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Abstract—We address the problem of estimating mode parame-
ters from noisy observations of a linear combination of the corre-
sponding modes. This problem arises in line spectrum estimation,
vibration analysis, speech processing, system identification, and di-
rection of arrival estimation. Our results differ from standard re-
sults of modal analysis to the extent that we consider co-prime sam-
plings in space, or equivalently co-prime samplings in time. Our
main result is a characterization of the orthogonal subspace for
this problem. This is the subspace that is orthogonal to the signal
subspace spanned by the columns of the generalized Vandermonde
matrix of modes in co-prime samplings. This characterization is
derived in a form that allows us to adapt modern methods of sub-
space signal processing to co-prime sampled signals. Several nu-
merical examples are presented to demonstrate the application of
the proposed modal estimation method. We state and prove theo-
rems on identifiability of the modes and calculate a Cramér-Rao
bound that allows us to analyze the performance of co-prime ar-
rays that are subsamplings of uniform linear arrays of the same
apertures.

Index Terms—Co-prime array, Cramér-Rao bound, modal anal-
ysis, orthogonal subspaces.

I. INTRODUCTION

I N this paper, we investigate the problem of estimating the
parameters of damped complex exponential modes from the

observation of co-prime samples of their weighted sum. This
problem arises in many applications such as spectrum analysis,
speech processing, system identification, and direction of arrival
(DOA) estimation.
There is a vast literature on modal estimation methods from

uniformly sampled time or space series data, starting with the
work of Prony [6]. Other methods include approximate least
squares or maximum likelihood estimation [7], [8], reduced
rank linear prediction [9], [10], MUSIC [11], and ESPRIT
[12]. While there are extensions of MUSIC and ESPRIT for
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direction of arrival estimation from non-uniformly sampled
data (see, e.g., [13]–[17]), Prony-like methods have mainly
been developed for uniformly sampled data, and extending
such methods to non-uniformly sampled data has not received
much attention.1
Non-uniform sensor array geometries, without aliasing am-

biguities, have a long history in sensor array processing, dating
back to minimum-redundancy arrays [20]. The introduction and
analysis of nested arrays in [21] and co-prime arrays in [1]–[5]
have created renewed interest in such geometries. A co-prime
array consists of two uniform subarrays, where interelement
spacings (in units of half-wavelength) of the two subarrays are
co-prime. The co-prime property allows for the resolution of
aliasing ambiguities as reported in [1]–[5].
Measurements in a co-prime array may be used directly for

inference, or they may be used indirectly to fill in the entries
of a Toeplitz covariance matrix in a difference co-array in a
second-order measurement model [1]–[5]. The direct case has
been studied in [3], [4], where the authors establish identifia-
bility theorems for identifying undamped modes, with non-sin-
gular covariancematrix of themode amplitudes, usingMUSIC.2
The indirect methodology has been studied in [1], [2], and [5],
and applies when the modes to be identified are undamped,
and mode amplitudes are uncorrelated. Under these assump-
tions, the authors of [1], [2], and [5] prove theorems that show
that sources may be identified from sensor elements.
These are identifiability results. In other words, there is no con-
sideration of model fitting to a sample covariance matrix com-
puted from a finite number of noisy samples. The caution here is
that these identifiability theorems speak only to well-posedness
of models. They do not speak to sensitivity to model mismatch
or to performance when a model is to be identified from a se-
quence of noisy array snapshots.
Performance (in white noise) of co-prime arrays has been

studied and compared with that of a ULA in [3] and [4], for
the case where the number of sensors in the co-prime array
equals the number of sensors in the ULA, but the aperture of
the co-prime array is much larger than the aperture of the ULA.
In this case, the Cramér-Rao bound (CRB) for DOA estimation
favors the co-prime array. This analysis is relevant in applica-
tions where a long aperture is feasible (e.g., in radio astronomy).
In this paper, we derive identifiability theorems and algo-

rithms for modal analysis with co-prime arrays, in a first-order
measurement model. Obviously, difference co-array processing

1In [18] and [19], the authors develop interpolation methods for approxi-
mating uniformly spaced samples from non-uniformly taken samples. Prony-
like methods are then used with the interpolated samples for modal analysis.
These methods are quite different from methods and results reported in this
paper, and are not addressed to co-prime sampling.

2These results can easily be generalized to include damped modes.
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is ruled out and our approach uses the co-prime array data di-
rectly. Our assumptions are different from those of [1]–[5]. In
themodel considered in this paper, modesmay be damped or un-
damped, mode amplitudes need not be uncorrelated, and snap-
shots are not necessarily plentiful. In fact we may have only a
single snapshot. Performance is bounded with CRBs for mode
parameters.
We consider two specific cases of co-prime sensor arrays.

Both of these geometries may be viewed as subsampled versions
of a dense uniform line array of the same aperture, with uniform
half wavelength spacings.3 Specifically, we first consider a spe-
cial co-prime array, which we call the restricted co-prime array.
This array may be thought of as a uniformly subsampled version
of a dense uniform line array, plus an extra sensor that is posi-
tioned at a location on the array that allows us to resolve aliasing
ambiguities. Then we consider the conventional co-prime array
which consists of two uniform subarrays, each obtained by uni-
formly subsampling a dense uniform line array with co-prime
subsampling factors.
In each case, we determine a parameterization of a sub-

space that is orthogonal to the signal subspace spanned by the
columns of a generalized Vandermonde matrix of the modes
in a co-prime array. This parameterization is of a form that is
particularly suitable for utilizing methods based on subspace
signal processing (see [7]–[12], and [22]), for estimating the
modes.
For performance analysis, we study CRBs, error concentra-

tion ellipses, and mean-squared errors (MSEs) in the case where
the aperture of the co-prime array is specified to equal the aper-
ture of a ULA, but many fewer sensors are used in the co-prime
array than would be used in the ULA. This is the typical case
in radar and sonar, where the limiting factors are aperture and
observation time. Although we present our numerical results in
the context of sensor array processing, all of our results apply to
the estimation of complex exponential modes from time series
data.
Remark 1: Naturally, for a fixed aperture, any subsampling

in space results in a reduction in effective signal-to-noise ratio
(SNR), by the subsampling factor, and leads to a loss in esti-
mation performance. Our studies in [23]–[25] address the ef-
fects of compression and subsampling on Fisher information,
the Cramér-Rao bound, and the probability of a swap between
signal and noise subspaces. Assuming that the loss in SNR due
to subsampling has tolerable effects on estimation or detection,
the question is how can subspace methods of linear prediction
be adapted to the estimation of mode parameters in a co-prime
array?

II. PROBLEM STATEMENT

Consider a non-uniform line array of sensors at locations
in units of half wavelength in space.

We assume, without loss of generality, that . Suppose
the array is observing a weighted superposition of damped
complex exponential modes. These modes are determined by
the mode parameters , where the

3If we were sampling in time, then the dense sequence of uniform samples
would have had spacings equal to the Nyquist interval.

th mode has a damping factor and an electrical angle
. Suppose the array collects temporal snapshots.

Then, the measurement equation for the th sensor (located at )
may be written as

(1)

where is the snapshot index, denotes the amplitude (or
weight) of the th mode at index , and is themeasurement
noise at sensor . In vector form, we have ,

(2)

where is the array
measurement vector,
is the vector of mode amplitudes at index

is the noise vector at index , and
is a generalized

Vandermonde matrix of the modes , given
by

...
...

. . .
...

(3)

Our view is that modal analysis is addressed to the identification
of physical mode parameters .
According to any reasonable measure on the complex plane, the
probability that any such set would produce a matrix
that is rank deficient is zero, for proper choice of sensor loca-
tions. Therefore, we assume throughout that modes are not so
specially drawn that the sampling pattern leaves rank
deficient. See [26] for a discussion of this issue.
We consider the case where is free to change with ,

and assume that the ’s are i.i.d. proper complex normal
with mean zero and variance . This means that the measure-
ment vectors are i.i.d proper complex
normal with mean and covariance . Under this
measurement model, the least squares estimation and the max-
imum likelihood estimation of the modes and mode
weights are equivalent and may be posed as

(4)

The least squares estimate of is

(5)

where is theMoore-
Penrose pseudoinverse of . The least squares estimate of
the modes is obtained as (see [27], pp. 245–246)

(6)
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Fig. 1. The signal subspace and the orthogonal subspace
. In the figure, we have dropped and have

simply used , and .

Here is a full column rank matrix that satisfies

(7)

and the projection matrices and
are the orthogonal projections onto the column spans of
and , respectively. We denote these column spans by the
subspaces and . We call the signal
subspace and the orthogonal subspace. We assume
throughout this paper that is a full column rank matrix,
thus has dimension and has dimension

. Therefore, the nullspace of has dimension .
Equivalently, . See Fig. 1.
It is important to note that this deterministic least squares for-

mulation leads to the objective function (6) for the mode pa-
rameters , but it does not introduce the mode
weights into the objective function.
So it is the maximum likelihood or least squares objective func-
tion for the mode parameters in a joint least
squares estimation . If we were interested
in the mode weights, they could be estimated using (5). When
the amplitudes are given a multivariate
normal probability law, then these parameters are marginalized
out and replaced by their covariance, resulting in a stochastic
rather than deterministic least squares problem.
Theorem 1: Let ,

and , for , in (2). Then
the least squares problem in (6) uniquely identifies any
distinct modes, if and only if the matrix

has full column
rank for all possible distinct modes . Thus

.
Proof: See Appendix A for a proof in the style of [28].

Remark 2: In the proof of Theorem 1, the number of modes,
, is less than or equal to . Moreover, for , the
number of snapshots, , is greater than or equal to . So,

. However, the proof may be modified for a
single snapshot , provided that no element of

is zero, meaning no coordinate of the subspace is
excluded in the construction of . This condition holds with
probability one, because for any reasonable probability measure
on the complex plane the probability that a mode amplitude is
zero is equal to zero. In this case, the least squares problem in (6)
uniquely identifies any distinct modes, if and only if the
matrix has full column rank

for all possible distinct modes . Thus . A
sketch of the proof for this case is given in a paragraph after the
proof of Theorem 1 in Appendix A. Naturally, the least squares
problem in (6) uniquely identifies any distinct modes from

snapshots, if the mode amplitudes of at least one
of the snapshots has no zero element, and the matrix

has full column rank for all
possible distinct modes . Thus .
For a given array geometry, the basis matrix given in

(3) and the subspace are fully characterized by the
modes . This subspace, parameterized by
, is an element of a Grassmanian manifold . However,
it is not easy to solve the least squares problem (6) using this
characterization. Alternatively, for an -element uniform line
array, a particular -parameter characterization of ex-
ists that makes solving (6) relatively simple [6]. We will review
this characterization in Section III. Then, we derive parameter-
izations of for two specific array geometries: restricted
co-prime and co-prime.
• Restricted co-prime array: In this case, the location set
is given by , where
and are co-prime integers, that is, , and .
This array may be thought of as two subarrays. The first is a
subsampled version, by a factor , of an -element
uniform line array (ULA) with half wavelength inter-ele-
ment spacings. The second is a single sensor at location
in the line array such that and are co-prime. We note
that need not be greater than .

• Co-prime array: In this case, , where

, and . Again
the array is composed of two subarrays. The first is an

-element ULA with interelement spacings of and
sensor locations . The second is a -element
ULA with interelement spacings of and sensor
locations . This co-prime geometry was introduced in
[1] and [2].

Remark 3: In both cases above, the co-prime constraint guar-
antees that aliasing ambiguities due to subsampling can be re-
solved [3], [4]. This is due to the invertibility of the array man-
ifold for co-prime arrays (see Theorem 1 of [4]). Although a re-
stricted co-prime array can be viewed as a special case of a con-
ventional co-prime array, we consider them separately, because
it is easier to first derive a suitable characterization of the or-
thogonal subspace for a restricted co-prime array, and then
generalize it to a co-prime array. Our parameterizations are not
minimal. They involve parameters, instead of , but as we
will show in Section IV, they are specifically designed to utilize
modern subspace methods of modal analysis.
Remark 4: By now it should be clear that , and there-

fore its parameterization, depend on both the mode vector and



2432 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 64, NO. 9, MAY 1, 2016

the array geometry . Therefore, from here on, we may drop
and simply use , and .

III. CHARACTERIZATION OF THE ORTHOGONAL SUBSPACE FOR
UNIFORM LINE ARRAYS

Consider a uniform line array of equidistant sensors lo-
cated at , taking measurements from
the superposition of modes as in (2). The signal subspace in
this case is characterized by the Vandermonde matrix in (3)
with . Assume for . To characterize the
orthogonal subspace , consider the polynomial :

(8)

which has as its complex roots. The
dimensional orthogonal subspace is spanned by the
linearly independent columns of :

. . . . . .
...

...
. . . . . . . . .

...
(9)

Since , and the columns of are linearly indepen-
dent, and span orthogonal subspaces and in .
The above parameterization is at the heart of subspace methods
ofmodal analysis such as IQML,MUSIC and ESPRIT (see, e.g.,
[6]–[12]).
Using the -parameter representation for in (9) we may

re-write the least squares problem of (6) as

(10)

The polynomial is then formed from
the estimate in (10), and its roots are taken as the mode esti-
mates .

IV. CHARACTERIZATION OF THE ORTHOGONAL SUBSPACES
FOR CO-PRIME ARRAYS

In this section, we present simple characterizations of the
orthogonal subspace for the co-prime arrays discussed in
Section II. Our characterizations can be exploited to adapt sub-
space methods of modal analysis to estimate the complex expo-
nential modes in such arrays.

A. Restricted Co-Prime Array

Consider the restricted co-prime array described in
Section II. The set of sensor locations for this array is

. The generalized Vander-
monde matrix in this case is

...
...

. . .
... (11)

We assume that and that the modes are such
that for . In [4], this assumption is made for the
undamped modes, and it guarantees identifiability of undamped
modes from the restricted co-prime array measurements using
MUSIC. In our problem, this assumption guarantees the identi-
fiability of the damped or undamped modes from our approx-
imate least squares algorithm, as will be shown in this section.
Also, for such a set of modes the top rows of
form a full rank Vandermonde matrix, thus has rank .
For it is clear that without the use of the last sensor

at location , we cannot unambiguously estimate the modes,
because any two modes and
produce the same measurement. This is the aliasing problem for
subsampled arrays.
To characterize the -dimensional orthogonal subspace
, determined by the modes , we first form the poly-

nomial from the th powers of , namely the
:

(12)

Since are the roots of , the first columns
of , which is to satisfy , can be

written as

. . . . . .
...

...
. . . . . . . . .

...

(13)
But of course any mode of the form ,
would produce the same and therefore the same . This is
the ambiguity caused by aliasing.
Now, consider the polynomial

(14)

Suppose the coefficient vector is such
that the actual modes are the roots of . That is,

for . Then, since and are
co-prime, for and we have

(15)
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Therefore, the only common roots of , and the th roots
of , are , which are the actual modes to be
estimated. In this way, resolves the ambiguities.
Now suppose are known (or estimated). Then from

(14), can be found by solving the linear system of equations

...
...

. . .
...

(16)

which if for (as we assume) has a unique solution.
Using the coefficients and , we can char-

acterize by writing as

. . . . . .
...

...
. . . . . . . . .

...
(17)

From the structure of in (17), it is obvious that the columns
of the are linearly independent, therefore has rank ,
and the dimension of its nullspace is .
To estimate and , we

solve the following problem:

(18)

We approximate the solution to this problem in two steps. First,
we ignore the last row of and estimate as

(19)

The minimization problem in (19) can be solved using any sub-
space method of modal analysis. Now, given , we form the
polynomial

(20)

and derive its roots as . But we know from the structure
of the problem that , and any of the -th roots of is
a candidate solution. Therefore, we construct the candidate set,

(21)

which contains all modes and their aliased versions.

In the second step, to find the actual modes and resolve
aliasing ambiguities, we solve the following constrained linear
prediction problem:

(22)

where , and the polynomial
is obtained from replacing by in (14).

The procedure for estimating modes in a restricted co-prime
array is summarized in Algorithm 1.

Algorithm 1:Modal Estimation from the Restricted Co-Prime
Array

1: Estimate from the least squares
problem in (19). That is,

where is given in (13);
2: Root in (20) to return roots . Then,

recognizing that the th roots of are
for some , form the set of
candidate modes as in (21). That is,

3: Solve (22) for . That is,

4: Intersect the roots of with
.

Theorem 2: Let , and , for
, in (2). Consider a restricted co-prime array with the set of

sensor locations defined as for
. Let there be modes , such that

for , and . Then, Algorithm 1 uniquely identifies
these modes from the restricted co-prime array specified by .

Proof: See Appendix B.
Remark 5: Similar to Theorem 1, Theorem 2 requires

. However, the proof may be modified to hold
for a single snapshot , provided that no el-
ement of is zero, meaning no coordinate of the subspace

is excluded in the construction of . In the single
snapshot case, modes can be
identified provided that . The proof follows from a
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straightforward modification of the proof in Appendix B. Nat-
urally, Theorem 2 still holds for snapshots, if the
mode amplitudes of at least one of the snapshots has no zero el-
ement, and .

B. Co-Prime Array
Consider an element co-prime array,

consisting of two uniform subarrays: one with elements at
locations and the other
with elements at locations

, where and . In this case, the
generalized Vandermonde matrix of modes
may be partitioned as

(23)

where

...
...

. . .
...

(24)

and

...
...

. . .
...

(25)

are the Vandermonde matrices for the two individual subarrays
of the co-prime array. We assume the modes are such
that for . This assumption is necessary
for the identifiability of the modes from our approximate least
squares algorithm, as will be shown in this section.
Let and be

matrices that are orthogonal to and , respec-
tively. That is, and . Fol-
lowing our results in the restricted co-prime case, we may pa-
rameterize as

...
. . . . . .

...
(26)

where are the coefficients of a polynomial , whose
roots are . That is,

(27)

Similarly, we parameterize as

...
. . . . . .

...
(28)

where are the coefficients of a polynomial , whose
roots are . That is,

(29)

Note that we still need more independent columns to fully
characterize the basis matrix for the orthogonal subspace

. However, using our partial characterization, we can esti-
mate the modes (with no aliasing ambiguities) in the steps sum-
marized in Algorithm 2.

Algorithm 2:Modal Estimation from the Co-Prime Array

1: Separate the measurements of the two subarrays as
and ;

2: Estimate from the following
least squares problem for :

where is given in (26);
3: Root to return the roots

. Then, recognizing that the th roots of
are for some , form
the set of candidate modes as

4: Estimate from the following least
squares problem for :

where is given in (28);
5: Root to return the roots

. Then, recognizing that the th roots of
are for some , form
the set of candidate modes as

6: Intersect and , in other words look for the
closest (based on the Euclidean metric) members of
the set to the set .



PAKROOH et al.: MODAL ANALYSIS USING CO-PRIME ARRAYS 2435

Theorem 3: Let , and , for
, in (2). Consider a co-prime array with the set of sensor

locations defined as
for . Let there be

modes , such that for , and
. Then, Algorithm 2 uniquely iden-

tifies these modes from the co-prime array specified by .
Proof: See Appendix C.

Remark 6: Similar to Theorems 1 and 2, Theorem 3 requires
. However, the proof may be

modified to hold for a single snapshot ,
provided that no element of is zero, meaning no co-
ordinate of the subspace is excluded in the con-
struction of . In the single snapshot case, modes

can be identified pro-
vided that . The proof follows from
a straightforward modification of the proof in Appendix C.
Naturally, Theorem 3 still holds for snapshots,
if the mode amplitudes of at least one of the snapshots has no
zero element, and .
Remark 7: Algorithm 2 solves two least squares problems

in steps 2 and 4, to estimate the modes . These least
squares problems are constructed, using our parameterizations
of the orthogonal subspaces in (26) and (28). Such parameteri-
zations allow us to use subspace methods of modal analysis to
efficiently solve these least squares problems and estimate the
modes. In our numerical demonstrations in Section V.B, we use
the IQML method (see, e.g., [7], [8], and [22]) in solving the
least squares problems, but other subspace methods can also
be used. In the noise free case, IQML iterations solve the least
squares problems exactly. In fact, if in the IQML iterations

is initiated to an identity matrix, the algorithm returns
the exact solutions in one iteration (see [7]).
Remark 8: To complete the -parameterization of

the basis matrix for the orthogonal subspace , let
and .

Then, the remaining columns of may be represented in
as

(30)

where denotes a matrix with zero entries, is the
identity matrix, and

(31)

From (30) and (31) we can see that only depends on
and which are obtained from and

by rooting and in (27) and (29), respectively.
Therefore, the full, -parameterized, characterization of the
orthogonal subspace for the co-prime array may be written as

(32)

We note that we do not need this full characterization for es-
timating the modes. The partial characterization using and

suffices, at the expense of an extra fitting equations.

Fig. 2. Beampatterns for ULAs with 14 and 50 elements, a restricted co-prime
array with 14 elements, , and , and a co-prime array with 14
elements, , and .

V. NUMERICAL RESULTS

In this section, we present numerical results for the estima-
tion of damped and undamped complex exponential modes in
co-prime and uniform line arrays, with the same (or almost the
same) total apertures. We consider a ULA of 50 elements. We
form our co-prime arrays with 14 elements by subsampling this
ULA. For the restricted array, we subsample the measurements
of the ULA by a factor of and place a sensor at .
For the co-prime array, the first subarray includes ele-
ments with interelement spacing of , and the second sub-
array includes elements with interelement spacing
of .

A. Beampattern

It is insightful to first look at the beampatterns of restricted
co-prime, co-prime, and uniform line arrays for the problem of
estimating undampedmodes. In this case, the beam pattern
is

(33)

Fig. 2 shows the beampatterns for different array geometries.
Although the co-prime arrays of 14 elements have the same
aperture and the same main lobe width as the 50-element ULA,
we see that they have higher sidelobes, suggesting that there will
be performance losses in resolving closely spaced modes using
these arrays, relative to the ULA, especially if noise fields do
not produce white noise at the sensor array.

B. Numerical Demonstrations

As demonstrations of Algorithm 1 and Algorithm 2, we offer
Figs. 3–5. These results are generated using IQML (see [7], [8],
and [22]) to solve the least squares problems in step 1 of Algo-
rithm 1 and steps 2 and 4 of Algorithm 2, but any other subspace
method would produce similar results at these SNRs. The two
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Fig. 3. ULA. Estimating two closely spaced modes and
using a ULA with 50 elements: (a) Per sensor dB, (b) Per

sensor dB.

modes to be estimated here are and .
Fig. 3 illustrates mode identification at two SNRs, one high,
where the modes are identified, and one low, where they are
misidentified. These results are illustrative with no claims about
estimation accuracy for randomly generated data. Figs. 4 and
5 are the same demonstrations for the restricted co-prime and
co-prime arrays, at SNRs 5 dB higher than for the ULA. The
three extra mode pairs, eventually resolved in the left-hand pic-
tures, are the ambiguous modes introduced by subsampling. In
all of these examples, we are given one snapshot at the specified
SNR.

C. Fisher Information, CRB, and Mean-Squared Error

Let us also look at the Fisher information matrix for
the co-prime and uniform line arrays. For the proper
complex Gaussian measurement model in (2), let

Fig. 4. Restricted co-prime. Estimating two closely spaced modes
and using a restricted co-prime array with 14 elements,
and : (a) Per sensor dB, (b) Per sensor dB.

be the set of complex parameters.
The Fisher information matrix for the parameter vector is [29]

(34)
where

(35)

The CRB matrix for the estimation of the complex modes
from the data model in (2) and (3) is

(36)
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Fig. 5. Co-prime. Estimating two closely spaced modes and
using a co-prime array with 14 elements, and : (a)

Per sensor dB, (b) Per sensor dB.

where is the set of sensor lo-
cations, and

...
...

. . .
...

(37)

The derivation of (36) is given in Appendix D. It follows the
methodology of [28] and [30], using the complex calculus of
[29].
Remark 9: Relative to the CRB in the single snapshot case,

the CRB in (36) decreases like in the number of snapshots.
Fig. 6 shows the concentration ellipses (see, e.g., [27], [30])

for the Fisher information matrix for the estimation of two cor-
related modes at and for the ULA,
co-prime and restricted co-prime arrays, at three SNRs with

snapshots. Here, we have assumed that the experimental
correlation matrix of the two sources is

(38)

with . This choice of is arbitrary, but is used to il-
lustrate the point that the CRB does not require any special av-
eraging conditions for . The ellipses of Fig. 6 are the loci
of all points for which ,
for the CRB matrix in (36), and for a constant level
. To obtain two dimensional ellipses, we assume the complex
errors and are parameterized as

and . In order to get viewable con-
centration ellipses we slice through the 4-dimensional ellipsoid
to get 2-dimensional ellipses. For example, with
we get the concentration slice for . Fig. 6 is this case, but
all other slices are similar. As Fig. 6 shows, the concentration
ellipses for the restricted and conventional co-prime arrays are
similar, but they are larger than the concentration ellipse for the
ULA. The concentration ellipses for the co-prime arrays at SNR
of 0 dB are essentially the same as the concentration ellipses for
the ULA at SNR of dB, suggesting the same error variances
at these SNRs.
Fig. 7 shows the mean-squared error (MSE) plots versus SNR

(averaged over 1000 trials) in the estimation of two modes at
and and for the ULA with 50

elements and the restricted co-prime array with 14 elements
and , and for snapshots. The amplitudes of

the two modes are correlated with correlation factor .
These results are generated using reduced rank linear prediction
(see [9] and [10]) in solving the least squares problem in (6)
for the dense array, and the least squares problem in step 1 of
Algorithm 1 for the restricted co-prime array. Fig. 7(a) shows
the total MSEs and the CRBs for estimating the two modes,
and Fig. 7(b) shows the MSEs and the CRBs in estimating the
dampedmode , in the presence of the interfering
mode . The co-prime array with and
has the same number of elements and almost the same aperture
as the restricted co-prime array in this example, and therefore
would produce similar MSE and CRB curves.
These results demonstrate a loss of about dB

(at high SNR) in estimation accuracy with co-prime arrays rel-
ative to the ULA. Since the apertures of the co-prime arrays
are equal to the aperture of the dense array, the smaller number
of sensors in the co-prime arrays accounts for the inflation of
the concentration ellipses in Fig. 6, and the increase in MSEs
in Fig. 7. This finding does not conflict with the findings of
[3], where the authors studied CRBs for ULA and co-prime ar-
rays which had the same number of elements. In that case, the
co-prime array had a larger aperture and consequently enjoyed
resolution gains over the ULA when sources are undamped and
temporal samples are rich enough for in (38).

VI. CONCLUSION
We have considered the problem of estimating the parame-

ters of complex exponential modes, directly from co-prime sam-
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Fig. 6. Concentration ellipses for the Fisher information matrix on the estimation of two modes at and : (a) ULA with 50 elements.
(b) restricted co-prime array with 14 elements and . (c) co-prime array with 14 elements and . (a) ULA, (b) Restricted co-prime
array, (c) Co-prime array.

Fig. 7. (a) Total MSEs and CRBs in estimating and
. (b) MSEs and CRBs in estimating in the

presence of an interfering mode . The ULA and the restricted
co-prime array have equal apertures. The ULA has 50 elements and the
restricted co-prime array has 14 elements, with , and .

ples (in time or space) of their weighted sum. The modes can be
damped or undamped and snapshots are not plentiful. We have

derived identifiability theorems and algorithms, and have deter-
mined parameterizations of a subspace that is orthogonal to the
signal subspace spanned by the columns of the generalized Van-
dermonde matrix of the modes in a co-prime array. Our parame-
terizations are of a form that is particularly suitable for utilizing
methods based on subspace signal processing (see [7]–[12], and
[22]), for estimating the modes.
For performance analysis, we have studied CRBs, error con-

centration ellipses, and mean-squared errors (MSEs) in the case
where the aperture of a co-prime array equals the aperture of
a ULA, but many fewer sensors are used for the co-prime ar-
rays than would be used in the ULA. This is the typical case
in radar and sonar, where the limiting factors are aperture and
observation time. We have also presented numerical examples
demonstrating the way the proposed modal estimation method
resolves aliases. The CRB results bound MSE performance at
various SNRs for ULAs and co-prime samplings of them. These
results quantify the loss in performance due to the use of fewer
sensors in a co-prime array.

APPENDIX A
PROOF OF THEOREM 1

Let for , where
is defined in (3) for any

arbitrary distinct modes , and a given set of
sensor location indices . Let be
the rank- correlation matrix of the sources, .
If. Assume is full rank

for any set of distinct modes . There exists a full
rankmatrix , such that
, and the dimension of the null space of is . Then,

we have

(39)

Now, assume is
another solution to (6), that is

(40)
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where is a full column rank matrix such
that , and the dimension of the null space
of is . From (40), we have

(41)

Now, because is full rank, (41) implies that

(42)

From (42), the rank of is , for
, which is only possible if , for
. Therefore, , which means is the

unique solution to (6).
Only If. For the converse, assume there exists

such that the rank of

(43)

is less than . Because in (43) is rank defi-
cient, there exists a such that

. Without loss of
generality, assume

(44)

Let , and define
as a full column rank matrix such that ,
and the dimension of the null space of is . Then,
from (44) we have

(45)

Therefore,

(46)

which implies that and both minimize (6). Thus, there is no
unique solution to (6).
Remark 10: A sketch of the proof for the single snapshot

case goes like this: Let , where
is defined in (3) for any arbitrary distinct

modes , and has no zero element. There
exists a unique solution for (6) if and only if

(47)

where the elements of are distinct. This is equivalent to

(48)

for any with no zero element. But (48) holds if and only
if is full rank for all arbitrary choices
of distinct and distinct . This happens if and
only if the matrix is full rank for any

distinct modes .

APPENDIX B
PROOF OF THEOREM 2

Let , and be the vector
of modes such that for . Also, let

be the solution to (19). That is,

(49)

where denotes an of the form (13), with s replacing
’s for , and

is given by (11).
We first show that in the noiseless case the roots of the poly-

nomial are for
(the th power of the actual modes).
Defining

the minimization problem in (49) can be written as

(50)

The minimum value of the objective function in (50) is zero, for
, and because and are full rank, for

the solution vector , from we have

(51)

which we can reorder to get

...
...

. . .
...

...
...

. . .
...

(52)

But (52) holds if and only if

(53)

where for .
Now, let be the solution to (22). Here we use instead of
for the solution to distinguish noiseless and noisy cases. We

show solves (16) and therefore resolves aliasing.
Based on the argument resulting in (53), the set of roots

may be written as

(54)

where are the actual modes. In this case (22) can be
rewritten as

(55)
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where and

...
...

. . .
...

(56)

In the noiseless case,
and . Therefore, we have

(57)

Now, because is the solution to (55), then in the noiseless case
and because is full rank,

from (57) we have . Therefore,

(58)

where is the solution to (16). Therefore, the intersection of
the roots of and are which are the
actual modes to be estimated.

APPENDIX C
PROOF OF THEOREM 3

Let , and for
(which implies and for ).

In the noiseless case, because and for
, similar to the first part of the proof for Theorem 2, steps

2-3 of Algorithm 2 provide us with the set of candidate modes
as

where are the actual modes. Also, because
and for , steps 4–5 result in the set of candidate
modes as

Now, assume there exists a common mode between the two sets
and , that is

(59)

for some , and
. There are two possible cases for (59):

Case 1: , thus and we have
(60)

for some and . Now, because
, (60) is only possible for , which

gives us the -th actual mode .
Case 2: , in this case (59) is impossible to hold, because

for .
Therefore, the only common elements of and are

, which are the actual modes.

APPENDIX D
FISHER INFORMATION MATRIX AND THE CRB

The logarithm of the joint pdf of in (35) is

(61)

where
. Taking the partial derivatives of (61) with

respect to the complex parameters
we have,

(62)

(63)

where , as in (2). Using the fact that
, where is the Kronecker delta

function, we have

(64)

(65)

for , and

(66)

for .
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The Fisher information matrix in (34) may be written as

(67)

where , and
. Therefore,

the CRB matrix for the estimation of the mode parameters
, which is the top left block of is

(68)

Using (64), (65) and (66) in (68), we have

(69)
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