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Abstract – The Probabilistic Data Association

(PDA) method is extended to multiuser detection

over asynchronous Code-Division Multiple Access

(CDMA) communication channels. PDA models the

undecided user signals as binary random variables.

By approximating the Multiple Access Interference

(MAI) as Gaussian noise with an appropriately eval-

uated covariance matrix, PDA updates the probabili-

ties associated with user signals iteratively. A sliding

window processing is used during the updates in or-

der to avoid considering the entire data. Computer

simulations show that the probability of group detec-

tion error of the proposed PDA method is very close

to the performance lower bound. The computational

complexity of the PDA detector is O((2h + 1)K3) per

time frame where K is the number of users and 2h+1

is the width of the processing window. Relations be-

tween the proposed PDA detector and the PDA de-

tector for synchronous CDMA is also shown.

I. Introduction

Due to the NP-hard nature of the general multiuser de-
tection problems in Code-Division Multiple Access (CDMA)
communications [1], suboptimal algorithms that provide re-
liable decisions and ensure polynomial computational costs
have been widely studied for over fifteen years. Linear de-
tectors and decision-driven multiuser detectors are the two
most popular categories [2]. The multiuser detectors among
these two categories include the decorrelator [1], the Min-
imum Mean Square Error (MMSE) detector [3], the Deci-
sion Feedback (DF) detector [4] [7], the multistage detector
[5] and the group detector [6] [9]. Compared with the con-
ventional matched-filter detector, these sub-optimal detectors
provide significantly better accuracies and the overall com-
putational complexities are O(K2) where K is the number
of users. However, in many cases, there is still a large gap
between the performances of these detectors and that of the
optimal Maximum Likelihood (ML) detector.

Recently, the Probabilistic Data Association (PDA) detec-
tor [8] and the semidefinite relaxation detector [10] have
been proposed recently for the multiuser detections of symbol-
synchronous CDMA. The probabilities of group detection er-
ror of these detectors are very close to that of the optimal
ML detector. Although the complexities of both detectors are
in the order of O(K3), the computational cost of the PDA
method is much less than the semidefinite relaxation detec-
tor. Furthermore, since PDA works with probabilities and
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gives “soft” outputs, it is naturally flexible and relatively easy
to extend to other more complicated CDMA systems.

In this paper, we extend the PDA method to the multi-
user detection in asynchronous CDMA communications. We
first treat each bit in asynchronous CDMA as transmitted by
different fictitious users and view aK-user M-frame asynchro-
nous CDMA system as a KM-user synchronous system [2].
By exploiting the special structure of the correlation matrix,
the PDA multiuser detector for synchronous CDMA is sim-
plified and applied to the equivalent synchronous system. A
truncated processing window is introduced to avoid consider-
ing the entire transmission data. This is further extended to a
sliding window version and directly follows the proposal of the
PDA multiuser detector for asynchronous CDMA. Simulation
results for both regular and overloaded systems are presented
to show the near optimal performance of the proposed detec-
tor.

The rest of the paper is organized as follows. The sys-
tem model and the PDA detector for synchronous CDMA are
briefly reviewed in section II. The system model of asynchro-
nous CDMA is given in section III. The PDA method is ex-
tended to the asynchronous case by viewing the K-user M-
frame asynchronous system as aKM -user synchronous system
and exploiting the special structure of the correlation matrix.
By further introducing a sliding window processing, the PDA
method for asynchronous CDMA is formalized in section IV.
Simulation results are given in section V and the paper con-
cludes in section VI.

II. Review of PDA Multiuser Detector for

Synchronous CDMA

A discrete-time equivalent model for the matched-filter out-
puts at the receiver of a K-user synchronous CDMA channel
is given by the K-length vector [2]

y = RWb+ v (1)

where R is the symmetric matrix with unity diagonal compo-
nents; W is a diagonal matrix whose k-th diagonal element,
wk, is the square root of the received signal energy per bit of
the k-th user; b ∈ {−1,+1}K denotes the K-length vector of
bits transmitted by the K active users; and v is a real-valued
zero-mean Gaussian random vector with a covariance matrix
σ2R.

Suppose R = L
T
L is the Cholesky decomposition of the

correlation matrix and L is a lower triangular matrix. The
white-noise model of the system is obtained by multiplying
(LT )−1 on both sides of (1).

ỹ = LWb+ ṽ (2)

where ỹ = (LT )−1y, and ṽ = (LT )−1v is a zero mean white
Gaussian noise with covariance matrix σ2I.



When all the user signals are equally probable, the optimal
solution of (2) is the output of a ML detector

ΦML : b̂ = arg min
b∈{−1,+1}K

‖LWb− ỹ‖22 (3)

Generally, obtaining the ML solution is NP-hard [1] unless
the signature correlation matrix has a special structure.

The PDA method suggests that we treat the decision vari-
ables b as binary random variables. For any user i, associate
a probability Pbi with user signal bi to express the current
estimation of the probability that bi = 1. Now, for an arbi-
trary user signal bi, treat the other user signals bj, (j �= i) as
binary random variables and

∑
j �=i

ljwjbj + ṽ as the effective

noise, where lj denotes the jth column of L. Consequently,
P (bi = 1|ỹ,{Pbj}j �=i) can be obtained from (2); this serves as
updated information for user signal bi. The multistage PDA
detector for synchronous CDMA is presented as follows.

(1) Sort users according to the user ordering criterion pro-
posed for decision feedback detector in [7].

(2) ∀i, initialize the probabilities as Pbi = 0.5. Initialize the
stage counter k = 1.

(3) Initialize the user counter i = 1.

(4) Based on the current value of Pbj (j �= i) for user i,
update Pbj by

Pbi = P{bi = 1|ỹ,{Pbj}j �=i} (4)

(5) If i < K, let i = i+ 1 and goto step (4).

(6) If ∀i, Pbi has converged, goto step (7). Otherwise, let
k = k + 1 and return to step (3).

(7) ∀i, make a decision on user signal i via

bi =

{
1 Pbi ≥ 0.5
−1 Pbi < 0.5

(5)

In step (4) of the above procedure, we define the effective noise
as

Vi =
∑
j �=i

ljwjbj + ṽ (6)

and approximate it by a Gaussian noise with matched mean
and covariance, which are

E[Vi] =
∑
j �=i

ljwj(2Pbj − 1)

Cov[Vi] =
∑
j �=i

4Pbj(1− Pbj)w
2
j ljl

T
j + σ

2I (7)

Computationally efficient numerical schemes for updating
(7) are presented in [8].

III. PDA Multiuser Detector for

Asynchronous CDMA

Similar to the system model of (1), the asynchronous
CDMA system can be described in the z domain by [2]

y(z) =R(z)Wb(z) + v(z) (8)

where v is a colored Gaussian noise with zero mean and co-
variance σ2R(z). The signature correlation matrix R(z) is
now composed of three parts [2]

R(z) = R[1]T z +R[0] +R[1]z−1 (9)

Here R[0] is a symmetric matrix with unity diagonal compo-
nents and whose off-diagonal components represent the cor-
relation between user signatures at the same time index; and
R[1] is a singular matrix whose components represent the sig-
nature correlations relating to successive time frames. Denote
the component on the ith row and jth column of R[1] by
R[1]ij: since user signal i in time frame n cannot simultane-
ously be correlated with that of j in time frame n− 1 and in
time frame n+ 1, we have R[1]ijR[1]ji = 0. It is shown in [4]
that the correlation matrix R(z) can be factored as

R(z) = (F[0]T +F[1]T z)(F[0] +F[1]z−1) (10)

where F[0] is a lower triangular matrix, and F[1] is singular.
Applying the anticausal feed-forward filter (F[0]T +F[1]T z)−1

to both sides of (8), we obtain the white noise model [4]

ỹ(z) = (F[0] +F[1]z−1)Wb(z) + ṽ(z) (11)

where ỹ(z) = (F[0]T + F[1]T z)−1y(z) and ṽ is a white
Gaussian noise vector with zero mean and covariance matrix
σ2I. The corresponding time-domain representation of the
white noise model is

ỹ(n) = F[0]Wb(n) +F[1]Wb(n− 1) + ṽ(n) (12)

Suppose there are overall M time frames in the transmis-
sion. We can view the asynchronous system as an MK-user
synchronous system and rewrite (12) as

Ỹ = L̃W̃b̃+ Ṽ (13)

Here

Ỹ = [ỹ(0)T , ỹ(1)T , . . . , ỹ(M)T ]T

b̃ = [b(0)T ,b(1)T , . . . ,b(M)T ]T

Ṽ = [ṽ(0)T , ṽ(1)T , . . . , ṽ(M)T ]T

W̃ =

[
W 0 . . .

0 . . . 0
. . . 0 W

]
(14)

and

L̃ =




F[0] 0 . . . . . .

F[1] F[0] 0 . . .

0 . . . . . . . . .

. . . 0 F[1] F[0]


 (15)

is the Cholesky decomposition matrix of the equivalent syn-
chronous system.

A. Direct Extension

Apparently, the computational cost of directly apply-
ing the PDA method to the equivalent MK-user system is
O{(MK)3}, which can be very high if M is not small. Fortu-
nately, due to the special structure of the Cholesky decompo-
sition matrix L̃, the probability update in the PDA method
can be simplified.

Consider updating the probability associated with user i in
time frame n. From (12), we have

Pbi(n)

= P

{
bi(n) = 1

∣∣∣Ỹ,{Pbj(n)}j �=i,{Pbl(k)}k�=n

}
= P

{
bi(n) = 1

∣∣∣∣ ỹ(n), ỹ(n+ 1)
{Pbj(n)}j �=i, {Pbl(k)}k=n−1,n+1

}
(16)



Therefore, to update the probability Pbi(n), only two observa-
tion vectors, ỹ(n), ỹ(n+ 1), are required. The corresponding
observation model from (12) is[

ỹ(n)
ỹ(n+ 1)

]
=

[
F[0]
F[1]

]
Wb(n) +

[
F[1]Wb(n− 1)
F[0]Wb(n+ 1)

]

+

[
ṽ(n)

ṽ(n+ 1)

]
(17)

For user signal bi(n), define the effective noise as

Vi(n) =
∑
j �=i

[
fj[0]
fj[1]

]
wjbj(n) +

[
F[1]Wb(n− 1)
F[0]Wb(n+ 1)

]

+

[
ṽ(n)

ṽ(n+ 1)

]
(18)

where fj[0] and fj [1] denote the jth columns of F[0] and F[1],
respectively. Consequently, we have

E[Vi(n)] =
∑
j �=i

[
fj[0]
fj[1]

]
wj(2Pbj(n)− 1)

+

K∑
k=1

[
fk[1]wk(2Pbk(n− 1)− 1)
fk[0]wk(2Pbk(n+ 1)− 1)

]

Cov[Vi(n)] = σ
2I

+
∑
j �=i

4Pbj(n)(1− Pbj(n))w
2
j

[
fj[0]
fj[1]

][
fj[0]
fj[1]

]T

+

K∑
k=1

4Pbk(n− 1)(1− Pbk(n− 1))w2
k

[
fk[1]fk[1]

T 0
0 0

]

+

K∑
k=1

4Pbk(n+ 1)(1− Pbk(n+ 1))w2
k

[
0 0
0 fk[0]fk[0]

T

]
(19)

ApproximatingVi(n) by a Gaussian noise with matched mean
and covariance, it is easy to see that the computational load
for updating Pbi(n) is O(K2). Therefore, the overall compu-
tational cost of the PDA detector is O(MK3), i.e., O(K3) per
time frame, the same as in the case of synchronous CDMA.

B. PDA with Sliding Processing Window

As described in section II, PDA updates the associ-
ated probabilities iteratively. Therefore, in the above batch
method, PDA can do iterations and make decisions on user
signals only when the entire transmitted data has been re-
ceived. This can consequently cause significant delays at the
receiver.

Suppose we are only interested in decisions on user signal
vector b(n). Consider a truncated processing window that
contains user signal vectors b(m), (n − h ≤ m ≤ n + h),
i.e., the width of the processing window is 2h+1. Due to the
limited error propagation in practical systems, it is reasonable
to assume that, if h is large enough, the effects of values of
user signals outside the processing window on the decisions
of b(n) are negligible. Therefore, when making decisions on
b(n), one can apply the PDA method and perform iterations
only within the truncated processing window.

Notice that the processing windows of user signals in suc-
cessive time frames differ only slightly. Hence, we can use

the probabilities from a processing window as the initial con-
ditions of the PDA method for the next processing window
to further simplify the iterative updates. This modifies the
truncated-window PDA to a sliding-window PDA. The de-
tailed procedure is described below:

(1) Sort users according to the user ordering and time la-
beling criterion proposed for decision feedback detector
in [11].

(2) ∀i and ∀n, initialize the probabilities as Pbi(n) = 0.5.
Initialize the window counter k = 1.

(3) Initialize the time frame counter n = max{1, k − h}.

(4) Initialize the user counter i = 1.

(5) Based on the current values of the associated probabil-
ities, update Pbi(n) according to (16).

(5) If i < K, let i = i+ 1 and goto step (5).

(6) If n < min{M,k + h}, let n = n+ 1 and goto step (4).

(7) If k > h, ∀i, make a decision on user signal bi(k−h) via

bi(k − h) =

{
1 Pbi(k − h) ≥ 0.5
−1 Pbi(k − h) < 0.5

(20)

(8) If k < M+h, let k = k+1 and goto step (3). Otherwise,
stop.

The relations between the indices i, n and k in the above
procedure are further illustrated in Figure 1.

Figure 1: Illustration of the sliding-window PDA

Apparently, the computational complexity of the above
PDA detector is O((2h+ 1)K3) per time frame.

IV. Simulation Results

In this section, we compare the performances of the Decor-
relator, the DF detector and the PDA detector in various sit-
uations. The optimal user ordering and time labeling rule
proposed in [11] is applied to both the DF and the PDA de-
tectors. By clairvoyantly plugging the true values of b(n− 1)
and b(n+1) into (17) and applying the ML detection for syn-
chronous CDMA, a performance lower bound is also provided.

Example 1: In the first 3-user example, the correlation
matrices R[0], R[1] and the square roots of user signal powers
W are randomly chosen as

R[0] =

[
1.0 −0.27 −0.49

−0.27 1.0 0.55
−0.49 0.55 1.0

]



R[1] =

[
0 0 0

−0.06 0 0
0.16 −0.01 0

]

W = diag(4.48,4.36,4.1) (21)

The width of the processing window for the PDA detector
is chosen to be 3. Figure 2 shows the performance comparison
of different algorithms obtained from a simulation of 1000000
Monte-Carlo runs. Similar to the synchronous case [8], the
probability of error of the PDA detector is very close to the
performance lower bound.

Figure 2: Performance comparison, 3-users, 1000000

Monte-Carlo runs.

Example 2: The second example is an overloaded system
with 30 users and 15-length Gold codes as signature sequences.
Although the number of users is increased to 30, the width
of the processing window for the PDA detector remains at 3.
The time delays of the user signals are random and uniformly-
distributed within a symbol duration and we use the system
model introduced in [12] to generate the signature correlation
matrix. The square roots of user signal powers are generated
randomly by wi ∼ N(4.5,4) (N(.) represents the Gaussian
distribution) and are limited within the range of [3,6]. Figure
3 shows the performance comparison of different detectors.
The performance of the PDA detector is significantly better
than the decorrelator and the DF detector. It is also close
to the performance lower bound (Notice that the performance
lower bound is not necessarily reachable even by the optimal
ML detector).

V. Conclusion

The PDA method proposed in [8] has been extended to the

multiuser detection over asynchronous CDMA communication

channels. With a sliding window of width 2h + 1, the com-

putational complexity of the proposed PDA detector is shown

to be O((2h+ 1)K3) per time frame where K is the number

of users. Simulation results show that the performance of the

PDA detector, in terms of the probability of group detection

error, is significantly better than the decorrelator and the DF

detector; and is also close to the performance lower bound in

both regular and overloaded systems.
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