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Fountain Communication using Concatenated Codes
Zheng Wang, Member, IEEE, and Jie Luo, Member, IEEE

Abstract—This paper extends linear-complexity concatenated
coding schemes to fountain communication over the discrete-
time memoryless channel. Achievable fountain error exponents
for one-level and multi-level concatenated fountain codes are
derived. Several important properties of the concatenated coding
schemes in multi-user fountain communication scenarios are
demonstrated.

Index Terms—Coding complexity, concatenated codes, error
exponent, fountain communication.

I. INTRODUCTION

FOUNTAIN communication [2][3] is a new communica-
tion model proposed for reliable data transmission over

channels with arbitrary erasures. In a point-to-point fountain
communication system, the transmitter maps a message into
an infinite sequence of channel symbols, which experience
arbitrary locations and number of erasures during transmis-
sion. The receiver decodes the message after the number of
received symbols exceeds certain threshold. With the help
of randomized coding, fountain communication achieves the
same rate and error performance over different channel erasure
realizations corresponding to an identical number of received
symbols. Under the assumption that the erasure statistics is
unknown at the transmitter, communication duration in a
fountain system is determined by the receiver, rather than by
the transmitter.

The first realization of fountain codes was LT codes intro-
duced by Luby [4] for erasure channels. LT codes can recover
k information bits from k +O

(√
k ln2(k/δ)

)
encoded sym-

bols with probability 1− δ and a complexity of O(k ln(k/δ)),
for any δ > 0 [4]. Shokrollahi proposed Raptor codes in [5] by
combining appropriate LT codes with a pre-code. Raptor codes
can recover k information bits from k(1+ε) encoded symbols
at high probability with complexity O (k log(1/ε)). LT codes
and Raptor codes can achieve optimum rate with close-to-
linear and linear complexity, respectively. However, under a
fixed rate, error probabilities of the two coding schemes do
not decrease exponentially in the number of received symbols.
Generalization of Raptor codes from erasure channels to
binary symmetric channels (BSCs) was studied by Etesami
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and Shokrollahi in [6]. In [7], Shamai, Telatar and Verdú
systematically extended fountain communication to arbitrary
channels and showed that fountain capacity [7] and Shannon
capacity take the same value for stationary memoryless chan-
nels. Achievability of fountain capacity was demonstrated in
[7] using a random coding scheme whose error probability
decreases exponentially in the number of received symbols.
Unfortunately, the random coding scheme considered in [7]
is impractical due to its exponential complexity. While the
question on whether exponential error probability scaling law
can be achieved by linear complexity fountain codes remains
open, the special properties of fountain codes have attracted
many research efforts applying fountain coding to practical
communication scenarios such as relay communication [8],
OFDM system [9], video broadcasting [10], data collection
[11][12], error protection [13][14], and networking [15][16],
etc.

In classical point-to-point communication over a discrete-
time memoryless channel, it is well known that Shannon
capacity can be achieved with an exponential error proba-
bility scaling law and a linear encoding/decoding complexity
[17][18]. The fact that communication error probability can
decrease exponentially in the codeword length at any infor-
mation rate below the capacity was firstly shown by Feinstein
[19]. The corresponding exponent was defined as the error
exponent. Tight lower and upper bounds on error exponent
were obtained by Gallager [20], and by Shannon, Gallager,
Berlekamp [21], respectively. In [22], Forney proposed a one-
level concatenated coding scheme that combines a Hamming-
sense error correction outer code with Shannon-sense random
inner channel codes. One-level concatenated codes can achieve
a positive error exponent, known as the Forney’s exponent,
for any rate less than Shannon capacity with a polynomial
complexity [22]. Forney’s concatenated codes were general-
ized by Blokh and Zyablov [23] to multi-level concatenated
codes, whose maximum achievable error exponent is known
as the Blokh-Zyablov error exponent. In [17], Guruswami and
Indyk introduced a class of linear complexity near maximum
distance separable (MDS) error-correction codes. By using
Guruswami-Indyk’s codes as the outer codes in concatenated
coding schemes, achievability of Forney’s and Blokh-Zyablov
exponents with linear coding complexity over general discrete-
time memoryless channels was proved in [18].

In this paper, we show that classical concatenated coding
schemes can be extended to fountain communication over the
discrete-time memoryless channel to achieve positive fountain
error exponent (defined in Section II) at any rate below
the fountain capacity with a linear coding complexity. Note
that, given the success of linear complexity concatenated
coding schemes in classical communication systems [17][18],
the idea of extending the concatenated coding framework to
fountain communication is indeed a natural one. However,
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Fig. 1. Fountain communication over a memoryless channel.

such an extension has not yet been rigorously investigated
in the literature, partially due to the challenge of carrying out
error performance analysis in the concatenated coding scheme
with a channel-dependent communication length. The key
contribution of this paper is the derivation of the achievable
error exponents for one-level and multi-level concatenated
fountain codes, as presented in Theorem 2 and Corollary 2. We
show that these error exponents are close in value to (but are
not equal to) their upper bounds, which are Forney’s exponent
[22] for one-level concatenation and Blokh-Zyablov exponent
[23] for multi-level concatenation, respectively. Furthermore,
we show that concatenated fountain codes possess several
important properties useful for network applications. More
specifically, when one or more transmitters send common
information to multiple receivers over discrete-time memory-
less channels, concatenated fountain codes can often achieve
near optimal rate and error performance simultaneously for all
receivers even if the receivers have different prior knowledge
about the transmitted message.

The rest of the paper is organized as follows. The fountain
communication model is defined in Section II. In Section
III, we introduce the preliminary results on random fountain
codes, which are basic components of the concatenated cod-
ing schemes. One-level and multi-level concatenated fountain
codes are introduced in Section IV. Special properties of con-
catenated fountain codes in network communication scenarios
are introduced in Sections V and VI. The conclusions are
given in Section VII. We use natural logarithms throughout
this paper.

II. FOUNTAIN COMMUNICATION MODEL

Consider the fountain communication system illustrated in
Figure 1. Assume that the encoder uses a fountain coding
scheme [7] with W codewords to map the source message
w ∈ {1, 2, · · · ,W} into an infinite channel input sym-
bol sequence {xw1, xw2, · · ·}. Assume that the channel is
discrete-time memoryless, characterized by the conditional
point mass function (PMF) or probability density function
(PDF) pY |X(y|x), where x ∈ X is the channel input symbol
with X being the finite channel input alphabet, and y ∈ Y is
channel output symbol with Y being the finite channel output
alphabet, respectively. Assume that the channel information
pY |X(y|x) is known both at the encoder and at the decoder1.
The channel output symbols are then passed through an
erasure device which generates arbitrary locations and number
of erasures. Define schedule N = {i1, i2, · · · , i|N |} as a subset
of positive integers, with |N | being its cardinality [7]. Assume

1The case when channel information is not available at the encoder will be
investigated in Section VI.

that the erasure device generates erasures only at those time
instances not belonging to schedule N . In other words, only
the channel output symbols with indices in N , denoted by
{ywi1 , ywi2 , · · · , ywi|N|}, together with the schedule N itself,
are observed by the receiver. The schedule N is arbitrarily
chosen and unknown at the encoder.

Rate and error performance variables of the system are
defined as follows. We say that the fountain rate of the system
is R = (logW )/N , if the decoder, after observing |N | = N
channel symbols, outputs an estimate ŵ ∈ {1, 2, · · · ,W} of
the source message based on {ywi1 , ywi2 , · · · , ywi|N|} and N .
Decoding error happens when ŵ �= w. Define error probability
Pe(N) as,

Pe(N) = max
w

sup
N ,|N |≥N

Pr{ŵ �= w|w,N}. (1)

We say a fountain rate R is achievable if there exists a fountain
coding scheme with limN→∞ Pe(N) = 0 at rate R [7]. The
exponential rate at which error probability vanishes is defined
as the fountain error exponent, denoted by EF (R),

EF (R) = lim
N→∞

− 1

N
logPe(N). (2)

Define fountain capacity CF as the supremum of all achievable
fountain rates. It was shown in [7] that CF equals Shannon
capacity of the stationary memoryless channel. Note that the
scaling law here is defined with respect to the number of
received symbols.

III. RANDOM FOUNTAIN CODES

In a random fountain coding scheme [7], encoder and
decoder share a fountain code library L = {Cθ : θ ∈ Θ},
which is a collection of fountain codebooks Cθ indexed by
a set Θ. All codebooks in the library have the same number
of codewords and each codeword has an infinite number of
channel input symbols. Let Cθ(w)j be the jth codeword
symbol in codebook Cθ corresponding to message w, for
j ∈ {1, 2, · · ·}. To encode the message, the encoder first
selects a codebook by generating θ according to a distribution
ϑ, such that the random variables xw,j : θ → Cθ(w)j are
i.i.d. with a pre-determined input distribution pX [7]. Then
the encoder uses codebook Cθ to map the message into a
codeword. We assume that the actual realization of θ is known
to the decoder but is unknown to the erasure device. Therefore
channel erasures, although arbitrary, are independent from
the codebook generation. Maximum likelihood decoding is
assumed at the decoder given the knowledge of the codebook
Cθ , schedule N , and channel information pY |X(y|x) [7]. Due
to the random codebook selection, without being conditioned
on θ, the error probability experienced by each message is
identical. Therefore, the error probability Pe(N) defined in
(1) can be written as follows [7],

Pe(N) = max
w

sup
N ,|N |≥N

Pr{ŵ �= w|w,N}

= sup
N ,|N |≥N

1

W

∑
w

Pr{ŵ �= w|w,N}. (3)

Theorem 1: Consider fountain communication over a
discrete-time memoryless channel pY |X . Let CF be the foun-
tain capacity. For any fountain rate R < CF , random fountain
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Fig. 2. One-level concatenated fountain codes.

codes achieve the following random-coding fountain error
exponent

EFr(R) = max
pX

EFL(R, pX), (4)

where EFL(R, pX) is defined as

EFL(R, pX) = max
0≤ρ≤1

{−ρR+ E0(ρ, pX)} ,

E0(ρ, pX) = − log
∑
y

(∑
x

pX(x)pY |X(y|x) 1
1+ρ

)(1+ρ)

.(5)

If the channel is continuous, then summations in (5) should
be replaced by integrals.

Theorem 1 was claimed implicitly in, and can be shown by,
the proof of [7, Theorem 2].
EFr(R) given in (4) equals the random-coding exponent of

a classical communication system over the same channel [20].
For binary symmetric channels (BSCs), since random linear
codes simultaneously achieve the random-coding exponent at
high rates and the expurgated exponent at low rates [24], it
can be easily shown that the same fountain error exponent is
achievable by random linear fountain codes. However, it is not
clear whether there exists an expurgation operation, such as the
one proposed in [20], that is robust to the observation of any
subset of channel outputs. Therefore, whether the expurgated
exponent is achievable for fountain communication over a
general discrete-time memoryless channel is unknown.

IV. CONCATENATED FOUNTAIN CODES

Consider a one-level concatenated fountain coding scheme
illustrated in Figure 2. Assume that source message w can
take �exp(NR)� possible values with an equal probability,
where R is the targeted fountain information rate. Assume
that the communication terminates after N channel output
symbols are observed at the decoder. The one-level concate-
nated fountain code consists of an outer code and several inner
codes. The encoder first encodes the message using the outer
code into an outer codeword {ξ1, ξ2, · · · , ξNo}, with No outer
symbols each belonging to a finite field whose size will be
specified soon. We assume that the outer code is a linear-time
encodable/decodable near MDS error-correction code of rate
ro ∈ (0, 1]. That is, at a fixed ro and as No is taken to infinity,
the outer code can recover the source message from a received
codeword with dNo symbol erasures and tNo symbol errors,
so long as 2t+ d ≤ (1− ro − ζ0), where ζ0 > 0 is a positive
constant that can be made arbitrarily small. The encoding and
decoding complexities are linear in the outer codeword length
No. An example of such linear complexity error-correction

code was presented by Guruswami and Indyk in [17]. We
assume that each outer symbol ξk (k ∈ {1, · · · , No}) can take⌊
exp

(
N
No

R
ro

)⌋
possible values.

After encoding the message using the outer code, the
encoder then uses random fountain codes (as described in
Section III) to encode each outer codeword symbol ξk into an
inner codeword, which is an infinite sequence of channel input
symbols {xk1, xk2, · · ·}. We assume that the codebook of each
inner code has �exp(NiRi)� codewords, where Ni =

N
No

and
Ri = R

ro
.2 To simplify the notations, we have assumed that

Ni and No are both integers.
After encoding the inner codes, the transmitter then sends

the codeword symbols through the channel in a random
manner, as illustrated in Figure 2 and also explained in the
following. The transmitter regards the No inner codewords as
No queues of channel input symbols. In each time unit, the
transmitter uses a random switch to uniformly pick one queue
and sends the first symbol in the queue through the channel.
The transmitted symbol is then removed from the queue. We
use θ to index the realization of the compounded randomness
of codebook generation and switch selection. Let C(k)

θ (ξk)j be
the jth codeword symbol in codebook C(k)

θ of the kth inner
code, which is used to encode outer codeword symbol ξk. Let
Zl,θ ∈ {1, · · · , No} be the index of the queue that the random
switch chooses at the lth time unit for l ∈ {1, 2, · · ·}. We
assume that index θ is generated according to a distribution ϑ

such that random variables xk,ξk,j : θ → C
(k)
θ (ξk)j are i.i.d.

with a pre-determined input distribution pX , random variables
Il : θ → Zl,θ are i.i.d. uniform, xk,ξk,j and Il are independent.
The decoder is assumed to know the outer codebook and the
code libraries of the inner codes. We also assume that the
decoder knows the value of θ, and consequently knows the
exact codebook used for each inner code and the exact order
in which channel input symbols are transmitted.

Decoding starts after N = NoNi channel output sym-
bols are received. The decoder first distributes the received
symbols to the corresponding inner codes. Assume that, for
k ∈ {1, · · · , No}, zkNi channel output symbols are received
from the kth inner code, where zk > 0 and zkNi is an
integer. We term zk the “effective codeword length parameter”
of the kth inner code. By definition, we have

∑No

k=1 zk =
No. Given zk, and the received channel output symbols,
{yki1 , yki2 , . . . , ykizkNi

}, the decoder computes the maximum
likelihood estimate ξ̂k of the outer symbol ξk together with an
optimized reliability weight αk ∈ [0, 1]. We assume that the
reliability weight αk is computed using Forney’s algorithm
presented in [22, Section 4.2]. With {ξ̂k} and {αk} for all k,
the decoder then carries out a generalized minimum distance
(GMD) decoding [22] of the outer code and outputs an
estimate ŵ of the source message. GMD decoding of the outer
code here is the same as that in a classical communication
system, which essentially carries out multiple rounds of error
and erasure decoding of the outer code with symbol erasures

2Note that in a classical concatenated code, Ni and Ri would be the length
and the rate of each inner code, respectively. In a fountain communication
system, however, due to arbitrary channel erasures, the receiver may receive
different number of symbols for different inner codes. Ni and Ri should
therefore be interpreted as the expected number of observed symbols and the
corresponding fountain rate of each inner code.
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determined by thresholding the values of the corresponding
reliability weight variables. The detail of the GMD decoding
can be found in [18].

Due to random codebook selection and random switching,
without being conditioned on θ, error probabilities experienced
by all messages are equal, i.e., Pe(N) satisfies (3). Compared
with a classical concatenated code where all inner codes
have the same length, in a concatenated fountain coding
scheme, numbers of received symbols from different inner
codes may be different. Error exponent achievable by one-
level concatenated fountain codes is given in the following
theorem.

Theorem 2: Consider fountain communication over a
discrete-time memoryless channel pY |X with fountain capacity
CF . For any fountain rate R < CF , the following fountain
error exponent can be arbitrarily approached by one-level
concatenated fountain codes,

EFc(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

(1− ro)

×
(
−ρ

R

ro
+ E0(ρ, pX)

[
1− 1 + ro

2
E0(ρ, pX)

])
,(6)

where E0(ρ, pX) is defined in (5).
Encoding and decoding complexities of the one-level con-

catenated codes are linear in the number of transmitted sym-
bols and the number of received symbols, respectively.

The proof of Theorem 2 is given in Appendix A.
Corollary 1: EFc(R) is upper-bounded by Forney’s error

exponent Ec(R) given as in [22] and in the following.

Ec(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

(1− ro)

(
−ρ

R

ro
+ E0(ρ, pX)

)
.

(7)
EFc(R) is lower-bounded by ẼFc(R), defined by

ẼFc(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

(1− ro)

×
(
−ρ

R

ro
+ E0(ρ, pX) [1− E0(ρ, pX)]

)
. (8)

The bounds are asymptotically tight in the sense that
limR→CF

ẼFc(R)
EFc(R) = 1.

The proof of Corollary 1 is given in Appendix B.
In Figure 3, we illustrate EFc(R), Ec(R), and ẼFc(R) for

a BSC with crossover probability 0.1. We can see that EFc(R)
is closely approximated by ẼFc(R), especially at rates close
to the fountain capacity.

Extending the one-level concatenated fountain codes to the
multi-level concatenated fountain codes is essentially the same
as in classical communication systems [23][18] except that
random fountain codes are used as inner codes in a fountain
system. For a positive integer m, the achievable error exponent
of an m-level concatenated fountain codes is given in the
following Theorem.

Theorem 3: Consider fountain communication over a
discrete-time memoryless channel pY |X with fountain capacity
CF . For any fountain rate R < CF , the following fountain
error exponent can be arbitrarily approached by an m-level

0.14

0.1

0.12

po
ne

nt

Fountain error exponent
Upper bound (Forney’s exponent)
Lower bound

0.06

0.08

nt
ai

n 
er

ro
r e

xp

0.02

0.04Fo
un

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

Fountain rate R

Fig. 3. Comparison of fountain error exponent EFc(R), its upper bound
Ec(R), and its lower bound ẼFc(R).

(m ∈ {1, 2, · · ·}) concatenated fountain codes,

E
(m)
Fc (R) =

max
pX , R

CF
≤ro≤1

R
ro

−R

R
rom

∑m
i=1

[
EFL

((
i
m

)
R
ro
, pX

)]−1 ,

EFL (x, pX) =

max
0≤ρ≤1

(−ρx+ E0(ρ, pX) [1− E0(ρ, pX)]) , (9)

where E0(ρ, pX) is defined in (5).
For a given m, the encoding and decoding complexities

of the m-level concatenated codes are linear in the number
of transmitted symbols and the number of received symbols,
respectively.

Theorem 3 can be proved by following the same analysis of
the classical m-level concatenated codes presented in [23][25],
except that the error exponent of code in each concatenation
level in the analysis should be replaced by the lower bound
given in Corollary 1.

By taking the number of concatenation levels to infinity,
Theorem 3 implies the following corollary.

Corollary 2: The following fountain error exponent can
be arbitrarily approached by multi-level concatenated fountain
codes with linear encoding/decoding complexity,

E
(∞)
Fc (R) = max

pX , R
CF

≤ro≤1

(
R

ro
−R

)[∫ R
ro

0

dx

EFL (x, pX)

]−1

,

(10)
where EFL (x, pX) is defined in (9).

In Figure 4, we illustrate E
(∞)
Fc (R) and the Blokh-

Zyablov exponent E(∞)
c (R), which is obtained by replacing

EFL (x, pX) in (10) with max0≤ρ≤1 (−ρx+ E0(ρ, pX)), for
a BSC with crossover probability 0.1. It can be seen that
E

(∞)
Fc (R) does not deviate significantly from the Blokh-

Zyablov exponent, which is an error exponent upper bound
for multi-level concatenated fountain codes.
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V. RATE COMPATIBLE FOUNTAIN COMMUNICATION

In this section, we consider the fountain communication
where the receiver already has partial knowledge about the
transmitted message. Take the application of software patch
distribution as an example. When a significant number of
patches are released, the software company may want to
combine the patches together as a service pack. However,
if a user already has some of the patches, he may only
want to download the new patches, rather than the whole
service pack. On one hand, for the convenience of the patch
server, all patches of the service pack should be encoded
jointly. On the other hand, for the communication efficiency
of each particular user, we also want the fountain system to
achieve the same rate and error performance as if only the
novel part of the service pack is transmitted. We require such
performance objective to be achieved simultaneously for all
users, and define such a fountain communication model as
the rate compatible fountain communication. We will show
next that efficient rate compatible fountain communication can
be achieved using a class of extended concatenated fountain
codes with linear complexity.

Assume that a source message w, which takes �exp(NR)�
possible values, is partitioned into L sub-messages
[w1, w2, · · · , wL], where wi (i ∈ {1, · · · , L}) can take
�exp(Nri)� possible values with

∑
i ri = R. Consider the

following extended one-level concatenated fountain coding
scheme. For each i ∈ {1, · · · , L}, the encoder first uses a
near MDS outer code with length No and rate ro to encode
sub-message wi into an outer codeword {ξi1, · · · , ξiNo}, as
illustrated in Figure 5. Next, for all k ∈ {1, · · · , No}, the
encoder combines outer codeword symbols {ξ1k, · · · , ξLk}
into a macro symbol ξk = [ξ1k, · · · , ξLk]. A random fountain
code is then used to map ξk into an infinite channel input
sequence {xk1, xk2, · · ·}.

Without loss of generality, we assume that there is only
one decoder (receiver) and it already has sub-messages
{wl+1, · · · , wL}, where l ∈ [1, L − 1] is an integer. The
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w1 wL
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Random switch

Encoded symbolsInner codewords

1No LNo …, xNo2, xNo1

Outer codewords Encoded symbolsInner codewords

Fig. 5. Concatenated fountain codes for rate compatible communication.

decoder estimates the source message after Nl = N

∑
l

i=1
ri

R
channel output symbols are received3. From the decoder’s
point of view, since the unknown messages [w1, · · · , wl] can
only take �exp(N ∑l

i=1 ri)� possible values, the effective

fountain information rate of the system is Ref =
N

∑
l

i=1
ri

Nl
=

R. According to the known messages {wl+1, · · · , wL}, the
decoder first strikes out from fountain codebooks all code-
words corresponding to the wrong messages4. The extended
one-level concatenated fountain code is then decoded using the
same procedure as described in Section IV. Assume that the
average number of symbols received by each inner codeword

Ñi =
Nl

No
= N

No

∑
l

i=1
ri

R is large enough to enable asymptotic
analysis. By following a similar analysis given in the proof of
Theorem 2, it can be seen that error exponent EFc(R) given in
(6) can still be arbitrarily approached with linear complexity.

Therefore, given a rate partitioning R = [r1, · · · , rL],
the encoder can encode the complete message irrespective
of the sub-messages known at the decoder. The fountain
system can achieve the same rate and error performance as if
only the unknown sub-messages are encoded and transmitted.
If the system has multiple receivers with different priori
sub-messages, the rate and error performance tradeoff as
characterized in Theorem 2 can be achieved simultaneously
for all receivers. Extending this scheme to the multi-level
concatenated codes is straightforward.

VI. FOUNTAIN COMMUNICATION OVER AN UNKNOWN

CHANNEL

In previous sections, we have assumed that concatenated
fountain codes should be optimized based on a known
discrete-time memoryless channel model pY |X . However, such
an optimization may face various challenges in practical
applications. For example, suppose that a transmitter broad-
casts encoded symbols to multiple receivers simultaneously.
Channels experienced by different receivers may be different.
Even if the channels are known, the transmitter still needs to
optimize fountain codes simultaneously for multiple channels.
For another example, suppose that the source message (e.g.,
a software patch) is available at multiple servers. A user may
collect encoded symbols from multiple servers separately over

3Assume that Nl and Nl/No are both integers.
4Note that the complexity of such an operation can be exponential in Ni

but is linear in No. Hence the linear complexity argument given in the proof
of Theorem 2 still holds.



448 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 2, FEBRUARY 2013

different channels and use these symbols to jointly decode
the message. By regarding the symbols as received over
a virtual channel, we want the fountain system to achieve
good rate and error performance without requiring the full
statistical model of the virtual channel at the transmitter. We
term the communication model in the latter example the rate
combining fountain communication. In both examples, the
research question is whether key coding parameters can be
determined without full channel knowledge at the transmitter.
In this section, we show that, even when the channel state
is unknown at the transmitter, it is still possible to achieve
near optimal rate and error performance using concatenated
fountain codes.

Consider fountain communication over a discrete-time
memoryless channel pY |X using one-level concatenated foun-
tain codes. We assume that the channel is symmetric, and
hence the optimal input distribution pX is known at the
transmitter. Other than channel alphabets and the symmetry
property, we assume that channel information pY |X is un-
known at the transmitter, but known at the receiver. Given pX ,
define I(pX) = I(X ;Y ) as the mutual information between
the input and output of the memoryless channel. We assume
that the transmitter and the receiver agree on achieving a
fountain information rate of γI(pX) where γ ∈ [0, 1] is termed
the normalized fountain rate, known at the transmitter.

Recall from the proof of Theorem 2 that, if pY |X is known
at the transmitter, the outer code rate ro can be predetermined
at the transmitter and the following error exponent can be
arbitrarily approached,

EFc(γ, pX) = max
0≤ro≤1

EFc(γ, pX , ro),

EFc(γ, pX , ro) = max
0≤ρ≤1

(1− ro)I(pX)

×
(
−ρ

γ

ro
+

E0(ρ, pX)

I(pX)

[
1− 1 + ro

2
E0(ρ, pX)

])
.

(11)

Without pY |X at the transmitter, the optimal ro cannot be
derived. However, with the knowledge of γ, we can set a

suboptimal outer code rate by letting ro =

√
γ2+8γ−γ

2 and
define the corresponding error exponent by

EFcs(γ, pX) = EFc

(
γ, pX , ro =

√
γ2 + 8γ − γ

2

)
. (12)

The following theorem indicates that EFcs(γ, pX) approaches
EFc(γ, pX) asymptotically as γ → 1.

Theorem 4: Given the discrete-time memoryless channel
pY |X and a source distribution pX , the following limit holds,

lim
γ→1

EFcs (γ, pX)

EFc(γ, pX)
= 1. (13)

The proof of Theorem 4 is given in Appendix C.
In Figure 6, we plot EFcs(γ, pX) and EFc(γ, pX) for BSC

with crossover probability 0.1. It can be seen that setting ro at

ro =

√
γ2+8γ−γ

2 is near optimal for all normalized fountain
rate values. Indeed, computer simulations suggest that such
optimality conclusion applies to a wide range of channels over
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Fig. 6. Error exponents achieved by optimal ro and suboptimal ro =√
γ2+8γ−γ

2
versus normalized fountain rate γ.

a wide range of fountain rates. However, further investigation
on this issue is outside the scope of this paper.

VII. CONCLUSIONS

We extended linear-complexity concatenated codes to foun-
tain communication over a discrete-time memoryless channel.
Fountain error exponents achievable by one-level and multi-
level concatenated codes were derived. It was shown that the
fountain error exponents are less than but close to Forney’s and
Blokh-Zyablov exponents. In rate compatible communication
where decoders know part of the transmitted message, with
the encoder still encoding the complete message, concatenated
fountain codes can achieve the same rate and error perfor-
mance as if only the novel part of the message is encoded for
each individual user. For one-level concatenated codes and
for certain channels, it was also shown that near optimal error
exponent can be achieved with an outer code rate independent
of the channel statistics.

APPENDIX

A. Proof of Theorem 2

Proof: We first introduce the basic idea of the proof.
Assume that the decoder starts decoding after receiving

N = NoNi symbols, where No is the length of the outer
codeword, Ni is the expected number of received symbols
from each inner code. In the following error exponent analysis,
we will obtain asymptotic results by first taking No to infinity
and then taking Ni to infinity. Note that the order in which
limits are taken is important for both the error exponent proof
and the complexity proof.

Let z be an No-dimensional vector whose kth element zk
is the effective codeword length parameter of the kth inner
code, for k ∈ {1, · · · , No}. Note that z is a random vector.
Let 1 > dz > 0 be a small constant. We define {zg|zg =
ndz, n = 0, 1, . . . , } as the set of “grid values” each can be
written as an non-negative integer multiplying dz. Define a
point mass function (PMF) f (dz)

Z as follows. We first quantize
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each element of z, for example zk, to the closest grid value no
larger than zk. Denote the quantized z vector by z(q), whose
elements are denoted by z

(q)
i for i ∈ {1, · · · , No}. For any

grid value zg , we define Izg =
{
i
∣∣∣z(q)i = zg

}
as the set of

indices corresponding to which the elements of z(q) vector
equal the particular zg . Given z, the empirical PMF f

(dz)
Z is

a function defined for the grid values, with f
(dz)
Z (zg) =

|Izg |
No

,

where |Izg | is the cardinality of Izg . Note that f (dz)
Z is itself

a random variable since it is a function of the random vector
z. We denote by Pr

{
f
(dz)
Z

}
the probability that the received

effective inner codeword length parameter vector z gives a
particular PMF f

(dz)
Z .

Let us now consider a decoding algorithm, called “dz-
decoder”, which is the same as the one introduced in Section
IV except that the decoder, after receiving Nizk symbols for
the kth inner code (for all k ∈ {1, · · · , No}), only uses the
first Niz

(q)
k symbols to decode the inner code. Assume that

the fountain information rate R, the outer code rate ro, and
the input distribution pX are given. Due to symmetry, it is
easy to see that, without being conditioned on random variable
θ (defined in Section IV), different z vectors corresponding
to the same f

(dz)
Z (which is indeed induced from z(q)) give

the same error probability performance. Let Pe

(
f
(dz)
Z

)
be

the communication error probability of the dz-decoder given
f
(dz)
Z . Communication error probability Pe of the dz-decoder

without given f
(dz)
Z can be written as,

Pe =
∑
f
(dz)

Z

Pe

(
f
(dz)
Z

)
Pr

{
f
(dz)
Z

}
. (14)

For a given f
(dz)
Z , define Ef (f

(dz)
Z ) =

− limNi→∞ limNo→∞ 1
NiNo

logPe

(
f
(dz)
Z

)
. Consequently,

we can find a constant K0(Ni, No), such that the following
inequality holds for all f (dz)

Z and all Ni, No,

Pe

(
f
(dz)
Z

)
≤ K0(Ni, No) exp

(
−NiNoEf

(
f
(dz)
Z

))
,

lim
Ni→∞

lim
No→∞

logK0(Ni, No)

NiNo
= 0. (15)

Given dz, Ni, No, let K1(Ni, No) be the total number of
possible quantized z(q) vectors (the quantized vector of z).
We next show that K1(Ni, No) can be upper bounded by

K1(Ni, No) ≤ 2No

(⌈
No

dz

⌉
+No − 1

)
!(⌈

No

dz

⌉)
!(No − 1)!

. (16)

In the above bound, the term
(	No

dz 
+No−1)!
(	No

dz 
)!(No−1)!
represents the

total number of possible outcomes of assigning
⌈
No

dz

⌉
iden-

tical balls to No distinctive boxes, which is calculated by
considering the permutations of

⌈
No

dz

⌉
identical balls together

with No − 1 identical “box separators”. This is the number
of possible z(q) vectors we can get if the received sym-
bols are assigned to the inner codes in groups with Nidz
(assumed to be an integer) symbols per group. Let us term
the assumption of assigning received symbols in groups the
“symbol-grouping” assumption. To understand the impact of
relaxing the symbol group assumption, which gives the 2No

term in (16), we will first need to establish an association
between the z(q) outcomes with and without the symbol-
grouping assumption. Let us keep the symbols in groups
and consider the permutation of the symbol groups together
with No − 1 identical “box separators”. With the symbol-
grouping assumption, box separators are only allowed to be
placed at the boundary of symbol groups. Without the symbol
group assumption, we allow box separators to be placed inside
a symbol group5. Now, let us start with the case where
box separators can be placed within a symbol group. The
corresponding z(q) outcome is denoted by z

(q)
\g . Let us then

move each box separator to the closest symbol group boundary
to get the associated z(q) outcome, denoted by z

(q)
g . Note that

z
(q)
g is a z(q) outcome we could get with the symbol-grouping

assumption. Comparing z
(q)
\g with z

(q)
g , we can see that each

element of z
(q)
\g can either be equal to or be one unit less

than the corresponding element of z(q)
g . Consequently, we can

have at most 2No possible z
(q)
\g vectors associated with the

same z
(q)
g vector. The bound in (16) then follows. Note that,

given dz, the right hand side of (16) is not a function of Ni.
Also note that the right hand side of (16) is an upper bound
on the total number of possible f

(dz)
Z functions.

Due to Stirling’s approximation [26], (16) implies that
limNo→∞

logK1(Ni,No)
No

≤ M , for a finite constant M . Hence
we have

lim
Ni→∞

lim
No→∞

logK1(Ni, No)

NiNo
= 0. (17)

Combining (14), (15) and (17), the error exponent of a dz-
decoder is given by

EFc = − lim
Ni→∞

lim
No→∞

logPe

NiNo

= min
f
(dz)

Z

{
Ef

(
f
(dz)
Z

)

− lim
Ni→∞

lim
No→∞

1

NiNo
logPr

{
f
(dz)
Z

}}
. (18)

The rest of the proof contains four parts. In Part I, the
expression of limNi→∞ limNo→∞ 1

NiNo
logPr

{
f
(dz)
Z

}
is de-

rived. In Part II, we derive the expression of Ef

(
f
(dz)
Z

)
. In

Part III, we use the results of the first two parts to obtain
limdz→0 EFc. Complexity and the achievable error exponent
of the concatenated fountain code is obtained based on the
derived results in Part IV.

Part I: Let z(i) (for all i ∈ {1, · · · , No}) be an No-
dimensional vector with only one non-zero element corre-
sponding to the ith received symbol. If the ith received symbol
belongs to the kth inner code, then we let the kth element
of z(i) equal 1 and let all other elements equal 0. Since
the random switch (illustrated in Figure 2) picks inner codes
uniformly, we have

E[z(i)] =
1

No
1, cov[z(i)] =

1

No
INo −

1

No
211

T , (19)

where 1 is an No-dimensional vector with all elements being
one, and INo is the identity matrix of size No. According

5Note that this is equivalent to relaxing the grouping operation.



450 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 61, NO. 2, FEBRUARY 2013

to the definitions, we have z = 1
Ni

∑NiNo

i=1 z(i). Since the
total number of received symbols equal NiNo, we must have
1Tz = No.

Let ω be a real-valued No-dimensional vector whose
entries satisfy −π

√
NiNo ≤ ωk < π

√
NiNo, ∀k ∈

{1, · · · , No}. Since z equals the normalized summation of
NiNo independently distributed vectors z(i), the charac-

teristic function of
√

Ni

No
(z − 1), denoted by ϕZ(ω) =

E
[
exp

(
j
√

Ni

No
ωT (z − 1)

)]
, can therefore be written as

ϕZ(ω) = E

[
exp

(
j

√
Ni

No
ωT (z − 1)

)]

=

NiNo∏
i=1

E

[
exp

(
j

√
1

NiNo
ωT (z(i)− 1

No
1)

)]

=

{
E

[
exp

(
j

√
1

NiNo
ωT (z(i)− 1

No
1)

)]}NiNo

=

[
1− 1

2

‖QTω‖2
N2

oNi
+ o

(
‖QTω‖2
N2

oNi

)]NoNi

, (20)

where in the last equality, Q is a real-valued No × (No − 1)-
dimensional matrix satisfying QTQ = INo−1 and QT1 =
0, which imply QQT = INo − 1

No
11T . In other words,

‖QTω‖2 = ωT (INo − 1
No

11T )ω.

Note that, since z is discrete-valued, ϕZ(ω) is
similar to a multi-dimensional discrete-time Fourier
transform of the PMF of

√
Ni

No
(z − 1). Because

√
NiNo

[√
Ni

No
(z − 1)

]
=

∑NiNo

i=1 z(i) − Ni1 takes

integer-valued entries, the ϕZ(ω) function is periodic in
ω in the sense that ϕZ

(
ω + 2π

√
NiNoek

)
= ϕZ(ω),

k ∈ {1, · · · , No}, where ek is an No-dimensional vector
whose kth entry is one and all other entries are zeros.
This is why we can focus on “frequency” vector ω with
−π

√
NiNo ≤ ωk < π

√
NiNo, ∀k ∈ {1, · · · , No}.

Equation (20) implies that

lim
No→∞

{
ϕZ(ω)− exp

(
− 1

2No
ωTQQTω

)}
= 0. (21)

Therefore, with large enough No and for any z, the probability
Pr{z} can be upper-bounded by

Pr{z} ≤
(

1

2π
√
NiNo

)No
(
No

2π

)No−1
2

× exp

(
−Ni

2

[‖z − 1‖2 − dz‖1‖2]) , (22)

where the constant 2π
√
NiNo in the denominator of the first

term on the right hand side of (22) is due to the range
of −π

√
NiNo ≤ ωk < π

√
NiNo, ∀k ∈ {1, · · · , No}. The

constant dz‖1‖2 in the exponent of (22) is added to ensure
the existence of a large enough No to satisfy the inequality,

as implied by (21)6. Inequality (22) further implies that

Pr{z} ≤
(

1

2π
√
NiNo

)No
(
No

2π

)No−1
2

× exp

(
−Ni

2

[
‖z(q) − 1‖2 − 3dz‖1‖2

])
, (23)

where z(q) is the quantized version of z. Consequently, the
probability of z(q) is upper-bounded by

Pr
{
z(q)

}
≤ 	Nidz
No

(
1

2π
√
NiNo

)No
(
No

2π

)No−1
2

× exp

(
−Ni

2

[
‖z(q) − 1‖2 − 3Nodz

])
. (24)

The probability of an arbitrary PMF f
(dz)
Z is hence upper-

bounded by

Pr
{
f
(dz)
Z

}
≤ K1(Ni, No)Pr

{
z(q)

}

≤ K1(Ni, No) 	Nidz
No

(
1

2π
√
NiNo

)No
(
No

2π

)No−1
2

× exp

(
−Ni

2

[
‖z(q) − 1‖2 − 3Nodz

])
, (25)

where K1(Ni, No) is the total number of possible z(q) vectors
satisfying (17).

From (25), we can see that the following inequality holds
for all f (dz)

Z .

− lim
Ni→∞

lim
No→∞

logPr
{
f
(dz)
Z

}
NiNo

≥ 1

2

∑
zg

[
(zg − 1)2 − 3dz

]
f
(dz)
Z (zg), (26)

where f
(dz)
Z (zg) is the value of PMF f

(dz)
Z at zg.

Note that, because 1Tz = No, for all empirical PMFs f (dz)
Z ,

we have
∑

zg
zgf

(dz)
Z (zg) ∈ [1− dz, 1].

Part II: Next, we will derive the expression of Ef

(
f
(dz)
Z

)
,

which is the error exponent conditioned on an empirical PMF
f
(dz)
Z .

Let z be a particular No-dimensional effective inner code-
word length parameter vector following the empirical PMF
f
(dz)
Z , under a given dz. Let Pe(z) be the error probability

given z (or z(q)). Let Pe(f
(dz)
Z ) be the error probability given

f
(dz)
Z . From the definition of the concatenated fountain codes,

we can see that the inner codes are logically equivalent, so do
the codeword symbols of the near MDS outer code. In other
words, error probabilities corresponding to all z vectors with
the same PMF f

(dz)
Z are equal. This consequently implies that

Pe(z) = Pe(f
(dz)
Z ). Therefore, when bounding Ef

(
f
(dz)
Z

)
,

instead of assuming a particular f
(dz)
Z which corresponds to

multiple z vectors, we can assume a single z vector whose
corresponding empirical PMF is f

(dz)
Z .

Assume that the outer code has rate ro, and is able to re-
cover the source message from dNo outer symbol erasures and

6Note that, without the dz‖1‖2 term, the right hand side of (22) is only
an asymptotic approximation to Pr{z}, but not necessarily an upper bound.
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tNo outer symbol errors so long as d+2t ≤ (1−ro−ζ0), where
ζ0 > 0 is a constant satisfying limNi→∞ limNo→∞ ζ0 = 0.
An example of such near-MDS code was introduced in [17].
Assume that, for all k, the kth outer codeword symbol is ξk,
and the kth inner code reports an estimate of the outer symbol
ξ̂k together with a reliability weight αk ∈ [0, 1]. Applying
Forney’s GMD decoding to the outer code [18], the source
message can be recovered if the following inequality holds
[22, Theorem 3.1b],

No∑
k=1

αkμk > (ro + ζ0)No, (27)

where μk = 1 if ξ̂k = ξk, and μk = −1 if ξ̂k �= ξk.
Consequently, error probability conditioned on the given z
vector is bounded by

Pe(f
(dz)
Z ) = Pe(z) ≤ Pr

{
No∑
k=1

αkμk ≤ (ro + ζ0)No

}

≤ min
s≥0

E
[
exp

(
−sNi

∑No

k=1 αkμk

)]
exp(−sNi(ro + ζ0)No)

, (28)

where the last inequality is due to Chernoff’s bound.
Given the effective inner codeword length parameter vec-

tor z, random variables αkμk for different inner codes are
independent. Therefore, (28) can be further written as

Pe(f
(dz)
Z ) = Pe(z) ≤ min

s≥0

∏No

k=1 E [exp (−sNiαkμk)]

exp(−sNi(ro + ζ0)No)

= min
s≥0

exp
(∑No

k=1 logE [exp (−sNiαkμk)]
)

exp(−sNi(ro + ζ0)No)
. (29)

Now we will derive the expression of
logE [exp (−sNiαkμk)] for the kth inner code.

Assume that the effective codeword length parameter is zk.
Given zk, whose quantized value is z

(q)
k , depending on the

received channel symbols, the decoder generates the maximum
likelihood outer code estimate ξ̂k, and generates αk using
Forney’s algorithm presented in [22, Section 4.2]. Define an
adjusted error exponent function Ez(z) as follows.

Ez(z) = max
0≤ρ≤1

−ρ
R

ro
+ zE0(ρ, pX), (30)

where E0(ρ, pX) is defined in (5). Optimizing αk by following
Forney’s approach presented in [22, Section 4.2], we obtain

− logE [exp (−sNiαkμk)] ≥
max

{
min

{
NiEz

(
z
(q)
k

)
, Ni

(
2Ez

(
z
(q)
k

)
− s

)
, Nis

}
, 0}+K2(Ni, No), (31)

where K2(Ni, No) is a constant satisfying
limNi→∞ limNo→∞

K2(Ni,No)
NiNo

= 0.7

7The reason we get a max{min{· · ·}} term on the right hand side of (31)
is that, after αk optimization, E [exp (−sNiαkμk)] can be written as the
summation of three exponential terms. The exponents of the three terms are

bounded by NiEz

(
z
(q)
k

)
, Ni

(
2Ez

(
z
(q)
k

)
− s

)
, and Nis, respectively,

plus a constant K2(Ni, No). Since the detailed derivation is quite involved
and is available in [22, Section 4.2], it is skipped in this paper.

Define a function φ(z, s) as follows,

φ(z, s) =

⎧⎨
⎩

−sro z, Ez(z) < s/2
2Ez(z)− (1 + ro)s z, s/2 ≤ Ez(z) < s
(1− ro)s z, Ez(z) ≥ s

.

(32)
Substitute (31) into (29), and take Ni, No to infinity (which
implies ζ0 → 0), we get the following bound on the condi-
tional error exponent Ef

(
f
(dz)
Z

)
,

Ef

(
f
(dz)
Z

)
≥ max

s≥0

∑
zg

φ(zg, s)f
(dz)
Z (zg). (33)

Part III: According to (18), (26) and (33), we have

EFc ≥ min
f
(dz)

Z
,
∑

zg
zgf

(dz)

Z
(zg)∈[1−dz,1]⎧⎨

⎩Ef (f
(dz)
Z ) +

∑
zg

(zg − 1)2

2
f
(dz)
Z (zg)

⎫⎬
⎭− 3

2
dz

≥ min
f
(dz)

Z
,
∑

zg
zgf

(dz)

Z
(zg)∈[1−dz,1]

max
s≥0

∑
zg

(
φ(zg, s) +

(zg − 1)2

2

)
f
(dz)
Z (zg)− 3

2
dz.

(34)

Define E
(0)
Fc = limdz→0 EFc. Let fZ be a probability

density function defined for z ∈ [0,∞). Inequality (34)
implies that

E
(0)
Fc ≥ min

fZ ,
∫ ∞
0

zfZ (z)dz=1

max
s≥0∫ ∞

0

(
φ(z, s) +

(z − 1)2

2

)
fZ(z)dz

= max
s≥0

min
fZ ,

∫ ∞
0

zfZ (z)dz=1∫ ∞

0

(
φ(z, s) +

(z − 1)2

2

)
fZ(z)dz. (35)

Assume that f∗
Z is a density function minimizing the last

term in (35). If we can find 0 < λ < 1, and two density func-
tions f (1)

Z , f (2)
Z with

∫∞
0 zf

(1)
Z (z)dz = 1,

∫ ∞
0 zf

(2)
Z (z)dz = 1,

such that

f∗
Z = λf

(1)
Z + (1− λ)f

(2)
Z , (36)

then it is easy to show that the last term in (35) must be mini-
mized either by f

(1)
Z or f (2)

Z . Since this contradicts the assump-
tion that f∗

Z is optimum, a nontrivial decomposition like (36)
must not be possible. To prevent a nontrivial decomposition
of (36) while still satisfying the constraint

∫∞
0

zf∗
Z(z)dz = 1,

f∗
Z can take non-zero values on at most two different z values.

Therefore, we can carry out the optimization in (35) only
over the following class of fZ functions, characterized by two
variables 0 ≤ z0 ≤ 1 and 0 ≤ γ ≤ 1,

fZ(z) = γδ(z − z0) + (1 − γ)δ

(
z − 1− z0γ

1− γ

)
, (37)

where δ() is the impulse function.
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Let us fix γ first, and consider the following lower bound
on E

(0)
Fc (γ), which is obtained by substituting (37) into (35),

E
(0)
Fc (γ) ≥ min

0≤z0≤1
max
s≥0

γφ(z0, s)

+(1− γ)φ

(
1− z0γ

1− γ
, s

)
+

γ

1− γ

(1− z0)
2

2
. (38)

Since given z0, γφ(z0, s) + (1 − γ)φ
(

1−z0γ
1−γ , s

)
is a linear

function of s, depending on the value of γ, the optimum s∗

that maximizes the right hand side of (38) should satisfy either
s∗ = Ez(z0) or s∗ = Ez

(
1−z0γ
1−γ

)
.

When γ ≥ 1−ro
2 , we have s∗ = Ez(z0). This yields

E
(0)
Fc ≥ min

0≤z0,γ≤1

[
γ

1− γ

(1− z0)
2

2
+ (1− ro)Ez(z0)

]
. (39)

When γ ≤ 1−ro
2 , we have s∗ = Ez

(
1−z0γ
1−γ

)
, which gives

E
(0)
Fc ≥ min

0≤z0,γ≤1

[
2γEz(z0) +

γ

1− γ

(1− z0)
2

2

+(1− ro − 2γ)Ez

(
1− γz0
1− γ

)]
. (40)

By substituting Ez(z) = max0≤ρ≤1[−ρ R
ro

+ zE0(ρ, pX)] into
(40), we get

E
(0)
Fc ≥ min

0≤z0,γ≤1
max
0≤ρ≤1

{
(1− ro)

[
−ρ

R

ro
+ E0(ρ, pX)

]

− γ

1− γ

[
(1 + ro)(1 − z0)E0(ρ, pX)− (1− z0)

2

2

]}
.

(41)

Note that if (1 + ro)(1 − z0)E0(ρ, pX) − (1−z0)
2

2 < 0, then

E
(0)
Fc ≥ (1−ro)

[
−ρ R

ro
+ E0(ρ, pX)

]
with the right hand side

of the inequality equaling Forney’s exponent for given pX and
ro. This contradicts with the fact that Forney’s exponent is
the maximum achievable exponent for one-level concatenated
codes in a classical system [22]. Therefore, we must have
(1 + ro)(1 − z0)E0(ρ, pX) − (1−z0)

2

2 ≥ 0. Consequently, the
right hand sides of both (39) and (41) are minimized at the
margin of γ∗ = 1−ro

2 . This gives

E
(0)
Fc ≥ min

0≤z0≤1

{
(1− ro)Ez(z0) +

1− ro
1 + ro

(1− z0)
2

2

}

= min
0≤z0≤1

max
0≤ρ≤1

{
(1− ro)

(
−ρ

R

ro
+ E0(ρ, pX)

)

+
1− ro
1 + ro

(1− z0)

2
[(1− z0)− 2(1 + ro)E0(ρ, pX)]

}
.

(42)

Note that if ρ is chosen to satisfy (1 + ro)E0(ρ, pX) ≥ 1,
the last term in (42) is minimized at z∗0 = 0, which gives

E
(0)
Fc ≥ max

0≤ρ≤1

{
−ρ

R

ro
(1− ro) +

1− ro
1 + ro

}
. (43)

The right hand side of (43) is maximized at ρ∗ = 0. However,
ρ = 0 implies (1 + ro)E0(ρ, pX) = 0 < 1 which contradicts
the assumption (1 + ro)E0(ρ, pX) ≥ 1. Therefore, we can

assume that (1 + ro)E0(ρ, pX) ≤ 1. Consequently, the last
term in (42) is minimized at z∗0 = 1− (1 + ro)E0. This gives

E
(0)
Fc ≥ max

0≤ρ≤1
(1 − ro)

×
(
−ρ

R

ro
+ E0(ρ, pX)

[
1− 1 + ro

2
E0(ρ, pX)

])
.

(44)

By optimizing (44) over pX and ro, it can be seen that the
error exponent given in (6) is achievable if we first take No

to infinity and then take Ni to infinity.
Part IV: To achieve linear coding complexity, let us assume

that Ni is fixed at a large constant while No is taken to
infinity. According to [17], it is easy to see that the encoding
complexity is linear in the number of transmitted symbols8. At
the receiver, we keep at most 2Ni symbols for each inner code
and drop the extra received symbols. Consequently, the effec-
tive codeword length parameter of any inner code is upper-
bounded by 2. Because (39) and (41) are both minimized at
γ∗ = 1−ro

2 , according to (37), the empirical density function
fZ(z) that minimizes the error exponent bound takes the

form fZ(z) =
1−ro
2 δ(z−z0)+

1+ro
2 δ

(
z − 2−z0(1−ro)

1+ro

)
, with

z0,
2−z0(1−ro)

1+ro
< 2. Therefore, upper bounding the effective

codeword length parameter by 2 does not change the error
exponent result. However, with zk ≤ 2, ∀k, the decoding
complexity of any inner code is upper-bounded by a constant
in the order of O(exp(2Ni)). According to [18], the overall
decoding complexity of the concatenated code is therefore
linear in No, and hence is linear in N . Since fixing Ni

causes a reduction of ζ1 > 0 in the achievable error exponent,
and ζ1 can be made arbitrarily small as we increase Ni, we
conclude that fountain error exponent EFc(R) given in (6) can
be arbitrarily approached by one-level concatenated fountain
codes with a linear coding complexity.

B. Proof of Corollary 1

Proof: Because 0 ≤ ro ≤ 1, it is easy to see ẼFc(R) ≤
EFc(R) ≤ Ec(R). We will next prove limR→CF

ẼFc (R)
EFc (R) = 1.

Define g(pX , ro, ρ) = (1 −
ro)

(
−ρ R

ro
+ E0(ρ, pX)

[
1− 1+ro

2 E0(ρ, pX)
])

, such that

EFc(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

g(pX , ro, ρ). (45)

It is easy to verify that taking R → CF in (45) implies ro → 1
and ρ → 0. Using Taylor’s expansion to expand g(pX , ro, ρ)
at ro = 1 and ρ = 0, we get

g(pX , ro, ρ) =
∑
i,j

1

(i+ j)!
β(i, j)(ro − 1)iρj, (46)

where β(i, j) = ∂(i+j)g(pX ,ro,ρ)
∂rio∂ρ

j

∣∣∣
ro=1,ρ=0

, with i and j being

nonnegative integers. It can be verified that β(i, j) = 0 if

8In other words, we assume that no encoding complexity is spent on
codeword symbols that are not transmitted.
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i = 0 or j = 0. We also have

β(1, 1) =

{
R

r2o
− ∂E0(ρ, pX)

∂ρ

+2roE0(ρ, pX)
∂E0(ρ, pX)

∂ρ

}∣∣∣∣
ro=1,ρ=0

= R− CF ,

β(2, 1) = −2R �= 0,

β(1, 2) = −
{
∂2E0(ρ, pX)

∂ρ2
− 2

(
∂E0(ρ, pX)

∂ρ

)2
}∣∣∣∣∣

ρ=0

�= 0. (47)

Similarly, define g̃(pX , ro, ρ) = (1 −
ro)

(
−ρ R

ro
+ E0(ρ, pX) [1− E0(ρ, pX)]

)
, such that

ẼFc(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

g̃(pX , ro, ρ). (48)

Using Taylor’s expansion to expand g̃(pX , ro, ρ) at ro = 1
and ρ = 0, we get

g̃(pX , ro, ρ) =
∑
i,j

1

(i+ j)!
β̃(i, j)(ro − 1)iρj . (49)

where β̃(i, j) = ∂(i+j) g̃(pX ,ro,ρ)
∂rio∂ρ

j

∣∣∣
ro=1,ρ=0

. Similarly, we have

β̃(i, j) = 0 if i = 0 or j = 0 and β̃(1, 1) = β(1, 1) = R−CF ,
β̃(2, 1) = β(2, 1) �= 0, β̃(1, 2) = β(1, 2) �= 0.

By L’Hospital’s rule, the following equality holds,

lim
R→CF

ẼFc(R)

EFc(R)
= lim

R→CF ,ro→1,ρ→0

β̃(1,1)(ro−1)ρ
2 + β̃(2,1)(ro−1)2ρ

6 + β̃(1,2)(ro−1)ρ2

6
β(1,1)(ro−1)ρ

2 + β(2,1)(ro−1)2ρ
6 + β(1,2)(ro−1)ρ2

6

= 1. (50)

C. Proof of Theorem 4

Proof: Define

ĝ(γ, ro, ρ) = (1 − ro)

(
ρI(pX)

(
1− γ

ro

)

+
ρ2

2

(
∂2E0(ρ, pX)

∂ρ2

∣∣∣∣
ρ=0

− 2I2(pX)

))
,

ÊFc(γ, pX , ro) = max
0≤ρ≤1

ĝ(γ, ro, ρ),

ÊFc(γ, pX) = max
0≤ro≤1

ÊFc(γ, pX , ro). (51)

We will first prove that

lim
γ→1

EFcs(γ, pX)

ÊFc(γ, pX)
= 1. (52)

Note that ĝ(γ, ro, ρ) is maximized at ρ∗ =
I(pX)(1− γ

ro
)

− ∂2E0(ρ,pX )

∂ρ2

∣∣∣
ρ=0

+2I2(pX )

, where we have assumed that

0 ≤ ρ∗ ≤ 1. This assumption is valid when ro is also
optimized. Consequently, ÊFc(γ, pX , ro) is maximized at

r∗o = argmax0≤ro≤1(1 − ro)
(
1− γ

ro

)2

=

√
γ2+8γ−γ

2 .
Define

EFc(γ, pX , ρ, ro) = (1− ro)I(pX)

×
(
−ρ

γ

ro
+

E0(ρ, pX)

I(pX)

[
1− 1 + ro

2
E0(ρ, pX)

])
.

(53)

We therefore have,

lim
γ→1

EFcs(γ, pX)

ÊFc(γ, pX)

≥ lim
γ→1

[
EFcs(γ, pX , ρ, ro)

ĝ(γ, pX , ρ, ro)

∣∣∣∣
ρ=ρ∗,ro=r∗o

]

= 1, (54)

where the second equality can be obtained using the
L’Hospital’s rule.

Following a similar idea as the proof of Corollary 1, it can
be shown that

lim
γ→1

ÊFc(γ, pX)

EFc(γ, pX)
= 1. (55)

Combining (54) and (55), we get

lim
γ→1

EFcs(γ, pX)

EFc(γ, pX)
= lim

γ→1

EFcs(γ, pX)

ÊFc(γ, pX)
lim
γ→1

ÊFc(γ, pX)

EFc(γ, pX)
≥ 1.

(56)
Because EFcs(γ, pX) ≤ EFc(γ, pX), (56) implies
limγ→1

EFcs(γ,pX)
EFc(γ,pX) = 1.
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