]e
−Nαg

≤
∑

Y (N)

E
X

(N)
S

[
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
(wD), Y (N)

)]1−s
]

×




∑

w̃D,(w̃D,g̃)
S
=(wD ,g)

E
X

(N)

D\S

[[
Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)] s

ρ

]



ρ

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= e
Nρ
∑

k∈D\S
rg̃k

∑

Y (N)

E
X

(N)
S

[
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)]1−s
]

×
(

E
X

(N)

D\S

[[
Lg̃

(
X

(N)
g̃D

, Y (N)
)] s

ρ

])ρ]
, (B.45)

where in the last equality we removed the message variables in the nota-

tion because the corresponding terms are not functions of the messages

after taking the expectation operations.

Let X(N)
gDn, X

(N)
kn and Y

(N)
n denote the nth symbol vector of X(N)

gD
,

the nth symbol of X
(N)
k , and the nth symbol of Y (N), respectively. By

following a derivation similar to the one presented in [28, Section II],

we have

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)]1−s
]

=
∑

X
(N)

D\S

[
P (Y (N)|X(N)

gS
, X

(N)
D\S

, gD̄)e−Nαg
]1−s ∏

k∈D\S

Pgk
(X

(N)
k )

=
∑

X
(N)

D\S

N∏

n=1

[
P (Y (N)

n |X(N)
gSn, X

(N)
D\Sn

, gD̄)e−αg
]1−s ∏

k∈D\S

Pgk
(X

(N)
kn )

=
N∏

n=1

∑

XD\S

[
P (Y (N)

n |X(N)
gSn, XD\S , gD̄)e−αg

]1−s ∏

k∈D\S

Pgk
(Xk).

(B.46)

Meanwhile, we also have
(

E
X

(N)

D\S

[[
Lg̃

(
X

(N)
g̃D

, Y (N)
)] s

ρ

])ρ

=




N∏

n=1

∑

X
(N)

D\S

[
P (Y (N)

n |X(N)
g̃Sn, X

(N)
D\S

, g̃D̄)e−αg̃

] s
ρ

×
∏

k∈D\S

Pg̃k
(X

(N)
k )




ρ

=
N∏

n=1



∑

XD\S

[
P (Y (N)

n |X(N)
g̃Sn, XD\S , g̃D̄)e−αg̃

] s
ρ
∏

k∈D\S

Pg̃k
(Xk)




ρ
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(B.47)

Because (w̃S , g̃S) = (wS , gS), (B.45) implies that

Pm[g,g̃,S]e
−Nαg ≤ e

Nρ
∑

k∈D\S
rg̃k

∑

Y (N)

∑

X
(N)
S

N∏

n=1

∏

k∈S

Pgk
(X

(N)
kn )

×


∑

XD\S

[
P (Y (N)

n |X(N)
gSn, XD\S , gD̄)e−αg

]1−s ∏

k∈D\S

Pgk
(Xk)




×


∑

XD\S

[
P (Y (N)

n |X(N)
g̃Sn, XD\S , g̃D̄)e−αg̃

] s
ρ
∏

k∈D\S

Pg̃k
(Xk)




ρ

= e
Nρ
∑

k∈D\S
rg̃k




∑

Y

∑

XS

∏

k∈S

Pgk
(Xk)

×

 ∑

XD\S

[
P (Y |XD, gD̄)e−αg

]1−s ∏

k∈D\S

Pgk
(Xk)




×

 ∑

XD\S

[
P (Y |XD, g̃D̄)e−αg̃

] s
ρ
∏

k∈D\S

Pg̃k
(Xk)




ρ


N

. (B.48)

Because (B.48) holds for all 0 < ρ ≤ 1 and s ≥ 0, and becomes

trivial for s > 1, we conclude that

Pm[g,g̃,S]e
−Nαg ≤ exp(−NEmD(g, g̃, S)), (B.49)

where EmD(g, g̃, S) is given in (3.13).

Step II: Upper-bounding Pt[g,g̃,S]e
−Nαg , with S ⊆ D.

Under the assumption that (wD, g) with g ∈ RD is the actual

message vector and code index vector pair, we write Pt[g,g̃,S]e
−Nαg as

follows

Pt[g,g̃,S]e
−Nαg = E

X
(N)
D



∑

Y (N)

Lg

(
X(N)

gD
(wD), Y (N)

)
φt[g,g̃,S]


 , (B.50)

where φt[g,g̃,S] is an indicator function with
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φt[g,g̃,S] =




1 if Lg

(
X(N)

gD
(wD), Y (N)

)
≤ e

−Nτ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)

0 otherwise
.

(B.51)

Let s1 ≥ 0 be an arbitrary constant. We can upper bound φt[g,g̃,S]

by

φt[g,g̃,S] ≤ e
−Ns1τ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)

[
Lg

(
X(N)

gD
(wD), Y (N)

)]s1
. (B.52)

Substitute (B.52) into (B.50), we get

Pt[g,g̃,S]e
−Nαg ≤ E

X
(N)
D



∑

Y (N)

[
Lg

(
X(N)

gD
(wD), Y (N)

)]1−s1

×e
−Ns1τ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)]

=
∑

Y (N)

E
X

(N)
S

[
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)]1−s1
]

×e
−Ns1τ[g,g̃,S]

(
X

(N)
gS

,Y (N)

)]
. (B.53)

We again removed the message variable in the notation because, after

taking the expectation operation, the result is not a function of the

message.

Step III: Upper-bounding Pi[g̃,g,S]e
−Nαg̃ , with S ⊆ D.

Under the assumption that (w̃D, g̃) with g̃ 6∈ RD is the actual

message vector and code index vector pair, and with g ∈ RD, we write

Pi[g̃,g,S]e
−Nαg̃ as follows

Pi[g̃,g,S]e
−Nαg̃ = E

X
(N)
D


∑

Y (N)

Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)

φi[g,g̃,S]


 ,
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(B.54)

where φi[g,g̃,S] is an indicator function with φi[g,g̃,S] = 1 if there exists

a wD, with (wD, g)
S
= (w̃D, g̃) and g ∈ RD, to satisfy inequality

Lg

(
X(N)

gD
(wD), Y (N)

)
> e

−Nτ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)

, and φi[g,g̃,S] = 0

otherwise.

Let s2 ≥ 0 and ρ̃ > 0 be two arbitrary constants. We can upper

bound φi[g,g̃,S] by

φi[g,g̃,S] ≤




∑
wD,(wD,g)

S
=(w̃D ,g̃)

[
Lg

(
X(N)

gD
(wD), Y (N)

)] s2
ρ̃

e
−N

s2
ρ̃

τ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)




ρ̃

. (B.55)

Substitute (B.55) into (B.54) to obtain

Pi[g̃,g,S]e
−Nαg̃ ≤ E

X
(N)
D


∑

Y (N)

Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)

e
Ns2τ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)

×




∑

wD,(wD,g)
S
=(w̃D ,g̃)

[
Lg

(
X(N)

gD
(wD), Y (N)

)] s2
ρ̃




ρ̃


=
∑

Y (N)

E
X

(N)
S

[
e

Ns2τ[g,g̃,S]

(
X

(N)
gS

(wS),Y (N)

)

×E
X

(N)

D\S

[
Lg̃

(
X

(N)
g̃D

(w̃D), Y (N)
)]

×E
X

(N)

D\S







∑

wD,(wD,g)
S
=(w̃D ,g̃)

[
Lg

(
X(N)

gD
(wD), Y (N)

)] s2
ρ̃




ρ̃





(B.56)

where the last equality is due to the assumption that (w̃k, g̃k) 6= (wk, gk),

∀k ∈ D \ S, and therefore codewords X
(N)
g̃D\S

(w̃D\S) and X(N)
gD\S

(wD\S)

are generated independently.

Full text available at: http://dx.doi.org/10.1561/1300000063



130 Proofs of Theorems in Section 3

Now assume that 0 < ρ̃ ≤ 1, (B.56) further implies that

Pi[g̃,g,S]e
−Nαg̃ ≤

∑

Y (N)

E
X

(N)
S

[
e

Ns2τ[g,g̃,S]

(
X

(N)
gS

,Y (N)

)

×E
X

(N)

D\S

[
Lg̃

(
X

(N)
g̃D

, Y (N)
)]

e
Nρ̃
∑

k∈D\S
rgk

×
(

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)] s2
ρ̃

])ρ̃
]

. (B.57)

Step IV: Choosing τ[g,g̃,S]

(
X(N)

gS
, Y (N)

)
, for S ⊆ D.

Given g ∈ RD, S, Y (N), and auxiliary variables s1 ≥ 0, s2 ≥ 0,

0 < ρ̃ ≤ 1, we choose τ[g,g̃,S]

(
X(N)

gS
, Y (N)

)
to match the following

pairs of terms on the right hand sides of (B.53) and (B.57),

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)]1−s1
]

e
−Ns1τ[g,g̃,S]

(
X

(N)
gS

,Y (N)

)

= e
Ns2τ[g,g̃,S]

(
X

(N)
gS

,Y (N)

)

E
X

(N)

D\S

[
Lg̃

(
X

(N)
g̃D

, Y (N)
)]

×e
Nρ̃
∑

k∈D\S
rgk

(
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)] s2
ρ̃

])ρ̃
]

. (B.58)

(B.58) implies that

e
−Nτ[g,g̃,S]

(
X

(N)
gS

,Y (N)

)

=
(

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)]1−s1
])− 1

s1+s2

×
(

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)] s2
ρ̃

]) ρ̃

s1+s2
e

N
ρ̃

s1+s2

∑
k∈D\S

rgk

×
(

E
X

(N)

D\S

[
Lg̃

(
X

(N)
g̃D

, Y (N)
)]) 1

s1+s2
. (B.59)

Substitute (B.59) into (B.53), we get
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Pt[g,g̃,S]e
−Nαg ≤

∑

Y (N)

E
X

(N)
S

[

(
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)]1−s1
]) s2

s1+s2

×
(

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)] s2
ρ̃

]) s1ρ̃

s1+s2
e

N
s1ρ̃

s1+s2

∑
k∈D\S

rgk

×
(

E
X

(N)

D\S

[
Lg̃

(
X

(N)
g̃D

, Y (N)
)]) s1

s1+s2

]
. (B.60)

Let s2 < ρ̃ and s1 = 1 − s2
ρ̃

2. Do a variable change with ρ = ρ̃(ρ̃−s2)
ρ̃−(1−ρ̃)s2

and s = 1 − ρ̃−s2

ρ̃−(1−ρ̃)s2
, which implies that 1 − s1 = s2

ρ̃
= s

s+ρ
, s2

s1+s2
= s,

s1ρ̃
s1+s2

= ρ, s1
s1+s2

= 1 − s. Inequality (B.60) then becomes

Pt[g,g̃,S]e
−Nαg ≤ e

Nρ
∑

k∈D\S
rgk

∑

Y (N)

E
X

(N)
S

[

(
E

X
(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)] s
s+ρ

])s+ρ

×
(

E
X

(N)

D\S

[
Lg̃

(
X

(N)
g̃D

, Y (N)
)])1−s

]
. (B.61)

Let X(N)
gDn, X

(N)
kn and Y

(N)
n denote the nth symbol vector of X(N)

gD
,

the nth symbol of X
(N)
k , and the nth symbol of Y (N), respectively. We

have
(

E
X

(N)

D\S

[[
Lg

(
X(N)

gD
, Y (N)

)] s
s+ρ

])s+ρ

=



∑

X
(N)

D\S

[
P (Y (N)|X(N)

gS
, X

(N)
D\S

, gD̄)e−Nαg
] s

s+ρ

×
∏

k∈D\S

Pgk
(X

(N)
k )




s+ρ

2This implies that s1 + s2 > 0 in (B.59) and (B.60).
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=



∑

X
(N)

D\S

N∏

n=1

[
P (Y (N)

n |X(N)
gSn, X

(N)
D\Sn

, gD̄)e−αg
] s

s+ρ

×
∏

k∈D\S

Pgk
(X

(N)
kn )




s+ρ

=
N∏

n=1



∑

XD\S

[
P (Y (N)

n |X(N)
gSn, XD\S , gD̄)e−αg

] s
s+ρ

×
∏

k∈D\S

Pgk
(Xk)




s+ρ

. (B.62)

Similarly,

E

X
(N)

D\S




∑

g̃ 6∈RD ,g̃S=gS

Lg̃

(
X

(N)
g̃D

, Y (N)
)





1−s

=
N∏

n=1




∑

g̃ 6∈RD ,g̃S=gS

∑

XD\S

P (Y (N)
n |X(N)

g̃Sn, XD\S , g̃D̄)e−αg̃

×
∏

k∈D\S

Pg̃k
(Xk)




1−s

. (B.63)

Consequently, (B.61) implies that

Pt[g,g̃,S]e
−Nαg ≤ e

Nρ
∑

k∈D\S
rgk

∑

Y (N)

∑

X
(N)
S

N∏

n=1

∏

k∈S

Pgk
(X

(N)
kn )


 ∑

XD\S

[
P (Y (N)

n |X(N)
gSn, XD\S , gD̄)e−αg

] s
s+ρ

∏

k∈D\S

Pgk
(Xk)




s+ρ

×


∑

XD\S

P (Y (N)
n |X(N)

g̃Sn, XD\S , g̃D̄)e−αg̃
∏

k∈D\S

Pg̃k
(Xk)




1−s

= e
Nρ
∑

k∈D\S
rgk




∑

Y

∑

XS

∏

k∈S

Pgk
(Xk)
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×

 ∑

XD\S

[
P (Y |XD, gD̄)e−αg

] s
s+ρ

∏

k∈D\S

Pgk
(Xk)




s+ρ

×

 ∑

XD\S

P (Y |XD, g̃D̄)e−αg̃
∏

k∈D\S

Pg̃k
(Xk)




1−s




N

. (B.64)

Similarly, by substituting (B.59) into (B.57), and with the same deriva-

tions, we also get the same bound for Pi[g̃,g,S]e
−Nαg̃ .

Because s and ρ can take any value with the constraints of 0 < ρ ≤ 1

and 0 ≤ s ≤ 1 − ρ, the bounds further lead to

Pt[g,g̃,S]e
−Nαg ≤ exp(−NEiD(g, g̃, S))

Pi[g̃,g,S]e
−Nαg̃ ≤ exp(−NEiD(g, g̃, S)), (B.65)

where exp(−NEiD(g, g̃, S)) is given in (3.13).

Finally, substituting (B.49) and (B.65) into (B.41) yields the con-

clusion of the theorem.

B.3 Proof of Theorem 3.4

We assume the following decoding algorithm. Given the partition σ, let

the receiver be equipped with (D, RD) decoders corresponding to all

D ⊆ {1, . . . , K} with 1 ∈ D. After receiving the channel output symbol

sequence Y (N), the receiver first carries out all the (D, RD)-decoding

operations. If at least one (D, RD) decoder outputs an estimated mes-

sage for user 1 and decoding outputs of all (D, RD) decoders agree

on the message and code index estimate for user 1, then the receiver

should output the corresponding estimate of user 1. Otherwise, the

receiver reports collision for user 1.

Let (w, g) be the actual message vector and code vector pair. We

will show in the following that, irrespective of the value of g, the receiver

should give an acceptable output if all the (D, RD) decoding operations

are carried out correctly.

First, if g ∈ R1, because the operation regions corresponding to

all D ⊆ {1, . . . , K} with 1 ∈ D form a partition of R1, there must

exist a user subset D̂ with 1 ∈ D̂ such that g ∈ R
D̂

. Therefore, if the
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corresponding (D̂, R
D̂

) decoder operates correctly, it should output

the correct message vector and code index vector estimate (w
D̂

, g
D̂

)

for all regular users in D̂, and this includes the correct message and

code index estimate (w1, g1) for user 1. For any other user subset D 6=
D̂, if the corresponding (D, RD) decoder operates correctly, it should

either output the correct message and code index estimate for user 1,

or output collision report for user 1. Therefore, under the assumption

that all (D, RD) decoders operate correctly, there is at least one correct

message and code index output, and all decoding outputs agree with

each other on user 1. Therefore, the receiver should output the correct

message and code index for user 1.

Second, if g ∈ R̂1, under the assumption that all (D, RD) decoders

operate correctly, the receiver should either output the correct message

and code index for user 1, or report collision for user 1.

Third, if g 6∈ R1 ∪ R̂1, we must have g 6∈ RD ∪ R̂D for all D ⊆
{1, . . . , K} with 1 ∈ D. Therefore, under the assumption that all

(D, RD) decoders operate correctly, all (D, RD) decoders should out-

put collision, and consequently the receiver should output collision for

user 1.

Let Pe(g) be the conditional error probability of the system. Let us

use PeD(g) to denote the conditional error probability of the (D, RD)

decoder with user subset D. According to the above analysis and the

union bound, we must have

Pe(g) ≤
∑

D,D⊆{1,...,K},1∈D

PeD(g). (B.66)

Consequently, with the set of weight parameters {αg}, we have

GEP =
∑

g

Pe(g)e−Nαg

≤
∑

D,D⊆{1,...,K},1∈D

∑

g

PeD(g)e−Nαg

=
∑

D,D⊆{1,...,K},1∈D

GEPD. (B.67)

Conclusion of the theorem follows because (B.67) holds for all partition

σ.
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B.4 Proof of Theorem 3.5

Given channel output sequence Y (N), we define the weighted likelihood

of code index vector g by Lg(Y (N)), as follows.

Lg(Y (N)) = P (Y (N)|g)e−Nαg . (B.68)

Assume that the receiver finds ĝ = argmaxg Lg(Y (N)) with the max-

imum weighted likelihood. If ĝ ∈ R, the receiver outputs “true”; if

ĝ ∈ R̂, the receiver outputs “neutral”; while if ĝ 6∈ R ∪ R̂ the receiver

reports “false”.

Let g be the actual code index vector. Define P[g,g̃] as the probability

that weighted likelihood of the actual code index vector is smaller than

that of another code index vector g̃.

P[g,g̃] = Pr
{

Lg̃(Y (N)) > Lg(Y (N))
}

. (B.69)

General error performance of the system can therefore be upper

bounded by

GEP ≤
∑

g∈R

∑

g̃ 6∈R∪R̂

(
P[g,g̃]e

−Nαg + P[g̃,g]e
−Nαg̃

)
. (B.70)

For any s ≥ 0, we can upper bound P[g,g̃]e
−Nαg by

P[g,g̃]e
−Nαg ≤

∑

Y (N)

Lg(Y (N))

(
Lg̃(Y (N))

Lg(Y (N))

)s

=
∑

Y (N)

[Lg(Y (N))](1−s)[Lg̃(Y (N))]s

=

(
∑

Y

[P (Y |g)e−αg ](1−s)[P (Y |g̃)e−αg̃ ]s
)N

. (B.71)

Substitute (B.71) into (B.70) gives the bound in (3.24).
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C

Proofs of Theorems in Section 4

C.1 Proof of Theorem 4.3

The partial derivative of qv(p, K) with respect to p is given by

∂qv(p, K)

∂p
=

K∑

j=0

(
K

j

)
jpj−1(1 − p)K−jCvj

−
K∑

j=0

(
K

j

)
pj(K − j)(1 − p)K−j−1Cvj

= −
K−1∑

j=0

K

(
K − 1

j

)
pj(1 − p)K−1−j(Cvj − Cv(j+1))

≤ 0, (C.1)

where the last inequality is due to the assumption that Cvj ≥ Cv(j+1)

for all j ≥ 0. Note that (C.1) holds with strict inequality if K > Jǫv

and p(1 − p) 6= 0.

C.2 Proof of Theorem 4.4

Let us first consider the situation when x∗

N+b
≤ pmax.

136
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According to the definition of q∗
v(p̂) in (4.16), we have

dq∗
v(p̂)

dp̂
=

qN (p̂) − qN+1(p̂)

pN − pN+1
+

p̂ − pN+1

pN − pN+1

dqN (p̂)

dp̂

+
pN − p̂

pN − pN+1

dqN+1(p̂)

dp̂
. (C.2)

Write K̂ = N + 1 − λ with λ ∈ (0, 1]. We have

p̂ − pN+1 =
x∗

K̂ + b
− x∗

N + 1 + b
=

λ

N + 1 + b
p̂, (C.3)

and

pN − p̂ =
x∗

N + b
− x∗

K̂ + b
=

1 − λ

N + b
p̂. (C.4)

Meanwhile, because function qN+1(p̂) can be decomposed as

qN+1(p̂) =
N+1∑

j=0

(
N + 1

j

)
p̂j(1 − p̂)N+1−jCvj

= p̂
N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−jCv(j+1)

+(1 − p̂)
N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−jCvj , (C.5)

we have

qN − qN+1 = p̂

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j(Cvj − Cv(j+1)). (C.6)

Furthermore, the derivatives of qN (p̂) and qN+1(p̂) are given by

dqN (p̂)

dp̂
= −

N∑

j=0

(N − j)

(
N

j

)
p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1)), (C.7)

and

dqN+1(p̂)

dp̂
= −

N∑

j=0

(N + 1)

(
N

j

)
p̂j(1 − p̂)N−j(Cvj − Cv(j+1)). (C.8)

Substitute the above results into (C.2), we get

(pN − pN+1)
dq∗

v(p̂)

p̂
= p̂

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j(Cvj − Cv(j+1))
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− λ

N + 1 + b
p̂

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j−1(N − j)(Cvj − Cv(j+1))

− 1 − λ

N + b
p̂

N∑

j=0

(N + 1)

(
N

j

)
p̂j(1 − p̂)N−j(Cvj − Cv(j+1))

= p̂

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1))

×
(

1 − p̂ − λ(N − j)

N + 1 + b
− (1 − λ)(1 − p̂)(N + 1)

N + b

)

= p̂

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1))

×
(

λ((1 − p̂)(N + 1 + b) − N + j)

N + 1 + b
+

(1 − λ)(1 − p̂)(b − 1)

N + b

)
.

(C.9)

Note that, for all j ≥ 0, we have

λ((1 − p̂)(N + 1 + b) − N + j)

N + 1 + b
≥ λ((1 − pN )(N + 1 + b) − N + j)

N + 1 + b

≥ λ(b − x∗ + j)

N + 1 + b
. (C.10)

Therefore, dq∗
v(p̂)
dp̂

≥ 0 if b ≥ 1 and the following inequality is satisfied.

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1))(b − x∗ + j) ≥ 0. (C.11)

It is easy to see that (C.11) holds if b ≥ x∗ −γǫv , with γǫv being defined

in (4.18).

Furthermore, if we have both b > 1 and b > x∗ − Jǫv holding

with strict inequality, and Cvj > Cv(j+1) for at least one j ≤ N , then
dq∗

v(p̂)
dp̂

> 0 should also hold with strict inequality for p̂ ∈ (0, pmax).

Next, consider the case when x∗

N+b
≥ pmax. It is easy to see that

dq∗
v(p̂)
dp̂

= 0 if x∗

K̂+b
≥ pmax. If x∗

K̂+b
< pmax but x∗

N+b
≥ pmax on the other

hand, we can write K̂ = N + 1 − λ with 0 < λ ≤ N + 1 + b − x∗

pmax
.
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Consequently, (C.2) and (C.3) still hold. But (C.4) should be changed

to

pN − p̂ = pmax − x∗

K̂ + b
≤ 1 − λ

N + b
p̂. (C.12)

As a result, (C.9) becomes

(pN − pN+1)
dq∗

v(p̂

p̂
≥ p̂

N∑

j=0

(
N

j

)
p̂j(1 − p̂)N−j−1(Cvj − Cv(j+1))

×
(

λ((1 − p̂)(N + 1 + b) − N + j)

N + 1 + b
+

(1 − λ)(1 − p̂)(b − 1)

N + b

)
.

(C.13)

By following the rest of the derivations, it can be seen that conclusion

of the theorem still holds.

C.3 Proof of Theorem 4.5

First, because b > max{1, x∗ − Jǫv } holds with strict inequality, the

theoretical channel contention measure q∗
v(p̂) is strictly increasing in p̂

for p̂ ∈ (0, pmax). Given user number K, qv(p̂, K) is non-increasing in

p̂. Therefore, if K ≥ Jǫv , then p̂ = p∗ = x∗

K+b
is the only solution to

qv(p̂, K) = q∗
v(p̂). When K < Jǫv on the other hand, we have qv(p̂, K) >

q∗
v(p̂) for all p̂ ∈ [0, pmax). This implies that p∗ = min{pmax, x∗

K+b
}1 is

the only equilibrium of the system.

Second, we show that there exists a constant ǫ > 0, such that
dq∗

v(p̂)
dp̂

≥ ǫ > 0 for all p̂ < pmax. Note that p̂ < pmax implies K̂ > Jǫv .

From (C.9) and (C.10), we get

dq∗
v(p̂)

p̂
≥ p̂

pN − pN+1

(
N

Jǫv

)
p̂Jǫv (1 − p̂)N−Jǫv −1(CvJǫv

− Cv(Jǫv +1))

×
(

λ(b − x∗ + Jǫv )

N + 1 + b
+

(1 − λ)(1 − p̂)(b − 1)

N + b

)
. (C.14)

Because the right hand side of (C.14) has a positive limit when p̂ → 0,

we can find two small positive constants ǫ0, ǫ1 > 0, such that dq∗
v(p̂)
p̂

≥ ǫ0

for all p̂ ≤ ǫ1. On the other hand, when ǫ1 ≤ p̂ < pmax, because

b > max{1, x∗ − γǫv } holds with strict inequality, we can find a small
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positive constant ǫ2 > 0, such that the right hand side of (C.14) is no

less than ǫ2. Therefore, by choosing ǫ = min{ǫ0, ǫ2}, we have

dq∗
v(p̂)

dp̂
≥ ǫ > 0, for all p̂ < pmax. (C.15)

Third, let q∗
v

−1(.) be the inverse function of q∗
v(p). For any given

transmission probability vector p, transmission probability target p̂ is

obtained by

p̂ = q∗
v

−1(qv) = q∗
v

−1(qv(p, K)). (C.16)

Because dq∗
v(p̂)
dp̂

≥ ǫ > 0, we can find a constant Kl1 > 0 such that

|p̂1 − p̂2| ≤ Kl1|qv1 − qv2|, (C.17)

for all p̂1 = q∗
v

−1(qv1) and p̂2 = q∗
v

−1(qv2). In the meantime, since

qv = qv(p, K) is Lipschitz continuous in p for any given K, there must

exist a constant Kl2 > 0 to satisfy

|qv1 − qv2| ≤ Kl2‖p1 − p2‖, (C.18)

for all qv1 = qv(p1, K) and qv2 = qv(p2, K). Consequently, by combin-

ing (C.17) and (C.18), we have

|p̂1 − p̂2| ≤ Kl1Kl2‖p1 − p2‖, (C.19)

for all p̂1 = q∗
v

−1(qv(p1, K)) and p̂2 = q∗
v

−1(qv(p2, K)). This implies

that the probability target function given in (C.16) satisfies the Lips-

chitz Condition 2.

Finally, when the system is noisy, the receiver can choose to measure

qv over an extended number of time slots, namely increasing the value

of Q introduced in Step 2 of the proposed MAC algorithm. If users

maintain their transmission probabilities during the Q times slots, it is

often the case that the potential measurement bias in the system can

be reduced arbitrarily close to zero with a large enough Q. Therefore,

the Mean and Bias Condition 1 is also satisfied.

Consequently, convergence of the distributed probability adaptation

is supported by Theorems 4.1 and 4.2.
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C.4 Proof of Theorem 4.8

We first show that the associated ODE of the system should have

a unique equilibrium at P ∗ = 1 ⊗ p(K). According to Condition 8

and Theorem 4.4, q∗
v(K̂) should be strictly decreasing in K̂ for K̂ ≥

Jǫv (w(K), d(K)). If (4.42) has two solutions at K̂1 and K̂2 with K̂1 <

K̂2, it implies that

[w(K̂1) − w(K̂2)]T qv = q∗
v(K̂1) − q∗

v(K̂2). (C.20)

Because qv satisfies qv1 ≤ qv2 ≤ . . . ≤ qvV , (C.20) implies that there

must exists a j ≤ V with

V∑

i=j

wi(K̂1) −
V∑

i=j

wi(K̂2) ≥ q∗
v(K̂1) − q∗

v(K̂2), (C.21)

which contradicts with the Majorization Condition (4.44). Therefore,

(4.42) can have at most one solution. This implies that any equilibrium

of the ODE must take the form of P ∗ = 1 ⊗ p(K̂) for some K̂ ≥
Jǫv (w(K), d(K)).

Assume that the actual user number satisfies K < K < K. With

all the users setting their transmission probability vectors at p(K̂), due

to Items 3 and 4 in Condition 8, if K > K̂ and K̂ is an integer, we

must have

w(K̂)T qv(p(K̂), K) < w(K̂)T qv(p(K̂), ⌊K̂⌋) = q∗
v(K̂). (C.22)

When K > K̂ and K̂ is not an integer, we have

w(K̂)T qv(p(K̂), K) < w(K̂)T qv(p(K̂), ⌊K̂⌋)

w(K̂)T qv(p(K̂), K) ≤ w(K̂)T qv(p(K̂), ⌊K̂⌋ + 1), (C.23)

which imply that

w(K̂)T qv(p(K̂), K) < q∗
v(K̂). (C.24)

On the other hand, if K < K̂ and K̂ is an integer, we must have

w(K̂)T qv(p(K̂), K) > w(K̂)T qv(p(K̂), K̂) = q∗
v(K̂). (C.25)

When K < K̂ and K̂ is not an integer, we have
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w(K̂)T qv(p(K̂), K) > w(K̂)T qv(p(K̂), ⌊K̂⌋ + 1)

w(K̂)T qv(p(K̂), K) ≥ w(K̂)T qv(p(K̂), ⌊K̂⌋), (C.26)

which also imply that

w(K̂)T qv(p(K̂), K) > q∗
v(K̂). (C.27)

Consequently, (4.42) must have a unique solution at K̂ = K. When

K ≤ K or K ≥ K on the other hand, uniqueness of the solution to

(4.42) can be seen by following the proof of Theorem 4.5.

Next, according to Condition 8, for K ≤ K̂ ≤ K, p(K̂) is Lipschitz

continuous in K̂, and q∗
v(K̂) satisfies (4.33). Combined with the Head

and Tail Condition 6 and the fact that p(K̂) is designed for K̂ ≤ K and

K̂ ≥ K according to the guideline given in Section 4.2, we conclude that

p̂(qv) is Lipschitz continuous in qv. Because qv(P , K) is also Lipschitz

continuous in P , p̂ must be Lipschitz continuous in P , which satisfies

Condition 2.

Finally, the Mean and Bias Condition is also satisfied because, by

assumption, one can increase Q in Step 2 of the proposed MAC algo-

rithm to reduce the potential measurement bias in qv arbitrarily close

to zero.

C.5 Proof of Theorem 4.9

Because Item 2 in Condition 7 and Items 2, 3, and 4 in Condition 8 hold

by assumption, we only need to prove Item 1 in Condition 8. That is,

with the Interpolation Approach, p(K̂) should be Lipschitz continuous

in K̂. To avoid unnecessary notation complication, we use dp(K̂)

dK̂
to

represent the derivative of p(K̂) if p(K̂) is differentiable at K̂. If p(K̂)

is only continuous but not differentiable at K̂, then dp(K̂)

dK̂
represents

one or an arbitrary subderivative of p(K̂). If p(K̂) is not continuous at

K̂, then dp(K̂)

dK̂
should take the values of ±∞. Note that the adoption

such a notation does not imply a continuity assumption on p(K̂).

Let i ∈ {1, . . . , L} and 0 ≤ λ < 1 be chosen arbitrarily. Let K̂ =

K̂iλ. To simplify the discussion, we assume that the neighboring two
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pinpoints satisfy K̂i+1 = K̂i + 1, i.e., they are one integer apart from

each other1. Consequently, by writing K̂ = (1 − λ)K̂i + λK̂i+1 as a

function of λ, we have dp(K̂)

dK̂
= dp(λ)

dλ
.

To bound dp(λ)
dλ

, we consider two different expressions of q∗
v(K̂). The

first expression is given by

q∗
v(λ) = (1 − λ)q∗

v(K̂i) + λq∗
v(K̂i+1). (C.28)

Taking derivative with respect to λ, we get dq∗
v(λ)
dλ

= q∗
v(K̂i+1) − q∗

v(K̂i).

Because both q∗
v(K̂i+1) and q∗

v(K̂i) are bounded, we can find a constant

0 < ∆1, such that ∣∣∣∣
dq∗

v(λ)

dλ

∣∣∣∣ ≤ ∆1. (C.29)

Next, consider the second expression of q∗
v(K̂) given below.

q∗
v(λ, wiλ, piλdiλ) = wT

iλ[(1 − λ)qv(piλdiλ, K̂i) + λqv(piλdiλ, K̂i+1)].

(C.30)

Taking derivative with respect to λ, we get

dq∗
v(λ, wiλ, piλdiλ)

dλ
=

∂q∗
v(λ, wiλ, piλdiλ)

∂λ

+

[
∂q∗

v(λ, wiλ, piλdiλ)

∂wiλ

]T dwiλ

dλ
+

[
∂q∗

v(λ, wiλ, piλdiλ)

∂diλ

]T ddiλ

dλ

+
∂q∗

v(λ, wiλ, piλdiλ)

∂piλ

dpiλ

dλ
. (C.31)

Let us consider each of the terms on the right hand side of (C.31).

First, we have

∂q∗
v(λ, wiλ, piλdiλ)

∂λ
= wT

iλ[qv(piλdiλ, K̂i+1) − qv(piλdiλ, K̂i)]. (C.32)

Because all terms on the right hand side of (C.32) are bounded, there

exists a constant ∆2 > 0 such that
∣∣∣∣
∂q∗

v(λ, wiλ, piλdiλ)

∂λ

∣∣∣∣ ≤ ∆2. (C.33)

1The proof can be easily extended to the case when this assumption does not
hold.
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Second, because
∥∥∥∥

∂q∗
v(λ, wiλ, piλdiλ)

∂wiλ

∥∥∥∥ ≤ ‖qv(piλdiλ, K̂i)‖ ≤ V, (C.34)

there exists a constant ∆3 > 0, such that
∣∣∣∣∣

[
∂q∗

v(λ, wiλ, piλdiλ)

∂wiλ

]T dwiλ

dλ

∣∣∣∣∣ ≤ ∆3. (C.35)

Third, by following a derivation similar to (C.1), we can see that there

exists a constant ∆4 > 0, such that
∣∣∣∣∣

[
∂q∗

v(λ, wiλ, piλdiλ)

∂diλ

]T ddiλ

dλ

∣∣∣∣∣ ≤ ∆4. (C.36)

Fourth, according to Item 2 and 3 in Condition 9, we have K̂iλ > K̂i ≥
Jǫv (wiλ, diλ), and p ≤ piλ ≤ p. From the derivation of (C.1), we can

see that there exists a constant ∆1 > 0, such that
∣∣∣∣
∂q∗

v(λ, wiλ, piλdiλ)

∂piλ

∣∣∣∣ ≥ ∆1. (C.37)

Because (C.28) and (C.30) must equal each other, combining (C.33),

(C.35), (C.36) and (C.37), we can see that there exists a constant Kg >

0, such that

∥∥∥∥
dp(K̂)

dK̂

∥∥∥∥ ≤ Kg. With the extended definition of dp(K̂)

dK̂
, as

explained at the beginning of the proof,

∥∥∥∥
dp(K̂)

dK̂

∥∥∥∥ ≤ Kg means that p(K̂)

is Lipschitz continuous in K̂.
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