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ABSTRACT: 4 new algorithm is proposed for blind
identification of non-minimum phase linear time-
variant channels. It is proved to be globally
convergent in both continuous and discrete
domains. The fast convergence speed makes this

algorithm very useful for tracing a time-variant

channel in mobile communication. Some simulations
are given to show its ftracking ability. Also a
constructive approach is presented to determine the
channel order.

1. INTRODUCTION

In order to solve the non-minimum phase problem,
conventional approaches for blind channel
identification are tend to use the high order
cumulant (HOC) of the signal. Such HOC based
methods, as expected, suffer from computational
intensity, unreliability of high order statistics, and
slow convergence rate. Recently, Dong et allll
proposed a new method using two receivers and a
neural network with orthogonal learning rule for
blind channel identification. The algorithm is
proved to be globally convergent in [1]. However,
due to the difference between continuous domain
and discrete domain, computer simulations show
that divergence occurs when signal amplitude is
relatively large or the learning step is not very small.
Meanwhile, the algorithm needs a precise estimation
of the channel order to design the neural network.
This problem is vital but not discussed in [1].

In this paper, a new learning rule based on the
same network of [1] is proposed. Proofs show that
the algorithm is globally convergent in both
continuous and discrete domains. The convergence
speed of the network with the new rule is much
faster than that of the previous one. Some simulation
results are given to show its tracking ability and its
anti-noise capacity. The problem of channel order
determination is also discussed in this paper. A
method of precise order estimation for multi-channel
is presented after the discussion.

2. BRIEF DESCRIPTION OF THE NETWORK
Suppose that the communication channel can be
described by MA model, the structure of the network
proposed in [1] is shown in figure 1. Where S(k) is

the common input signal sequence, #, (j=1, 2)

0-7803-3679-8/96/$5.00 © 1996 IEEE

describe the two communication channels. x}.(k)
(j =1, 2) is the output sequence of the jth channel
received by the jth semsor. p  (j=1,..2L+2)

present the weights of the neural network whose
output is y . Since both channels can be described as
FIR filters, the channel’s transfer function in the
domain of Z canbe writtenas
L o . 1
n@=yheer =12 o
We assume that the higher order of the two
channels has already been known to be [. The
order determination problem will be discussed later
in section 5. Define two arrays in space R**** here
Xy =[x, (k), . x,(k=L), ~x,(K). ...—x‘(k—L);lr
A=[A(0) - m(L), b, (0) ..h(L)]
and consider the input signal S(k) as random
sequence. The following theorem will then be

obtained.

Theorem 1: The correlation matrix of g, will

have a distinctive zero cigenvalue whose
corresponding  eigenvector will just be the
normalized vector of A, if the following conditions
are satisfied

1. H,(2) and p, () have no common zeros.

2. At least the higher order of the channels is L .
Proof: First, in the aspect of existence,
The relationship between xj(k) and S(k) can be

described as
x (k)= 2ok = () @
Jj=0
L
x, (k)= 2 k= Y (j)
J=0
Then, we have
v Tir L . A L - .
X H= sz(k_f)h(f)"le(k'j)fﬁ(j)go
J=0 =0
If the correlation matrix of X, is denoted as R, a
direct conclusion of (3) will be
RA = B[, %, |1 = E[ %, %, A]=0 “4)
That is to say, R do have a zero cigenvalue while
the normalized vector of A is an eigenvector
corresponding to it.

Second, in the aspect of uniqueness,
¥ and S(k) can be

(©))

The relation between g,
described as



0 R0) -~ k(D) - 0 | k-1
7 - 0 hl(o) hz(L) :
ClA) SAM) e 0 e o
i} _hl(()) "hl(L) 0 :
0 -h0) e A0 s(e-2r)

It has been proved that when condition 1,2 is
satisfied, the transfer matrix will have full column
rank!2]. Since S(k) is random, the space spanned by

X, will have a dimension of 2L +1. Thus the rank

of R will exactly be 21 +1, indicating that the zero
eigenvalue is distinctive. Proof completed.

Considering that R is quasi-positive definite, so
the zero eigenvalue is the minimum eigenvalue of
R. If we call the eigenvector corresponding to the
minimum eigenvalue as “minimum eigenvector”,
the purpose of the neural network is to extract the
unique minimum eigenvector.

Figure 1: Structure of the network proposed in [1]

3. LEARNING ALGORITHM AND ANALYSIS
OF CONVERGENCE IN CONTINUOUS
DOMAIN

We propose the new learning algorithm using anti-
hebbian rule in continuous domain.

B=bl-yi+ L P~ -1)P ©)
17|

where 5, e R are both positive. The convergence of
the network will then be discussed in both aspects of
amplitude and direction.

Considering - 7% = ¥7p, we come to the
following theorem.
Theorem 2: If p is an eigenvector of R and
B =15 then p is an equilibrium point of the
network.
Proof: Denote the corresponding eigenvalue of p, as

i, when p - p we have

P = b{-RP, +[BTRB]R} = b{-2 P, + 4B} =0 )
Proof completed.

Next, we will give another theorem that ensures

the convergence in the aspect of direction.
Theorem 3: If P can be expressed as b{~ X + kf’}

(k is an arbitrary scalar), the werght vector P will

converge to the minimum eigenvector of R in the
aspect of direction.
Proof: Assume ¢,..C, to be the » normalized

eigenvectors of R, while their corresponding
eigenvalues are denoted as 4 ,..i, respectively.

Without losing generality, we assume 4 to be the
minimum one. If ¢ is distinctive, we can give the
expansion of P on ¢,...C, as

3 e ®)
Meanwhile, if 4 =0, define £ = 07 , thus, from (9)
i an
we obtain
_di _Vda ¢ da

—4———‘—"=—b(l "ﬂn)‘f, (9)

dt a,dt a, dt
Since ¢ being distinctive and a, #0 can always be
satisfied in practice, and from the above assumption,
i,-A,>0, Wecan get g 0 when r— . That is

to say, vector P have the tendency to converge to

the minimum eigenvector in the aspect of direction.
Finally, in the aspect of amplitude, we have

following theorem to affirm convergence.

Theorem 4: With the learning rule of (6), if

5>0,a>0, then tptzzl will be the only stable

solution of the neural network.
Proof: Because
47 ~2af|P - 1) (10)
dt

=12
from 7| -0 We can get the two solutions of the
dt

network to be |p" -1 and ip!z -¢- It can be casily
proved | p" - ¢ is not a stable solution. When come
to lp‘z -1, we define Q=!f’|z-1 and construct a

Lyapunov function  _ 1 0 then we have
2

E 0% - apalp -1) 18] an
o =0% 2ba(|P1 1) 1P <0
So 1 1‘>|2 =1 is the only stable solution.

With the above theorems, we have proved in
continuous domain that with the learning algorithm
(6) the weight vector P will globally converge to the
normalized minimum eigenvector of R.

4. DISCRETE LEARNING ALGORITHM AND
CONVERGENCE DISCUSSION

In this section, we will do our discussion in the
discrete domain. As given in [3], how to select a
learning step in practice is a very difficult problem.
In the following passage, we will first propose our
discrete learning algorithm and then give a thorough
analysis of the network’s convergence property. It
will be seen from the proof that if we apply the
learning rule of continuous domain to discrete



domain directly, convergence will nc longer be
affirmed.

Suppose 0<b<1, we define |P(t)| -1,
o
_ li(')r _ ‘y’ _ Since ¢<1 and g>o,
P0)
- 2 can always be satisfied. Then,
P e >
¢ (|Pf +1)a

our discrete learning rule can be written as

= = 1-&) 5 J,’: Bl -5
P(r+1) P(t)+b( . )[ yX(t)JrIP(th P(r)] £R(t)
Here 0<b<1. Similar to the discussion in section
IIT, the convergence property will be analyzed in
both aspects of amplitude and direction.

First, in the aspect of direction, we denote the
angle between B(r) and X(r) in R¥** as &) and the

angle between P(t+1) and X(r) 38 gt +1)- To extract

(12)

the minimum eigenvector, or) 7 is what we
2

expect. If we define

1P7( e+ 10X (o) / (13)
cos’ (1 +1) ’P(r + l)|

b 2
Ab)= cos’ 0(!) ’13’(:))?(!)‘ :|
PGy
Then pp)<1 should be ensured for every learning

step to make the network converge directly to the
final result. Define y B) and

0%

considering A" =¢ =| ,{»” sin’ g(r)» We can get from
(12)

_{PEY (-7 (1-b)
ob)= /_ §)I[|p(t)1 . bzy%:l (14)
Slﬁ(’){ (1“%0{2 - (1——b)2 <1

Especially when =1, we get o(b) =05 indicating

A=X(f)-

the network has reached its highest convergence
speed in the aspect of direction.

In the aspect of amplitude, the analysis becomes
more complicated to some extend. Here we just give
the relation between ) p(,+1)‘2 and | p(,)'z by

Obviously, what we have already gotten is

|P( ){ <( :pi ;:) (1+bzctg 6(t)) 1+b*cg*dt)

Thus, an upper bound of the amplitude has already
been given. Then let us consider the lower bound. If

IP(; ¥ 1)|2 <1, from (15), we have

[B(r+1)f = ——A

(16)

[P(e+1) > |P(ef (1+ b2cig?6(1) amn
indicating that the amplitude has a tendency of
increasing. Meanwhile, ]p(Hl)ll >1, due to

(15),(16)
. 2 {1+ b’ctg’ﬂ(t)) (18)
Plt+1) 2 ( L a2l
e 0
can be obtained. (17),(18) assured us that the lower
bound of the amplitude should finally be 1. Since

6(1)->§, SO (1+b2crg’ A1) > 1 surely  holds,

accordingly affirming the convergent point of the
amplitude to be 1.

Now we have proved the globally convergent
property of the discrete learning rule(12).

5. CHANNEL ORDER DETERMINATION
From Theorem 1 we can see that accurately
estimating the channel order is vital to our proposed
algorithm. Some HOC based methods for order
determination have already been proposed before,
but computer simulations show that they often fail to
ensure a precise order estimation. In this section, we
will present an approach not appealing in
appearance but efficient to determine the higher
order of the channels.

Suppose we have two neural networks, each is
the same as the one shown in Fig. 1. The two
networks are both designed according to a supposed
order I, and their inputs are the same (jr(,)). The

only difference between them is the initial condition.
On one hand, if the supposed order L is higher,
from (5) we can see the minimum engivector of R
will no longer be distinctive. Since the two neural
networks are different in initial condition, their
learning result will also be different. So the
crosscorrelation value of the two weight vectors will
have a large probability to be small, at least not too
high to be above 0.95 for example. (Though the
possibility of misjudgment is very small, we can
simply calculate twice to reduce the probability.) On
the other hand, if the supposed order L is lower, ¢,

will then span the entire space of dimension 27 +2.
Though the minimum eigenvalue may no longer be
zero, most probably, the minimum eigenvector will
remain distinctive. As we have discussed before, the
two networks will still converge to the normalized
minimum eigenvector. Their crosscorrelation of
weight vector will keep a very high value close to 1.
From this phenomenon, whether the supposed order
is higher or not can be easily judged. That will be
enough for us to find the proper order.

We design the two neural networks in an
arbitrarily high order first, then let them have a
downward search to find the proper channel order.
Meanwhile, every time when the current order 7. of
the two NN (neural network) is not higher than that



of the real channel, we increase the design order to
L+1. Thus, if the higher order of the physical
channels is Lys the design order of the two NN will

finally oscillate between [, and [, +1. Of course,

the proper order can be picked out easily. Because of
the avoiding of high order statistics calculation and
the high convergence speed of the algorithm, our
order determination method is very accurate and
efficient to be put into practice. Furthermore, it can
even trace the channel order varying in a relatively
low speed.

6. SIMULATION RESULTS

Without losing the high convergence speed, we add
a moving average filter behind each neural network
to reduce the effect of noise on the output. The final
construction of the network with order
determination part is shown in Fig. 2. Where NN1 is
used to identify the coefficients while NN2 and NN3
are used to estimate the channel order.

st [P o 0@
*nmse
Ha & 1 xa(k)
i& irr‘ 3

Neaural Neaural Network
Unit 3 4
B, B,

20 point moving | |20 point moving
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Figure 2: structure of the network in practice

(P, B,, P, respectively present the weight vector
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of the neural networks)

In this section, two simulations are given. The
inputs £(1) of the neural networks are the outputs of

two channels with PAM scheme driven by a
randomly distributed 4-ary transmitting symbols
S(k)- According to the analysis in section IV, we let

b=1 to set the convergence rate to its fastest point.
In each simulation, we initiate the weights of the
neural networks by a normalized random vector. For
convenience, we omit the order determination course
in the following simulations.
Simulation I: The actual
responses are set as

A =[10 0366 -0183 -0129]"

A, =[10 -02 -03 04
We reduce SNR of the receivers to 14db. Line I and
II in Fig. 3 show the correlation between the
expected result and B(r) gotten by the new learning
rule and that of [1] respectively.
Simulation 2: The tracking ability of the network is
simulated by setting the symbol rate at 300kHz with
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Figure 3: Network performance of different
learning algorithm

channel Doppler spread 100Hz, corresponding to a
speed of a mobile receiver up to about 70mph. For
PAM signals, the time-varying channel coefficients
are simulated by low frequency Gaussian noise with
the bandwidth equal to the Doppler spread. The
trajectories of the first three coefficients of the first
channel are given by the dotted lines in Fig. 4, while
their estimations are given by the solid lines.
i
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Figure 4: The trajectories of channel coefficients
and their estimation

7. CONCLUSIONS

A new algorithm for blind 2-channel identification
is proposed. Proof and computer simulations show
its high convergence speed and anti-noise capacity.
It is very efficient in tracking time-variant MA
channels in mobile communication.
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