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Abstract

We compare methods for solving the NP-hard bi-
nary quadratic programming (BQP) problem. Vari-
ous methods are discussed, including box-constrained
quadratic programming, branch and bound, cocordinate
descent, group decision making and semi-definite relax-
ation. An algorithm from target-tracking, the Proba-
bilistic Data Association Filter (PDAF), is modified
to the BQP application. Simulation results show that
this and several other methods can significantly out-
perform the decision feedback detector (DFD) or its
group counterpart, GDFD.

1 Introduction

Binary quadratic programming (BQP) problems arise
in a variety of applications, e.g., capital budgeting and
financial analysis problems [14], CAD problems [4],
traffic message management problems [6], machine
scheduling [1], molecular conformation [17], and so on.
Of particular current relevance, some digital commu-
nication problems, such as synchronous code-division
multiple access (CDMA), can be formulated as BQPs.

In the CDMA context, prior research has focused on
designing suboptimal receivers with low computational
complexity and better performance than a conven-
tional detector. Among them are the multistage de-
tection [19], the group detection [20] and the decision
feedback detection |21]. Usually, suboptimal methods
need to perform a projection to satisfy the integrality
constraints, which can cause detection errors.

Based on the idea of successive cancelation, a sys-
tematic Decision Feedback Detection (DFD) approach
was given in [21]. While maintaining the computa-
tional complexity of O(K?), DFD methods provide a
significant improvement in probability of error when
compared with conventional and decorrelation detec-
tor [21]. However, computer simulations show that, in
most cases, there is still a large gap between the prob-
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ability of error of DFD outputs and that of the optimal
solution.

In the paper, we compare several methods for solv-
ing the BQP problem arising in synchronous CDMA.
We discuss box-constrained quadratic programming,
“best-first” and “depth-first” versions of branch and
bound, coordinate descent, group decision feedback de-
tection {GDFD), semi-definite relaxation and Proba-
bilistic Data Association Filter (PDAF). Simulation
results show that the PDAF and several other of the
proposed methods can significantly cutperform the de-
cision feedback detector (DFI}} or its group counter-
part, GDFD.

2 Problem Formulation

A discrete-time equivalent model for the matched-filter
outputs at the receiver of a CDMA channel is given by
the K-length vector [12]

y=Hb+n (1)

where b € {~1,+1}¥ denotes the K-length vector of
bits transmitted by the K users. Here H = Wirwi
is the signature waveform correlation matrix, R is the
symmetric normalized correlation matrix with unit di-
agonal elements, W is a diagonal matrix whose kt*
diagonal element, wy, is the received signal energy per
bit of the k* user, and n is a real-valued zero-mean
Gaussian random vector with a covariance matrix ¢2H.

When all the user signals are equally probable, the op-
timal soluticn of (1) is the output of a Maximum Like-
lihood (ML) detector [12]

h=ar mi
oML gbe{_lfgl},{

(bTHb - 2yTb) (2)
The ML detector has the property that it minimizes,
among all detectors, the probability that not all users’
decisions are correct. Except in pathological cases,
énrr is NP-hard and exponentially complex to imple-
ment [22]; the focus is then on developing easily im-
plementable integer programming approaches



3 CWMA Detection by Various Algorithms

3.1 Matched Filter

The simplest sub-optimal algorithm is a single-user
matched filter [22]. It makes a decision based on the
sign of the observation in (1).

(3)

It would be the optimal detector if the signature wave-
forms were orthogonal, i.e., if H were diagonal. As the
simulation results show, this method performs poorly.

¢Mﬂt:h : BM = 5ign (y)

3.2 Decorrelator

The conventional decorrelation detector improves on
the matched filter output. It is found in two steps [12].
First, the unconstrained sclution d = H~ly is com-
puted, and then this is projected onto the constraint
set via: b; = sign(b;) Vi.

3.3 DFD Method

This method improves the probability of detection er-
ror by applying a successive cancelation technique on
users. The DFD method based on the decorrelation
detector is described in [21}. The users are sequentially
demodulated by

K i—-1
¢DFD H b,‘ = sign ZFiijj — ZBijbj
Jj=1 j=1

b=Phic(1, --,K) (4)
where F = U([PHP] '), B = L(FPHP). Here, U{")
represents the upper triangular part of a matrix, L{(-)
represents the strictly lower triangular part of a ma-
trix, and P is a permutation matrix (symmetric and
orthogonal). The choice of P has been discussed in
Theorem 1 of [21]. Conceptually, the “easiest”, or the
most powerful user, is detected first.

3.4 Quadratic Programming
The constraint in (2) can be relaxed to simple box-
constraints of the form as —e < b < e, where b,e € R
and e = [11---1]7, with the understanding that the
constraints be enforced at the final step via a hard-
limiting projection operation. Therefore, the mini-
mization problem in {2) tan be modeled as a box-
constrained quadratic programming problem as fol-
lows:

; T T
15 R vi (07 Hb — 2470)

¢qp 1 b=arg ~ (5)

In our simulations, the Reflective Newton Method [5]
is used to solve (5). This method is utilized in quad-
prog() of MATLAB 5.3 Optimization Toolbox to solve
large-scale quadratic programming problems with box
constraints.
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3.5 GDFD with Optimal Grouping

The group detection idea was first introduced by
Varanasi in [20], and significantly enhanced in [10]. In
DFD successive cancelation is applied using “groups”
of cardinality one. In GDFD the DFD notion is gener-
alized: users are grouped into an ordered set of P{< K)
groups, and decision-making is sequential. That is,
dimensions (users) within the first group are decided
based on an assumption that all other users contribute
Gaussian noise. Then these decisions are assumed cor-
rect, and the users’ effects are subtracted from the
observations: the same procedure can now be imple-
mented with the remaining P —1 groups, and we repeat
until done, It is not unreasonable to use an optimal al-
gorithm (branch and bound} to solve the subproblems
associated with each group, since each is by design of
quite low dimension. But the key is to use a clever
means to design the groups in the first place; this and
implementation concerns are detailed in [10].

3.6 Branch and Bound

The optimal selution to (2) can be obtained by interro-
gating each of the 2% possible b’s. There are intelligent
ways to compute such combinations.

3.6.1 “Depth-First” Branch and Bound:
In [9], an optimal algorithm based on branch and bound
with an iterative lower bound update was proposed.
Suppose H = LTL is the Cholesky decomposition of
H,; as shown in [9], (2) is equivalent to
min
b -1, +1}¥

$ars:b=arg Lo~ (L~)Tyll3  (6)
Denote § = (L~1)Ty, d = Lb, and denote the k** com-
ponent of d and § by dix and g, respectively. (6) be-

comes [9]

K

> (- i)

k=1

min

b=
oML s be{-1,+1}¥

(7)

Since L is a lower triangular matrix, d; depends only
on (by,...,b). When the decision for the first k users
are fixed, the term

€ = Z(di - i) (8)
i=1

becomes a lower bound of (7). The branch and bound
algorithm is shown below. Similar to a general branch
and bound method {3], this algorithm maintains a node
list, OPEN, and a scalar called UPPER, which is
denocted as the “Current-Best” solution, i.e., the min-
imum feasible cost found so far. Define k to be the
level of a node (virtual root node has level 0). La-
bel the branches with di(b1,be,...,bky1), which con-
nect the two nodes (by,...,be) and (b1....,bxs1). The
ncide is labeled with the lower bound &,. Also, define



ve = Yo [bix(the i** column of L)]-#, denote [vk];
as the j'" component of a vector vy, and L;; as the
(i,7)** element of L.

“Depth-First” Branch and Bound Approach

Step 1:  Precompute ¥ = (L-1)Ty
Step 2: Initialize £ = 0. v = —§, & = 0,
UPPER = 400 and OPEN = NULL
Step 3:  Set k = k+1. Choose the node in level
k such that by = —sign({ve_ilx)
If k < K, append the node with b; =
sign([ve—1]k)
Step 4: v = vg_1 + be X (k*" column of L)
Step Bt £ = fe_1+(de — )% = Eh_1+ (wi)?
Step 6: Update values as follows:

IF ¢, > UPPER and the OPEN list is not
empty
Drop this node. Pick the node from
the end of the OPEN list.
Set k equal to the level of this node
and go to Step 4
IF &, < UPPER, k = K and the OPEN list
is not empty
Update the “Current-Best” solution
and UPPER = £y,
Pick the node from the end of the
OPEN list, set k equal to the level
of this node and go back to Step 4
IF ¢ < UPPERand k# K
Go back to Step 3
IF £, < UPPER and k = K and the OPEN
list is empty
Update the “Current-Best” solution
and UPPER = £
For all other cases
Stop and output the “Current-Best”
solution

3.6.2 Pardalos’ Branch and Bound: Parda-
los branch and bound algorithm, based on the steepest
descent algorithm was described in [16]. Here the min-
imal range of the gradient of the objective function is
used to select a starting point and a new value of lower
and upper bounds of the branch and bound algorithm.
In the worst case, each step in the steepest descent zl-
gorithm requires O (K?) operations. This algorithm
has been found to be extremely slow for the ML de-
tector problem and will not be discussed further. The
method is slower than the “Depth-First” branch and
bound by approximately one order of magnitude.

3.6.3 “Best-First” Branch and Bound:
The “best-first” search is a slightly different version of
“depth-first” approach. As far as we know, this method
is first applied to BQP here. It also maintains a node
list called OPEN. However, it differs from the “depth-
first” approach in that the nodes in the OPEN list are
sorted in ascending order of their lower bounds. The
algorithm converges to an optimal solution. Several
suboptimal variants can be derived by controlling the
backtracking in the search process. For example, one
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could prematurely terminate the search as soon as a
fesible solution is found.

3.7 Coordinate Descent Family
The problem in (2} is equivalent to the following [8]:

(9)

Peg * b= arg min

T T
- x+c'x
be{0,1}¥ Q )

(1

2

where = &2 ¢ = —(y + He),Q = 2H, and e
[t1-.-1J7. In the Descent I algorithm, the largest de-
crease in w(i) is sought by changing a variable of the
form z; = 1 — x; at each step where

X 1
Z Qi;z; + ¢ +

S@i | (22— 1).
=L

w(i) (10)

2

This process can be viewed as searching for a discrete
“greedy” local minimizer in the neighborhood of the
point z=[z1,...,zx] of the form

{,’L‘k= (:r:i,...,:ck_l,l—a:k,a:k+1,...,;rx),kE [I,K]}

Descent IT changes two variables at a time; there is a
fortunate simplification similar to (10) [8].

3.8 Semi-Definite Programming

It is shown in {13] that semi-definite relaxation is an ac-
curate and efficient approximation method for certain
NP-hard problems and it can approximately solve the
Maximum-Likelihood Detection problem in O(K3%).
In addition, since the model is convex, it does not suf-
fer from local maxima. Moreover, efficient algorithms,
namely interior-point methods, are available for solv-
ing the SD problem [18]. We can formulate (2) as a SD
problem by writing

X =arg max (Trace(XQgp)) (11)
Xi)‘-czi)vi
where
[ -H Wiy REIEAE
Qo =| iy 0" %= ][]
(12)

in which ¢ € {-1,1} is a randomly-generated scalar.
It is also shown that the SD relaxation solution can
be converted to an approximate solution for a BQP
problem by performing a computationally efficient ran-
domization method [15]. Given a modest number of
randomizations, the computational complexity of the
randomization is approximately O(K2M;4nq), where
M. 4nq denotes the number of randomizations. Imple-
mentation of the 5D relaxation algorithm to (2) is de-
scribed in [13]. The semidefinite model in (11) can be
realized as follows:

¢sp: i =ar max b1 Q b
: c* & be{—1,+1} K c sp C
c€{-1,+1}

(13)



The solution obtained from (11) is then factorized by
using Cholesky decompaosition X = VTV. In the sub-
sequent step, randomization is performed to obtain an
approximate MLD solution.

Semi-definite Relaxation Approach

Step 1:  Formulate Qgp as in (12). Randomly gen-
erate ¢ in (12} which is either -1 or 1.
Solve the semi-definite program in (11).
Obtain the solution X . (We used the
interior-point method in [7]).

Cholesky decompose X = VTV,

Perform randomization, where the number
of randomizations is M gnq. Set k = 1.

Step 2:

Step 3:
Step 4:

Al Generate a uniformly dis-
tributed vector u*:

uk = TJ-:T’MNN(O’I)‘

A 2:
A 3:

Form &% = sign(VTuk)

if £k > Mygna, Go to Step
5 Ifnot, k=k+1and
return to Al.

Step 5: Choose & = &7 as the approximate solution

of «* in (13), where

max

1 Mrand

j=ag _ fa%)  (19)

Step 6:  Obtain an approximate selution for (2) by

bspr =2k % [21,-..,2k]T

3.9 The PDAF Approach

The PDAF is one of the simplest and mast effective
approaches to target tracking [2]. The PDAF idea can
be applied to the CDMA model (1) as follows. The
decisions on each user can be considered as binomial
random variables, with the currently-estimated proba-
bilities for the bit from user ¢ to be +1 or -1, P, and
1 — P, respectively. By using a Gauss-Seidel itera-
tion, the “soft” decisions are updated sequentially on
all users. From (1) we have

¥ = riwyb; + Z rjwjbj +n
J#i

(15)

where r; is the i*" column of R and w; is the " di-
agonal element of W. When updating the probability
of user i to be +1 or -1, the combination of interfer-
ences from other users are considered approximately as
a (Gaussian random vector, with the mean and variance
for user j calculated according to the current decision
probabilities as (2P, — 1) and 4P, (1 ~ P;,), respee-
tively. We consequently obtain

P (ylb,) ~N (r,-w,-b,- + 8, Q,;) (16)

in which A refers to the standard normal probability
density function (pdf), and

& = erwj(zpb]. - 1)
i
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Q=3 4P, (1 - B )wirrT +0*R(17)
Ji

Its computational burden is approximately O(K?3), and
as the simulation results show, its performance is nearly
indistinguishable from that of the branch and bound
detector. A basic form of the PDA method is shown
below, detailed description can be found in [11].

PDAF Approach
Step 1:  Sort users according to the user or-
dering criterion proposed for the de-
cision feedback detector in
Step 2: Initialize Py, = 0.5 Vi. Set b =
[lv lr' M 11 1]T;
Step 3: Based on the current values of ij,
update Py, (i # 5) as:
Py, = P{bi = Uy, {F, }j;ei} (18)
Step 4:  If all P, converge, proceed to the
next step. Otherwise, return to
Step 3
Step 5:  Make decisions Vi via,
[ 1 PR,205
b= { -1 B, <05 (19)

4 Simulation Results

In this section, we compare the performance of the al-
gorithms described in the previous section. The prob-
ability of group detection error is computed by varying
the number of users with a fixed SNR. The number of
users tested are 8, 13, 16, 20, and 30. In each case,
the signal energy for each user is generated such that
w; ~ N(4.5,2) and w; € [3,5] ¥i. The number of group
detection errors are used to measure the accuracy of
each algorithm based on 20000 Monte-Carlo runs. All
of the simulations were run on UNIX machines. The
box-constrained quadratic programming is initialized
with the output from the decorrelator. For dsp, Mrang
is set to 20. GDFD(3) denotes that the group size of
the group detection method is set to 3, e.g., |G ez = 3.
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Figure 1: Number of group detection errors vs. Number
of users at 15dB
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From Figure 1, it is clear that the performance of
PDAF and PDAF with bit-flips are nearly identical
to that of the “depth-first” branch and bound algo-
rithm. Moreover, the bit-flip operation improved the
accuracy of PDAF significantly at a modest ((K?)
computational cost. The box-constrained quadratic
programming method is able to perform better than
DFD when the number of users is large. The perfor-
mance of the optimal version of “best-first” branch and
bound algorithm is close to that of “depth-first” branch
and bound, as seen on Figure 2. The CPU time of
the family of branch and bound algorithms is greater
by almost one to two orders of magnitude when com-
pared to the DDFD’s computation time. In compar-
ison, the CPU time of PDAF algorithms is approxi-
mately five times that of DDFD. In Figures 5, 6 and
7, the relationship between the CPU time and the ac-
curacy for each algorithm are shown. It is clear that
DDFD, the “depth-first” branch and bound and PDAF
form an “efficient frontier” for the algorithms. Using
the accuracy and computations as performance meters,
it is evident that the DDFD, PDAF and branch and
bound algorithms dominate the remaining algorithms,
viz., the matched filter, decorrelator, coordinate de-
scent I and II, box-constrained quadratic programming
method, semi-definite method and “best-first” branch
and bound algorithm. This, we believe, is a nice por-



trayal of the trade-off between accuracy and computa-
tional complexity.

5 Conclusion

‘We have portrayed the trade-off between the accuracy
and speed of the various approaches. From the results,
we conclude that an “efficient frontier” is formed by
DDFD, PDAF and branch and bound schemes; that
is, all others are dominated by these algorithms. From
Figures 5, 6 and 7, it is clear that an inaccurate sub-
optimal method such as the decorrelator cannot cross
the “efficient frontier”, although it is quick in making
its decisions. Accurate but time-consuming methods
such as the coordinate descent II, or semi-definite pro-
gramming appear not to cross the frontier either. By
observing these figures, it is clear that the PDAF is
both time-efficient and accurate.
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