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ABSTRACT

A class of coordinate descent methods is proposed for the joint
detection of binary symbols of K users in a synchronous
correlated waveform multiple-access (CWMA) channel with
Gaussian noise. We consider the detection problem as one of
optimizing a quadratic objective function with binary constraints
on decision variables. The proposed coordinate descent methods,
while still maintaining a low computational complexity, are
shown to provide as much as two orders of magnitude
improvement in the probability of error, especially in situations
where the existing methods do not perform well. The paper
concludes with a discussion of how the proposed methods can be
further improved. ©

1. INTRODUCTION

Due to the problem of Interuser Interference (IUI) in many
multiuser communications, multiuser detection for the symbol-
synchronous Gaussian correlated waveform multiple-access
(CWMA) channel has received considerable attention over the
past ten years. Linear algorithms, such as the Minimum Mean
Square Error (MMSE) and the decorrelation methods, are already
well known [1-7]. When the user symbols are from a finite
alphabet, all linear detectors need to perform a projection to
satisfy the integrality constraints. Due to the discrete nature of
the objective function, projection can cause significant errors,
especially when the signal waveform correlation matrix is ill
conditioned or when the signal-to-noise ratio is small. Indeed,
since the multiuser detection in a CWMA channel with Gaussian
noise, under the Maximum-Likelihood (ML) criterion, is a
quadratic optimization problem with binary decision variables, it
is NP-hard [1] unless the signal correlations have a special
structure [2].

Recently, several sub-optimal and lower complexity alternative
algorithms have been proposed for this problem. These include
the sequential detection [3], cyclic decision feedback sequential
detection (4] and other multistage detectors [5]. Group detection
was introduced in [6], where a subset of users is jointly detected.
Based on the idea of successive cancellation, a systematic
decision feedback approach was also given in [7]. However,
when the signature waveforms are significantly correlated,
existing methods perform poorly. In this paper, we consider a
class of coordinate descent methods to significantly improve the
performance of a conventional detectors. Simulation results show
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that these methods can provide as much as two orders of
magnitude improvement in probability of error when compared
to the linear and decision feedback methods, while still
maintaining a low computational complexity.

The paper is organized as follows. The synchronous multiuser
detection problem formulation and existing solution techniques
are discussed in section 2. In section 3, the proposed coordinate
descent methods are presented. Simulation results and
comparative analysis of the various algorithms are provided in
section 4. Section 5 concludes with a summary and suggestions
for further refinements.

2. PROBLEM FORMULATION AND
EXISTING METHODS

2.1 Problem Formulation

A discrete-time equivalent model for the matched-filter outputs at
the receiver of a CWMA channel is given by the K-length vector
7}

y=Hb+n ¢}

where be {~1+1}* denotes the K-length vector of bits
1 1

transmitted by the K active users. Here H =W?2RW? is a
nonnegative signature waveform correlation matrix, R is the
symmetric normalized correlation matrix with unit diagonal
elements, W is a diagonal matrix whose k-th diagonal element

W, is the received signal energy per bit of the k-th user, and n is
a real-valued zero-mean Gaussian random vector with a

covariance matrix & 2H . It has been shown that this model
holds for both baseband [}] and passband [7] channels with
additive Gaussian noise.

When all the user signals are equally probable, the optimal
solution of (1) is the output of a ML detector [1] (also a
Maximum A Posteriori (MAP) receiver in this case)

Oy b =arg min(y - Hb) H™'(y— Hb)
=arg minb’ Hb-2y"b
subject to: be {— L+ I}K )

The ML detector has the property that it minimizes, among all
detectors, the probability that not all users’ decisions are correct.
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Since @y, is in general NP-hard and exponentially complex to

implement, the focus is on developing easily implementable and
effective multiuser detectors.

2.2 Existing Sub-optimal Algorithms
A. Conventional Detector
The MMSE-based solution of conventional detector

¢, :b=arg min

be{-11) bt y"j ©

is found in two steps. First, the unconstrained solution

b=H" y is computed. This is then projected onto the
constraint set via: b; = sign (b;).
B. Decorrelation Detector

The decorrelation detector [1] is similar to a conventional
detector with a modified objective function:

lb—[H+crzlry

The solution for unconstrained problem (4) can be viewed as a
MMSE output of

op b= arg min

2
pef-11¥ 2

4

min(y - Hb) H™'(y-Hb)+c>(b'b-K) (5
which is equivalent to (1) under the binary constraints on b;.

Although there exist other types of linear detectors [1], ali suffer
from errors caused by the projection operation.

C. Decision Feedback Detector(DFD)
The DFD is described by a set of two matrices (F , B) such that

Oc_prp :5=sgn(Fy—BE) (6)
where b = arg minnb—- Fy"; subjectto: be {—l,+l}K .

The general form of DFD based on successive cancellation is
described in [7] as

K
®pep :b; =sgn EFijyj“EBijbj )]
= j=1

Here, F is an upper triangular matrix and B is a strictly lower
triangular part of FH . When the i-th row of F is obtained by the
first row of the MMSE linear user-expurgated detector for users i
to K, the DFD detector is called “optimal” DFD (O-DFD). It has
been shown [7] that the performance of the DFD varies greatly
depending on the order of successive cancellation. If we define
the most-powerful-user be a user with minimum probability of
error among the rest of users corresponding to a MMSE linear
detector, then the optimal DFD achieves the best performance for

the cancellation order corresponding to the descending order of
the most-powerful-users [7]. An alternative order can also be
obtained by calculating the descent order of the normalized
diagonal elements of Cholesky factorization of R [7]. Due to the
discrete nature of the objective function, the linear and decision
feedback methods suffer from errors caused by projection
operation. Proposed coordinate descent methods are designed to
overcome this type of error.

3. COORDINATE DESCENT
ALGORITHMS

The problem posed in (2) is equivalent to the following quadratic
0-1 programming problem:

X = arg min -l—xTQx +cx (8)
refoa)*
(b+e) ,
where x =——2—,C =—(y+He),Q=2H and e =[11..1]".

The problem (8) is equivalent to
& 1
X = arg min E q;x;X; +2(ci +Eq“ }(,— )
sl i et

At each step, the algorithm, called Descent-1, finds the largest
decrease w(i) to the objective function value for a one-variable

change of the form x; =1—x;

K
w(i) = ZQUXJ +¢; +%‘1n‘ (2x; -1) (10)

J=1j#i
This process can be viewed as finding a discrete local minimizer
in the neighborhood of the point x = (x1 ,--~,xK) of the form

k

{x = (xl,'--xk_,,l—xk,x,m,-w,x,( ),k = l,m,K}. The
algorithm stops when no decrease in function value in any
neighboring direction can be found.

Considering the two-variable change, the algorithm, called
Descent-2, finds the local minimum in the neighborhood of the
point x=(x, -, x¢ ) of the form
{Xk'm = (6 X = X Xy Xt = Xy Xy X Wk = l"“,K}
For each k,m such that &k # m, the “decrease” coefficients are
computed as

K
1
v(k,m) = Z%j%‘*% +=qu [2x -1)
, e 2
Jj=l.j=k

K
+ qujxj +c, +%qmm (2xm ——1)
Jj=l,j#m
—ka(zxk —1X2xm _1)
=w(k) + w(m) - q,,, @x, —1){2x,, 1)
In the worst case, the Descent-1 algorithm requires exponential

number of iterations. As noted in [9], it is an open question
whether the problem of finding a discrete local minimizer of this
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form is NP-complete. However, in practice, the Decen:-I
algorithm performs polynomially for the specific problem in (9).

Decent-1 Algorithm:

Initialization:
x=solution of O-DFD;,

K
w(i) = qujxj +c; +':;_qii (2x; -1)
j=Lj#i
fr=rf)
Step of the algorithm:
Find i*=arg max{w(i),i =1,---,K}. Values
updated:

w(i ) are

11
~w(i*), j=i*( )

Then x;x =1—x;x and f*=f*—w(i*).
Termination: When w(i )SO for Vi, stop. Report x*=x as the
solution.

w(j) = {W(j)—qﬁ* (@ ~1)ax, -1} ji*

Descent-2 Algorithm:

Initialization:
x=solution of Descent-1;

K
. 1
w(i) = .—Z(.]ij +¢; +Eqﬁ (2x,- —l)
Jj=1j#i
vk, m) = w(k)+w(m) = g4, 2x; —1)2x,, —1)
f*=fx)
Step of the algorithm:
Find i* =arg max{w(i),i =1, K},

[k*,m *]: arg max{v(k,mlk # m}
if max{w(i)i=1-,K}=max{p(k,m)k = m}
then
iy = {w( j).—q in@xa —12x; -1) j ;e z*
—w(i*), j=i*
Then xp =1—x;, f*=f*-w(i*)
vk, m) = w(k) + wim) - q,, 2x, —1)2x,, -1)

else

W(j) = e (25— D2x; ~1)
. —qj,,,*(me*—l)(2xj—l) j#k* m*

w(j) = _
—W(k*)—qjm*(zxm*—IXZXJ—l), J =k*
*W(m*)-q,-k*(fok* —IXZXJ- "l) ] =m*
Then xpu =1=Xps, Xpe =1= X
v(k,m) = w(k)+w(m) — q 2, —1)2x,, =1)
and f*= f**V(k*,m*)

endif

Termination; When w(i)<0 and v(k,m)<0 for Vi,k #m,
stop. Report x*=x as the solution.

4. SIMULATION RESULTS

In this section, we compare the performance of coordinate
descent methods with other existing algorithms. A 10-user
CWMA channel is considered. The signature waveform
correlation matrix H is generated as follows:

First, the signature correlation matrix R is found by computing

the correlation between randomly generated signature sequences

of 14-bit length each. The condition number of R is chosen to be

greater than 20. Second, the signal energies (i.e., the elements of

matrix W) are generated within the range [1,3.0], and H is
1 1

calculated as H = WERWE.

In our example,

[ 1 -041 -0.10 -042 -050 066 026 -009 042 -0.30]
-041 1.13 -069 009 -032 -03 -028 010 -009 -053
-010 -0.69 143 010 059 056 052 011 -050 0384
-042 009 0.0 120 055 -031 010 -0.72 -046 -0.11
-0.50 -032 059 055 167 -036 011 -037 -011 039

066 -03 056 -03t -036 149 053 012 -010 037

026 -0.28 052 010 o041 053 127 -032 -009 -0.11
-009 010 011 -072 -037 012 -032 150 031 037

042 -009 -0.50 -046 -0.11 -0.10 -009 031 117 -033
[-0.30 -053 0.84 -0.11 039 037 -011 037 -033 17 |

The SNR is chosen so that the probability of error (calculated
based on importance sampling of 10000 Monte-Carlo runs) is
similar to that observed in real applications.

The maximum likelihood detector is also presented to show the
gap in probability of error between the optimal and sub-optimal
solutions. This optimal solution is obtained by the branch-and-
bound algorithm [8]. The idea of variable fixing according to the
gradient range [10] is utilized. It is based on the idea that
variables whose partial derivatives have fixed sign in [0,1] can

be fixed to O or 1. This remains true for the {0,1}K case as well.
In our problem, the maximum range of the gradient is

9f (x)

b, <——==<ub,,

X

K K
_ 1 1
where lb; = Zq,j +Eqﬁ +c;,ub; = ECI; T"E‘]ii +¢;
j=1 i jelj#i

The complexity of ML detector is exponential.

Figure 1 shows the probability of error for group detection.
Detailed data is given in table 1.
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Figure 1. Performance of various methods

[SNR_[ConventionalDecorrelation]O-DFD Descent 1 _{Descent 2_[Optimai
18.45 4.28£-06 3.54E-06] 1.59E-06] 5.74E-08] 3.05E-08 .68E-13]

18.75 44E-06| 1.56E-06] 1.31E-06] 4.02E-07!
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19564] 732E-07] 599E-07] 241E-07] 3.75E-08
445E-07] _7.87E-08]| 541E-09] 1.73E-09)
2.01E-07] 6.65E-08] 7.76E-09] 2.76E-09] 9.41E-
4.39E-07] 5.44E-08] 3.83E-09] 1.06E-09] 1.13E-
1.02E-07] 4.02E-08| 2.24E-08] 7.23E-10] 3.
7.90E-08] 2.83E-08] 8.14E-10] 7.77E-10 4.
9.20E-08] 2.27E-08] 9.31E-09] 1.13E-10]

AFN N SIS

Table 1. Detailed data for figure |

In this simulation, the coordinate descent methods start from the
O-DFD detector and provide up to two orders of magnitude
improvement in probability of error compared to the O-DFD
detector.

The average CPU times of the algorithms is shown in Figure 2 on
a 450 MHz PC based on 1000 Monte-Carlo runs.
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Figure 2. Computational Complexity

The complexity of Descent-1 algorithm (computation of the
initial point has been included) is approximately twice that of O-
DFD, while the complexity of Descent-2 is almost four times that
of linear methods and O-DFD.

5. CONCLUSION

The performance of the coordinate descent algorithms strongly
depends on the initialization. Our 1-coordinate descent algorithm
(Descent —1) starts from the solution obtained by O-DFD, which
has similar computational complexity to conventional methods
(3) and (4). The 2-coordinate descent algorithm (Descent-2)
starts from the solution obtained by the 1- coordinate descent
algorithm, Descenet-1.

Generally, by combining the descent methods with other linear or
DFD detectors in an attempt to overcome the projection errors,
significant improvements in probability of error are possible,
while still maintaining a low computational complexity.
However, there is still a big gap in the probability of error
between the sub-optimal methods and the ML algorithm.

The ideas presented in this paper can also be used in the
asynchronous multiuser detection problems. Further study is
needed on how to combine the descent methods efficiently with
other search methods (e.g., “tabu” search). Other optimization
techniques such as Lagrangian relaxation, quadratic constraint
relaxations and semi-definite programming are potential
candidates for further improvement of the methods of this paper.
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