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Abstract— This paper investigates fountain communication
over discrete-time memoryless channels. Fountain error exponent
achievable by linear complexity concatenated fountain codes is
derived.

I. INTRODUCTION

In a fountain communication system as illustrated in Figure
1, the encoder maps a message into an infinite sequence
of channel input symbols and sends these symbols over a
communication channel. Channel output symbols are passed
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Fig. 1. Fountain communication over a memoryless channel.

through an erasure device which generates arbitrary erasures.
The decoder outputs an estimated message once the number
of received symbols exceeds a pre-determined threshold [1].
Fountain communication rate is defined as the number of
transmitted information units normalized by the number of
received symbols. As shown in [1], fountain communication is
useful in many applications such as high rate data transmission
over the internet, satellite broadcast, etc.

The first realization of fountain codes are LT codes intro-
duced for binary erasure channels (BECs) by Luby in [2]. LT
codes can recover k information bits from k+O(

√
k ln2(k/δ))

encoded symbols with probability 1 − δ and a complexity of
O(k ln(k/δ)), for any δ > 0 [2]. Shokrollahi proposed Rapter
codes in [3] which is the combination of an appropriate LT
code and a pre-code. For BECs, Raptor codes can recover
k information bits from k(1 + ε) encoded symbols at high
probability with complexity O(k log(1/ε)). In [4], Shamai,
Telatar and Verdú studied fountain communication over a
general stationary memoryless channel. It was shown that the
maximum achievable fountain rate for reliable communication,
defined as the fountain capacity, is equal to the Shannon
capacity of the memoryless channel.

Coding complexity is a crucial concern in practical commu-
nication applications. For a conventional communication sys-
tem, Forney proposed in [5] a one-level concatenated coding
scheme that can achieve a positive error exponent, known as

Forney’s exponent, for any rate less than the Shannon capacity
with a polynomial coding complexity. Forney’s concatenated
codes were generalized in [6] by Blokh and Zyablov to multi-
level concatenated codes, whose maximum achievable error
exponent is known as the Blokh-Zyablov exponent (or Blokh-
Zyablov bound). It was shown in [7] that Forney’s and Blokh-
Zyablov error exponents can be arbitrarily approached by
linear-time encodable/decodable codes.

In this paper, we extend one-level concatenated coding
schemes to fountain communication systems over a general
discrete-time memoryless channel. We define fountain error
exponent in Section II and derive the error exponent achievable
by one-level concatenated fountain codes, which concatenate a
linear complexity nearly maximum distance separable (MDS)
outer code (proposed in [8]) with random fountain inner codes
(proposed in [4]). Encoding and decoding complexities of
the concatenated fountain codes are linear in the number of
transmitted symbols and the number of received symbols,
respectively.

All logarithms in this paper are natural based.

II. SYSTEM MODEL

Consider the fountain system illustrated in Figure 1. Assume
the encoder uses a fountain coding scheme [4] with W
codewords to map the source message w ∈ {1, 2, · · · ,W} to
an infinite channel input symbol sequence {xw1, xw2, · · ·}. As-
sume the channel is discrete-time memoryless, characterized
by the conditional point mess function or probability density
function pY |X(y|x), where x ∈ X and y ∈ Y are the input and
output symbols, X and Y are the input and output alphabets,
respectively. Define schedule N = {i1, i2, · · · , i|N |} as a
subset of positive integers, where |N | is the cardinality of N
[4]. Assume the erasure device generates an arbitrary schedule
N , whose elements are indices of the received symbols
{ywi1 , ywi2 , · · · ywi|N|}. We say fountain rate of the system
is R = (log W )/N , if the decoder outputs an estimate ŵ of
the source message after observing N channel symbols, i.e.,
|N | = N , based on {ywi1 , ywi2 , · · · ywiN

} and N . Decoding
error happens when ŵ 6= w. Define error probability Pe(N)
as in [4],

Pe(N) = sup
N ,|N |≥N

Pr{ŵ 6= w|N}. (1)

We say fountain rate R is achievable if there exists a fountain
coding scheme with limN→∞ Pe(N) = 0 at rate R [4]. The



exponential rate at which error probability vanishes is defined
as the fountain error exponent, EF (R),

EF (R) = lim
N→∞

− 1
N

log Pe(N). (2)

Define fountain capacity CF as the supremum of all achievable
fountain rates. It was shown in [4] that CF equals the Shannon
capacity of the memoryless channel.

III. RANDOM FOUNTAIN CODES

Random fountain coding scheme was firstly introduced in
[4] to prove the capacity result. In a random fountain coding
scheme, encoder and decoder share a fountain code library
L = {Cθ : θ ∈ Θ}, which is a collection of fountain
code books Cθ with θ being the code book index. All code
books in the library have the same number of codewords
and each codeword has infinite number of channel symbols.
Let Cθ(m)j be the jth codeword symbol of message m in
Cθ. To encode the message, the encoder first generates θ
according to a distribution γ, such that the random variables
Xm,j : θ → Cθ(m)j are i.i.d. with a pre-determined input
distribution pX [4]. Then it uses codebook Cθ to map the
message into a codeword. We assume the actual realization
of θ is known to the decoder but is unknown to the erasure
device1. Maximum likelihood decoding is assumed.

Theorem 1: Consider fountain communication over a
discrete-time memoryless channel pY |X . Let CF be the foun-
tain capacity. For any fountain rate R < CF , random fountain
codes achieve the following random-coding fountain error
exponent, EFr(R).

EFr(R) = max
pX

EFL(R, pX), (3)

where EFL(R, pX) is defined as follows

EFL(R, pX) = max
0≤ρ≤1

{−ρR + E0(ρ, pX)},

E0(ρ, pX) = − log
∑

y

(∑
x

pX(x)pY |X(y|x)
1

1+ρ

)(1+ρ)

.

(4)

If the channel is continuous, then summations in (4) should
be replaced by integrals.

Theorem 1 was claimed implicitly in, and can be shown by,
the proof of [4, Theorem 2].

EFr(R) given in (3) equals the random-coding exponent for
a conventional communication system over the same channel.
For binary symmetric channels (BSCs), since random linear
codes simultaneously achieve the random-coding exponent at
high rates and the expurgated exponent at low rates [10], it
can be easily shown that the same fountain error exponent
is achievable by random linear fountain codes. However,
because it is not clear whether there exists an expurgation
operation, such as the one proposed in [9], that is robust to

1As demonstrated in [4], the capacity and error exponent results can be
significantly different if the erasure device has partial information about θ
and is trying to jam the communication.

the observation of any subset of the channel outputs, whether
expurgated exponent is achievable for fountain communication
over a general discrete-time memoryless channel is therefore
unknown.

IV. CONCATENATED FOUNTAIN CODES

Consider a one-level concatenated fountain coding scheme
illustrated in Figure 2. Assume source message w can take
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Fig. 2. One-level concatenated fountain codes.

exp(NR) possible values with an equal probability, where R
is the targeted fountain information rate, and decoder decodes
the source message after receiving N channel symbols. The
encoder first encodes the message using an outer code into an
outer codeword, {ξ1, ξ2, · · · , ξNo}, with No outer symbols. We
assume the outer code is a linear-time encodable/decodable
nearly MDS error-correction code of rate ro ∈ [0, 1]. That
is, the outer code can recover the source message from a
codeword with d symbol erasures and t symbol errors, so
long as 2t + d ≤ (1 − ro − ζ0)No, where ζ0 > 0 is
a positive constant that can be made arbitrarily small. An
example of such linear complexity error-correction code was
presented by Guruswami and Indyk in [8]. Each outer symbol
ξk can take exp

(
N
No

R
ro

)
possible values. Define Ni = N

No
,

Ri = R
ro

. The encoder then uses a set of random fountain
codes (as introduced in [4] and in Section III) each with
exp(NiRi) codewords to map each outer symbol ξk into an
inner codeword, which is an infinite sequence of channel input
symbols {xk1, xk2, · · ·}. Let C

(k)
θ (ξk)j be the jth codeword

symbol of the kth inner code in codebook C
(k)
θ , where θ is

the codebook index as introduced in Section III. We assume θ
is generated according to a distribution such that the random
variables Xk,ξk,j : θ → C

(k)
θ (ξk)j are i.i.d. with a pre-

determined input distribution pX . To simplify the notations, we
have assumed Ni, No, NR, and NiRi should all be integers.
We also assume No À Ni À 1.

After encoding, the inner codewords are regarded as No

channel symbol queues, as illustrated in Figure 2. In the lth

time unit, the encoder uses a random switch to pick one inner
code with index kl(θ) uniformly, and sends the first channel
input symbol in the corresponding queue through the channel.
The transmitted symbol is then removed from the queue. We
assume random variables kl : θ → {1, 2, . . . , No} are i.i.d.
uniform. We assume the decoder knows the outer codebook



and the code libraries of the inner codes. We also assume
the encoder and the decoder share the realization of θ such
that the decoder knows the exact codebook used in each inner
code and the exact order in which channel input symbols are
transmitted.

Decoding starts after N = NoNi channel output symbols
are received. The decoder first distributes the received symbols
to the corresponding inner codewords. Assume zkNi channel
output symbols are received from the kth inner codeword,
where zk > 0 and zkNi is an integer. We term zk the
normalized effective codeword length of the kth inner code.
Based on zk, and the received channel output symbols,
{yki1 , yki2 , . . . , ykizkNi

}, the decoder computes the maximum
likelihood estimate of the outer symbol ξ̂k together with
an optimized reliability weight αk ∈ [0, 1]. We assume,
given zk and {yki1 , yki2 , . . . , ykizkNi

}, reliability weight αk

is computed using Forney’s algorithm presented in [5, Section
4.2]. After that, the decoder carries out a general minimum
distance (GMD) decoding of the outer code and outputs an
estimate ŵ of the source message. GMD decoding of the outer
code here is the same as that in a conventional communication
system, the detail of which can be found in [7].

Compared to a conventional communication system where
all inner codes have the same length, in a concatenated
fountain coding scheme, the number of received symbols from
different inner codes may be different. Consequently, error
exponent achievable by one-level concatenated fountain codes
is less than Forney’s exponent, as shown in the following
theorem.

Theorem 2: Consider fountain communication over a
discrete-time memoryless channel pY |X with fountain capacity
CF . For any fountain rate R < CF , the following fountain
error exponent can be arbitrarily approached by one-level
concatenated fountain codes.

EFc(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

(1− ro)
(
−ρ

R

ro
+ E0(ρ, pX)

[
1− 1 + ro

2
E0(ρ, pX)

])
.

(5)

where E0(ρ, pX) is defined in (4).
Encoding and decoding complexities of the one-level con-

catenated codes are linear in the number of transmitted sym-
bols and the number of received symbols, respectively.

The proof of Theorem 2 is given in Appendix A.
Corollary 1: EFc(R) is upper-bounded by Forney’s error

exponent Ec(R) given in [5]. EFc(R) is lower bounded by
ẼFc(R), which is defined as,

ẼFc(R) = max
pX , R

CF
≤ro≤1,0≤ρ≤1

(1− ro)
(
−ρ

R

ro
+ E0(ρ, pX) [1− E0(ρ, pX)]

)
. (6)

As R approaches CF , the upper and lower bounds are asymp-
totically equal in the sense of limR→CF

ẼF c(R)
Ec(R) = 1.

The proof of Corollary 1 is skipped.
In Figure 3, we illustrate EFc(R), Ec(R), and ẼFc(R)

for a BSC with crossover probability q = 0.1. We can
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Fig. 3. Comparion of fountain error exponent EFc(R), its upper bound
Ec(R), and its lower bound ẼFc(R).

see that EFc(R) is closely approximated by ẼFc(R). This
approximation is useful in fountain exponent derivation when
the one-level concatenated codes are extended to multi-level
concatenated fountain codes.

APPENDIX

A. Proof of Theorem 2
Proof: Assume the decoder starts decoding after receiv-

ing N = NoNi symbols, where No is the length of the outer
codeword, Ni is the expected number of received symbols
from each inner code. In the following fountain error exponent
analysis, asymptotic results are obtained by first taking No to
infinity and then taking Ni to infinity.

Let z be an No-dimensional vector whose kth element
zk is the normalized effective codeword length of the kth
inner code, from which the conditional empirical distribution
function FZ|θ can be induced, as a function of variable z ≥ 0,
given the random variable θ specified in Section IV. Let the
conditional density function of FZ|θ be fZ|θ. Because the total
number of received channel symbols equals N = NoNi, we
must have ∫ ∞

0

zfZ|θ(z)dz = 1. (7)

Note that fZ|θ may not be different for each value of θ.
Regard fZ|θ as a random variable and denote its distribution
by GF , as a function of fZ|θ. Assume, given θ, the conditional
error probability of the concatenated code can be written as
Pe|θ(fZ|θ) = exp(−NiNoEf (fZ|θ, R)), where the conditional
error exponent Ef (fZ|θ, R) is a function of fZ|θ. The overall
error probability can therefore be written as

Pe =
∫

θ

exp(−NiNoEf (fZ|θ, R))dGF (fZ|θ). (8)



Consequently, error exponent of the concatenated code is
given by

EFc(R) = lim
Ni→∞

lim
No→∞

− 1
NiNo

log
∫

θ

exp(−NiNoEf (fZ|θ, R))dGF (fZ|θ)

= min
fZ

{
Ef (fZ , R)− lim

Ni,No→∞
1

NiNo
log dGF (fZ)

}
,

(9)

where in the second equality we wrote fZ|θ as fZ to simplify
the notation.

Next, we will obtain the expression of
− limNi,No→∞

1
NiNo

log dGF (fZ). We will make several
approximations during the derivation. These approximations
are valid in the sense of not affecting the final result given in
(14).

Let z(i) be an No-dimensional vector with only one non-
zero element corresponding to the ith received symbol. If the
ith received symbol belongs to the kth inner code, then we
let the kth element of z(i) equal 1 and let all other elements
equal 0. Since the random switch (illustrated in Figure 2) picks
inner codes uniformly, we have

E[z(i)] =
1

No
1, cov[z(i)] =

1
No

INo −
1

No
2 11T , (10)

where 1 is an No-dimensional vector with all elements
being one. According to the definitions, we have z =
1

Ni

∑NiNo

i=1 z(i). Note that the z(i) vectors are i.i.d.. According
to the central limit theorem, z is approximately Gaussian with
mean and covariance matrix given by

E[z] = 1, cov[z] =
1
Ni

INo −
1

NoNi
11T . (11)

Since the total number of received symbols equal NiNo, we
must have 1T z = No. The density function of z, denoted by
g(z), can therefore be approximated by

g(z) =

(√
Ni

2π

)No

exp
(

Ni‖1− z‖2
2

)
. (12)

As explained before, given z, we can obtain the conditional
empirical inner codeword length density function fZ . The
density function of fZ , denoted by gF , can therefore be written
as

gF (fZ) = K0(Ni, No)g(z), lim
Ni,No→∞

log K0(Ni, No)
NiNo

= 0.

(13)
This consequently yields

− lim
Ni,No→∞

1
NiNo

log dGF (fZ) =
∫ ∞

0

(1− z)2

2
fZ(z)dz.

(14)
Substitute (14) and (7) into (9), we get

EFc(R) = min
fZ ,

∫∞
0

zfZ(z)dz=1

{
Ef (fZ , R) +

∫ ∞

0

(1− z)2

2
fZ(z)dz

}
. (15)

Next, we will derive the expression of Ef (fZ , R), which is
the error exponent conditioned on an inner codeword length
density fZ .

Let z be a particular No-dimensional inner codewords
length vector, which follows the empirical density function
fZ . Since error probability conditioned on fZ can be written
as Pe(fZ) = exp(−NiNoEf (fZ , R)), error probability given
z can be written as

Pe(z) =
exp(−NiNoEf (fZ , R))

K1(Ni, No)
,

lim
Ni,No→∞

log K1(Ni, No)
NiNo

= 0. (16)

Consequently, we can obtain Ef (fZ , R) by assuming a par-
ticular inner codeword length vector z, whose empirical inner
codeword length density function is fZ .

Assume the outer code has rate ro, and is able to recover
the source message from d outer symbol erasures and t outer
symbol errors so long as d+2t ≤ (1−ro−ζ0), where ζ0 > 0 is
a constant that can be made arbitrarily small. Assume, for all
k, the kth inner code reports an estimate of the outer symbol ξ̂k

together with a reliability weight αk ∈ [0, 1]. Apply Forney’s
GMD decoding to the outer code [7], the source message can
be recovered if the following inequality holds [5, Theorem
3.1b].

No∑

k=1

αkµk > (ro + ζ0)No, (17)

where µk = 1 if ξ̂k = ξk, and µk = −1 if ξ̂k 6= ξk.
Consequently, error probability conditioned on the given z
vector is bounded by

Pe(R, ro,z) ≤ Pr

{
No∑

k=1

αkµk ≤ (ro + ζ0)No

}

≤ min
s≥0

E
[
exp

(
−sNi

∑No

k=1 αkµk

)]

exp(−sNi(ro + ζ0)No)
. (18)

where the last inequality is due to Chernoff’s bound.
Given the inner codeword lengths z, random variables αkµk

for different inner codes are independent. Therefore, (18) can
be further written as

Pe(R, ro,z) ≤ min
s≥0

∏No

k=1 E [exp (−sNiαkµk)]
exp(−sNi(ro + ζ0)No)

= min
s≥0

exp
(∑No

k=1 log E [exp (−sNiαkµk)]
)

exp(−sNi(ro + ζ0)No)
. (19)

Now we will derive the expression of
log E [exp (−sNiαkµk)] for the kth inner code.

Assume the normalized effective codeword length is zk.
Given zk, depending on the received channel symbols, the
decoder generates the maximum likelihood outer code estimate
ξ̂k, and generates αk using Forney’s algorithm presented in [5,
Section 4.2]. Define an adjusted error exponent function Ez(z)
as follows.

Ez(z) = zEFL

(
R

roz
, pX

)
. (20)



By following Forney’s error exponent analysis presented in [5,
Section 4.2], we obtain

− log E [exp (−sNiαkµk)] =
max[min{NiEz(zk), Ni(2Ez(zk)− s), Nis}, 0]. (21)

Define a function φ(z, s) as follows,

φ(z, s) =




−s(ro + ζ0) z, Ez(z) < s/2
2Ez(z)− (1 + ro + ζ0)s z, s/2 ≤ Ez(z) < s
(1− ro − ζ0)s z, Ez(z) ≥ s

.

(22)
Substitute (21) into (19), we get the expression of the condi-
tional error exponent Ef (fZ , R) as

Ef (fZ , R) = max
pX , R

CF
≤ro≤1,s≥0

∫
φ(z, s)fZ(z)dz. (23)

Combining (23) with (15), fountain error exponent of the
concatenated code is therefore given by

EFc(R) = max
pX , R

CF
≤ro≤1,s≥0

min
fZ ,

∫∞
0

zfZ(z)dz=1

∫ [
φ(z, s) +

(1− z)2

2

]
fZ(z)dz. (24)

Assume f∗Z is the inner codeword length density that min-
imizes EFc(R) in (24). Assume we can find 0 < λ < 1, and
two density functions f

(1)
Z , f

(2)
Z , satisfying

∫∞
0

zf
(1)
Z (z)dz =

1,
∫∞
0

zf
(2)
Z (z)dz = 1, such that

f∗Z = λf
(1)
Z + (1− λ)f (2)

Z . (25)

It is easily seen that EFc(R) should be minimized either by
f

(1)
Z or f

(2)
Z , which contradicts the assumption that f∗Z is

optimum. In other words, if f∗Z is indeed optimum, then a
decomposition like (25) must not be possible. This implies
that f∗Z can take non-zero values on at most two different z
values. Therefore, we can carry out the optimization in (24)
only over the following class of fZ functions, characterized
by two variables 0 ≤ z0 ≤ 1 and 0 ≤ γ ≤ 1.

fZ(z) = γδ(z − z0) + (1− γ)δ
(

z − 1− z0γ

1− γ

)
. (26)

where δ() is the impulse function.
Now let us fix pX , ro, γ, and consider the following

optimization of EFc(R, pX , ro, γ) over z0 and s.

EFc(R, pX , ro, γ) = min
0≤z0≤1

max
s≥0

γφ(z0, s) + (1− γ)φ
(

1− z0γ

1− γ
, s

)
+

γ

1− γ

(1− z0)2

2
.

(27)

Since given z0, γφ(z0, s) + (1 − γ)φ
(

1−z0γ
1−γ , s

)
is a linear

function of s, depending on the value of γ, the optimum s∗

that maximizes (27) should either satisfy s∗ = Ez(z0) or s∗ =
Ez

(
1−z0γ
1−γ

)
.

When γ ≥ 1−ro−ζ0
2 , we have s∗ = Ez(z0). This yields

EFc(R, pX , ro) = min
0≤z0,γ≤1[

γ

1− γ

(1− z0)2

2
+ (1− ro − ζ0)Ez(z0)

]
. (28)

When γ ≤ 1−ro−ζ0
2 , we have s∗ = Ez

(
1−z0γ
1−γ

)
. It can be

shown that

EFc(R, pX , ro) ≥ min
0≤z0,γ≤1

[
γ

1− γ

(1− z0)2

2
+

(1− ro − ζ0)Ez

(
1− γ

1− γ

1 + ro + ζ0

1− ro − ζ0
(1− z0)

)]
.

(29)

Both (28) and (29) are minimized at γ = 1−ro−ζ0
2 .

Consequently, substitute γ = 1−ro−ζ0
2 into (28), we get

EFc(R, pX , ro) = min
0≤z0≤1[

1− ro − ζ0

1 + ro + ζ0

(1− z0)2

2
+ (1− ro − ζ0)Ez(z0)

]
.(30)

Minimize (30) over z0 gives the desired result.
Because the complexity of encoding and decoding the outer

code is linear in No, if we fix Ni at a large constant and
only take No to infinity, the overall decoding complexity of
the concatenated code is linear in N = NiNo. The overall
encoding complexity is linear in the number of transmitted
symbols (given that Ni is fixed). Since fixing Ni causes a
reduction of ζ1 > 0 in the achievable error exponent [7], and
both ζ0, ζ1 can be made arbitrarily small as we increase Ni,
we conclude that fountain error exponent EFc(R) given in
(5) can be arbitrarily approached by one-level concatenated
fountain codes with linear complexity.
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