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Abstract Over the last decade, considerable progress has been made towards de-
veloping new signal processing methods to manage the deluge of data caused
by advances in sensing, imaging, storage, and computing technologies. Most of
these methods are based on a simple but fundamental observation. That is, high-
dimensional data sets are typically highly redundant and live on low-dimensional
manifolds or subspaces. This means that the collected data can often be represented
in a sparse or parsimonious way in a suitably selected finite frame. This observation
has also led to the development of a new sensing paradigm, called compressed sens-
ing, which shows that high-dimensional data sets can often be reconstructed, with
high fidelity, from only a small number of measurements. Finite frames play a cen-
tral role in the design and analysis of both sparse representations and compressed
sensing methods. In this chapter, we highlight this role primarily in the context of
compressed sensing for estimation, recovery, support detection, regression, and de-
tection of sparse signals. The recurring theme is that frames with small spectral
norm and/or small worst-case coherence, average coherence, or sum coherence are
well-suited for making measurements of sparse signals.
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1 Introduction

It was not too long ago that scientists, engineers, and technologists were complain-
ing about data starvation. In many applications, there never was sufficient data
available to reliably carry out various inference and decision making tasks in real
time. Technological advances during the last two decades, however, have changed
all of that. So much in fact that data deluge, instead of data starvation, is now be-
coming a concern. If left unchecked, the rate at which data is being generated in
numerous applications will soon overwhelm the associated systems’ computational
and storage resources.

During the last decade or so, there has been a surge of research activity in the sig-
nal processing and statistics communities to deal with the problem of data deluge.
The proposed solutions to this problem rely on a simple but fundamental principle
of redundancy. Massive data sets in the real world may live in high-dimensional
spaces, but information embedded within these data sets almost always live near
low-dimensional (often linear) manifolds. There are two ways in which the princi-
ple of redundancy can help us better manage the sheer abundance of data. First, we
can represent the collected data in a parsimonious (or sparse) manner in carefully
designed bases and frames. Sparse representations of data help reduce their (com-
putational and storage) footprint and constitute an active area of research in signal
processing [12]. Second, we can redesign the sensing systems to acquire only a small
number of measurements by exploiting the low-dimensional nature of the signals of
interest. The term compressed sensing has been coined for the area of research that
deals with rethinking the design of sensing systems under the assumption that the
signal of interest has a sparse representation in a known basis or frame [1, 16, 27].

There is a fundamental difference between the two aforementioned approaches
to dealing with the data deluge; the former deals with the collected data while the
latter deals with the collection of data. Despite this difference, however, there exists
a great deal of mathematical similarity between the areas of sparse signal repre-
sentation and compressed sensing. Our primary focus in this chapter will be on the
compressed sensing setup and the role of finite frames in its development. However,
many of the results discussed in this context can be easily restated for sparse signal
representation. We will therefore use the generic term sparse signal processing in
this chapter to refer to the collection of these results.

Mathematically, sparse signal processing deals with the case when a highly re-
dundant frame Φ = (ϕi)

M
i=1 in H N is used to make (possibly noisy) measure-

ments of sparse signals.1 Consider an arbitrary signal x ∈H M that is K-sparse:
‖x‖0 :=∑

M
i=1 1{xi 6=0}(x)≤K <N�M. Instead of measuring x directly, sparse signal

processing uses a small number of linear measurements of x, given by y = Φx+n,
where n ∈H N corresponds to deterministic perturbation or stochastic noise. Given
measurements y of x, the fundamental problems in sparse signal processing include:
(i) recovering/estimating the sparse signal x, (ii) estimating x for linear regression,

1 Sparse signal processing literature often uses the terms sensing matrix, measurement matrix, and
dictionary for the frame Φ in this setting.
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(iii) detecting the locations of the nonzero entries of x, and (iv) testing for the pres-
ence of x in noise. In all of these problems, certain geometrical properties of the
frame Φ play crucial roles in determining the optimality of the end solutions. In
this chapter, our goal is to make explicit these connections between the geometry of
frames and sparse signal processing.

The four geometric measures of frames that we focus on in this chapter include
the spectral norm, worst-case coherence, average coherence, and sum coherence.
Recall that the spectral norm ‖Φ‖ of a frame Φ is simply a measure of its tight-
ness and is given by the maximum singular value: ‖Φ‖= σmax (Φ). The worst-case
coherence µΦ , defined as

µΦ := max
i, j∈{1,...,M}

i6= j

|〈ϕi,ϕ j〉|
‖ϕi‖‖ϕ j‖

, (1)

is a measure of the similarity between different frame elements. On the other hand,
the average coherence is a new notion of frame coherence, introduced recently in
[2, 3] and analyzed further in [4]. In words, the average coherence νΦ , defined as

νΦ :=
1

M−1
max

i∈{1,...,M}

∣∣∣∣∣∣∣
M

∑
j=1
j 6=i

〈ϕi,ϕ j〉
‖ϕi‖‖ϕ j‖

∣∣∣∣∣∣∣ , (2)

is a measure of the spread of normalized frame elements (ϕi/‖ϕi‖)M
i=1 in the unit

ball. The sum coherence, defined as

M

∑
j=2

j−1

∑
i=1

|〈ϕi,ϕ j〉|
‖ϕi‖‖ϕ j‖

, (3)

is a notion of coherence that arises in the context of detecting the presence of a
sparse signal in noise [76, 77].

In the following sections, we show that different combinations of these geometric
measures characterize the performance of a multitude of sparse signal processing al-
gorithms. In particular, a theme that emerges time and again throughout this chapter
is that frames with small spectral norm and/or small worst-case coherence, average
coherence, or sum coherence are particularly well-suited for the purposes of making
measurements of sparse signals.

Before proceeding further, we note that the signal x in some applications is sparse
in the identity basis, in which case Φ represents the measurement process itself. In
other applications, however, x can be sparse in some other orthonormal basis or an
overcomplete dictionary Ψ . In this case, Φ corresponds to a composition of Θ , the
frame resulting from the measurement process, and Ψ , the sparsifying dictionary,
i.e., Φ = ΘΨ . We do not make a distinction between the two formulations in this
chapter. In particular, while the reported results are most readily interpretable in a
physical setting for the former case, they are easily extendable to the latter case.



4 Waheed U. Bajwa and Ali Pezeshki

We note that this chapter provides an overview of only a small subset of current
results in sparse signal processing literature. Our aim is simply to highlight the cen-
tral role that finite frame theory plays in the development of sparse signal processing
theory. We refer the interested reader to [34] and the references therein for a more
comprehensive review of sparse signal processing literature.

2 Sparse Signal Processing: Uniform Guarantees and
Grassmannian Frames

Recall the fundamental system of equations in sparse signal processing: y = Φx+n.
Given the measurements y, our goal in this section is to specify conditions on the
frame Φ and accompanying computational methods that enable reliable inference
of the high-dimensional sparse signal x from the low-dimensional measurements
y. There has been a lot of work in this direction in the sparse signal processing
literature. Our focus in this section is on providing an overview of some of the
key results in the context of performance guarantees for every K-sparse signal in
H M using a fixed frame Φ . It is shown in the following that uniform performance
guarantees for sparse signal processing are directly tied to the worst-case coherence
of frames. In particular, the closer a frame is to being a Grassmannian frame—
defined as one that has the smallest worst-case coherence for given N and M—the
better its performance is in the uniform sense.

2.1 Recovery of Sparse Signals via `0 Minimization

We consider the simplest of setups in sparse signal processing, corresponding to the
recovery of a sparse signal x from noiseless measurements y = Φx. Mathematically
speaking, this problem is akin to solving an underdetermined system of linear equa-
tions. Although an underdetermined system of linear equations has infinitely many
solutions in general, one of the surprises of sparse signal processing is that recovery
of x from y remains a well-posed problem for large classes of random and determin-
istic frames because of the underlying sparsity assumption. Since we are looking
to solve y for a K-sparse x, an intuitive way of obtaining a candidate solution from
y is to search for the sparsest solution x̂0 that satisfies y = Φ x̂0. Mathematically,
this solution criterion can be expressed in terms of the following `0 minimization
program

x̂0 = arg min
z∈H M

‖z‖0 subject to y = Φz. (P0)

Despite the apparent simplicity of (P0), the conditions under which it can be
claimed that x̂0 = x for any x ∈H M are not immediately obvious. Given that (P0)
is a highly nonconvex optimization, there is in fact little reason to expect that x̂0
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should be unique to begin with. It is because of these roadblocks that a rigorous
mathematical understanding of (P0) alluded the researchers for a long time. These
mathematical challenges were eventually overcome through surprisingly elementary
mathematical tools in [28, 41]. In particular, it is argued in [41] that a property
termed Unique Representation Property (URP) of Φ is the key to understanding the
behavior of the solution obtained from (P0).

Definition 1 (Unique Representation Property). A frame Φ = (ϕi)
M
i=1 in H N is

said to have the unique representation property of order K if any K frame elements
of Φ are linearly independent.

It has been shown in [28, 41] that the URP of order 2K is both a necessary and a
sufficient condition for the equivalence of x̂0 and x.2

Theorem 1 ([28, 41]). An arbitrary K-sparse signal x can be uniquely recovered
from y = Φx as a solution to (P0) if and only if Φ satisfies the URP of order 2K.

The proof of Theorem 1 is simply an exercise in elementary linear algebra. It
follows from the simple observation that K-sparse signals in H M are mapped in-
jectively into H N if and only if the nullspace of Φ does not contain nontrivial
2K-sparse signals. In order to understand the significance of Theorem 1, note that
random frames with elements distributed uniformly at random on the unit sphere in
H N are almost surely going to have the URP of order 2K as long as N ≥ 2K. This
is rather powerful, since this signifies that sparse signals can be recovered from a
number of random measurements that is only linear in the sparsity K of the signal,
rather than the ambient dimension M. Despite this powerful result, however, Theo-
rem 1 is rather opaque in the case of arbitrary (not necessarily random) frames. This
is because the URP is a local geometric property of Φ and explicitly verifying the
URP of order 2K requires a combinatorial search over all

(M
2K

)
possible collections

of frame elements. Nevertheless, it is possible to replace the URP in Theorem 1 with
the worst-case coherence of Φ , which is a global geometric property of Φ that can
be easily computed in polynomial time. The key to this is the classical Geršgorin
Circle Theorem [40] that can be used to relate the URP of a frame Φ to its worst-case
coherence.

Lemma 1 (Geršgorin). Let ti, j, i, j = 1, . . . ,M, denote the entries of an M×M ma-
trix T . Then every eigenvalue of T lies in at least one of the M circles defined below

Di(T ) =
{

z ∈ C : |z− ti,i| ≤
M

∑
j=1
j 6=i

|ti, j|
}
, i = 1, . . . ,M. (4)

The Geršgorin Circle Theorem seems to have first appeared in 1931 in [40] and
its proof can be found in any standard text on matrix analysis such as [50]. This
theorem allows one to relate the worst-case coherence of Φ to the URP as follows.
2 Theorem 1 has been stated in [28] using the terminology of spark, instead of the URP. The spark
of a frame Φ is defined in [28] as the smallest number of frame elements of Φ that are linearly
dependent. In other words, Φ satisfies the URP of order K if and only if spark(Φ)≥ K +1.
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Theorem 2 ([28]). Let Φ be a unit-norm frame and K ∈ N. Then Φ satisfies the
URP of order K as long as K < 1+µ

−1
Φ

.

The proof of this theorem follows by bounding the minimum eigenvalue of any
K×K principal submatrix of the Gramian matrix GΦ using Lemma 1. We can now
combine Theorem 1 with Theorem 2 to obtain the following theorem that relates the
worst-case coherence of Φ to the sparse signal recovery performance of (P0).

Theorem 3. An arbitrary K-sparse signal x can be uniquely recovered from y = Φx
as a solution to (P0) provided

K <
1
2
(
1+µ

−1
Φ

)
. (5)

Theorem 3 states that `0 minimization enables unique recovery of every K-sparse
signal measured using a frame Φ as long as K = O(µ−1

Φ
).3 This dictates that frames

that have small worst-case coherence are particularly well suited for measuring
sparse signals. It is also instructive to understand the fundamental limitations of
Theorem 3. In order to do so, we recall the following fundamental lower bound on
the worst-case coherence of unit-norm frames.

Lemma 2 (The Welch Bound [75]). The worst-case coherence of any unit-norm
frame Φ = (ϕi)

M
i=1 in H N satisfies the inequality µΦ ≥

√
M−N

N(M−1) .

It can be seen from the Welch bound that µΦ = Ω(N−1/2) as long as M > N. There-
fore, we have from Theorem 3 that even in the best of cases `0 minimization yields
unique recovery of every sparse signal as long as K = O(

√
N). This implication is

weaker than the K = O(N) scaling that we observed earlier for random frames. A
natural question to ask therefore is whether Theorem 3 is weak in terms of the rela-
tionship between K and µΦ . The answer to this question however is in the negative,
since there exist frames such as union of identity and Fourier bases [30] and Steiner
equiangular tight frames [36] that have certain collections of frame elements with
cardinality O(

√
N) that are linearly dependent. We therefore conclude from the pre-

ceding discussion that Theorem 3 is tight from the frame-theoretic perspective and,
in general, frames with small worst-case coherence are better suited for recovery of
sparse signals using (P0). In particular, this highlights the importance of Grassman-
nian frames in the context of sparse signal recovery in the uniform sense.

2.2 Recovery and Estimation of Sparse Signals via Convex
Optimization and Greedy Algorithms

The implications of Sect. 2.1 are quite remarkable. We have seen that it is possible to
recover an K-sparse signal x using a small number of measurements that is propor-

3 Recall, with big-O notation, that f (n) = O(g(n)) if there exists positive C and n0 such that
for all n > n0, f (n) ≤ Cg(n). Also, f (n) = Ω(g(n)) if g(n) = O( f (n)), and f (n) = Θ(g(n)) if
f (n) = O(g(n)) and g(n) = O( f (n)).
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tional to µ
−1
Φ

; in particular, for large classes of frames such as Gabor frames [3], we
see that O(K2) number of measurements suffice to recover a sparse signal using `0
minimization. This can be significantly smaller than the N = M measurements dic-
tated by the classical signal processing when K�M. Despite this, however, sparse
signal recovery using (P0) is something that one cannot be expected to use for prac-
tical purposes. The reason for this is the computational complexity associated with
`0 minimization; in order to solve (P0), one needs to exhaustively search through all
possible sparsity levels. The complexity of such exhaustive search is clearly expo-
nential in M and it has been shown in [54] that (P0) is in general an NP-hard problem.
Alternate methods of solving y = Φx for a K-sparse x that are also computationally
feasible therefore has been of great interest to the practitioners. The recent interest in
the literature on sparse signal processing partly stems from the fact that significant
progress has been made by numerous researchers in obtaining various practical al-
ternatives to (P0). Such alternatives range from convex optimization-based methods
[18, 22, 66] to greedy algorithms [25, 51, 55]. In this subsection, we review the per-
formance guarantees of two such seminal alternative methods that are widely used
in practice and once again highlight the role Grassmannian frames play in sparse
signal processing.

2.2.1 Basis Pursuit

A common heuristic approach taken in solving nonconvex optimization problems
is to approximate them with a convex problem and solve the resulting optimization
program. A similar approach can be taken to convexify (P0) by replacing the `0
“norm” in (P0) with its closest convex approximation, the `1 norm: ‖z‖1 = ∑i |zi|.
The resulting optimization program, which seems to have been first proposed as a
heuristic in [59], can be formally expressed as follows:

x̂1 = arg min
z∈H M

‖z‖1 subject to y = Φz. (P1)

The `1 minimization program (P1) is termed as Basis Pursuit (BP) [22] and is in fact
a linear optimization program [11]. To this date, a number of numerical methods
have been proposed for solving BP in an efficient manner; we refer the reader to
[72] for a survey of some of the numerical methods.

Even though BP has existed in the literature since at least [59], it is only in the
last decade that results concerning its performance have been reported. Below, we
present one such result that is expressed in terms of the worst-case coherence of the
frame Φ [28, 42].

Theorem 4 ([28, 42]). An arbitrary K-sparse signal x can be uniquely recovered
from y = Φx as a solution to (P1) provided

K <
1
2
(
1+µ

−1
Φ

)
. (6)
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Algorithm 1 Orthogonal Matching Pursuit
Input: Unit-norm frame Φ and measurement vector y
Output: Sparse OMP estimate x̂OMP

Initialize: i = 0, x̂0 = 0, K̂ = /0, and r0 = y
while ‖ri‖ ≥ ε do

i← i+1 {Increment counter}
z←Φ∗ri−1 {Form signal proxy}
`← argmax j |z j| {Select frame element}
K̂ ← K̂ ∪{`} {Update the index set}
x̂i
K̂
←Φ

†
K̂

y and x̂i
K̂ c ← 0 {Update the estimate}

ri← y−Φ x̂i {Update the residue}
end while
return x̂OMP = x̂i

The reader will notice that the sparsity requirements in both Theorem 3 and The-
orem 4 are the same. This does not mean however that (P0) and (P1) always yield
the same solution. This is because the sparsity requirements in the two theorems are
only sufficient conditions. Regardless, it is rather remarkable that one can solve an
underdetermined system of equations y = Φx for an K-sparse x in polynomial time
as long as K = O(µ−1

Φ
). In particular, we can once again draw the conclusion from

Theorem 4 that frames with small worst-case coherence in general and Grassman-
nian frames in particular are highly desirable in the context of recovery of sparse
signals using BP.

2.2.2 Orthogonal Matching Pursuit

Basis pursuit is arguably a highly practical scheme for recovering an K-sparse signal
x from the set of measurements y = Φx. In particular, depending upon the particu-
lar implementation, the computational complexity of convex optimization methods
like BP for general frames is typically O(M3+NM2), which is much better than the
complexity of (P0), assuming P 6= NP. Nevertheless, BP can be computationally de-
manding for large-scale sparse recovery problems. Fortunately, there do exist greedy
alternatives to optimization-based approaches for sparse signal recovery. The oldest
and perhaps the most well-known among these greedy algorithms goes by the name
of Orthogonal Matching Pursuit (OMP) in the literature [51]. Note that just like
BP, OMP has been in practical use for a long time, but it is only recently that its
performance has been characterized by the researchers.

The OMP algorithm obtains an estimate K̂ of the indices of the frame elements
{ϕi : xi 6= 0} that contribute to the measurements y = ∑i:xi 6=0 ϕixi. The final OMP
estimate x̂OMP then corresponds to a least-squares estimate of x using the frame
elements {ϕi}i∈K̂ : x̂OMP = Φ

†
K̂

y, where (·)† denotes the Moore–Penrose pseudoin-
verse. In order to estimate the indices, the OMP starts with an empty set and greed-
ily expands that set by one additional frame element in each iteration. A formal
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description of the OMP algorithm is presented in Algorithm 1, in which ε > 0 is a
stopping threshold. The power of OMP stems from the fact that if the estimate deliv-
ered by the algorithm has exactly K nonzeros then its computationally complexity is
only O(NMK), which is typically much better than the computationally complexity
of O(M3 +NM2) for convex optimization based approaches. We are now ready to
state a theorem characterizing the performance of the OMP algorithm in terms of
the worst-case coherence of frames.

Theorem 5 ([29, 68]). An arbitrary K-sparse signal x can be uniquely recovered
from y = Φx as a solution to the OMP algorithm with ε = 0 provided

K <
1
2
(
1+µ

−1
Φ

)
. (7)

Theorem 5 shows that the guarantees for the OMP algorithm in terms of the
worst-case coherence match those for both (P0) and BP; OMP too requires that K =
O(µ−1

Φ
) in order for it to successfully recover a K-sparse x from y=Φx. It cannot be

emphasized enough however that once K = Ω(µ−1
Φ

), we start to see a difference in
the empirical performance of (P0), BP, and OMP. Nevertheless, the basic insight of
Theorems 3–5 that frames with smaller worst-case coherence improve the recovery
performance remains valid in all three cases.

2.2.3 Estimation of Sparse Signals

Our focus in this section has so far been on recovery of sparse signals from the
measurements y = Φx. In practice, however, it is seldom the case that one obtains
measurements of a signal without any additive noise. A more realistic model for
measurement of sparse signals in this case can be expressed as y = Φx+ n, where
n represents either deterministic or random noise. In the presence of noise, one’s
objective changes from sparse signal recovery to sparse signal estimation; the goal
being an estimate x̂ that is to close to the original sparse signal x in an `2-sense.

It is clear from looking at (P1) that BP in its current form should not be used for
estimation of sparse signals in the presence of noise, since y 6=Φx in this case. How-
ever, a simple modification of the constraint in (P1) allows us to gracefully handle
noise in sparse signal estimation problems. The modified optimization program can
be formally described as

x̂1 = arg min
z∈H M

‖z‖1 subject to ‖y−Φz‖ ≤ ε (Pε
1 )

where ε is typically chosen to be equal to the noise magnitude: ε = ‖n‖. The opti-
mization (Pε

1 ) is often termed as Basis Pursuit with Inequality Constraint (BPIC).
It is easy to check that BPIC is also a convex optimization program, although it
is no longer a linear program. Performance guarantees based upon the worst-case
coherence for BPIC in the presence of deterministic noise alluded the researchers
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for quite some time. The problem was settled recently in [29], and the solution is
summarized in the following theorem.

Theorem 6 ([29]). Suppose that an arbitrary K-sparse signal x satisfies the sparsity

constraint K <
1+µ

−1
Φ

4 . Given y = Φx+n, BPIC with ε = ‖n‖ can be used to obtain
an estimate x̂1 of x such that

‖x− x̂1‖ ≤
2ε√

1−µΦ(4K−1)
. (8)

Theorem 6 states that BPIC with an appropriate ε results in a stable solution,
despite the fact that we are dealing with an underdetermined system of equations.
In particular, BPIC also handles sparsity levels that are O(µ−1

Φ
) and results in a

solution that differs from the true signal x by O(‖n‖).
In contrast with BP, OMP in its original form can be run for both noiseless sparse

signal recovery and noisy sparse signal estimation. The only thing that changes in
OMP in the latter case is the value of ε , which typically should also be set equal to
the noise magnitude. The following theorem characterizes the performance of OMP
in the presence of noise [29, 67, 69].

Theorem 7 ([29, 67, 69]). Suppose that y=Φx+n for an arbitrary K-sparse signal
x and OMP is used to obtain an estimate x̂OMP of x with ε = ‖n‖. Then the OMP
solution satisfies

‖x− x̂OMP‖ ≤
ε√

1−µΦ(K−1)
(9)

provided x satisfies the sparsity constraint

K <
1+µ

−1
Φ

2
−

ε ·µ−1
Φ

xmin
. (10)

Here, xmin denotes the smallest (in magnitude) nonzero entry of x: xmin =mini:xi 6=0 |xi|.
It is interesting to note that unlike the case of sparse signal recovery, OMP in the

noisy case does not have guarantees similar to that of BPIC. In particular, while the
estimation error in OMP is still O(‖n‖), the sparsity constraint in the case of OMP
becomes restrictive as the smallest (in magnitude) nonzero entry of x decreases.

The estimation error guarantees provided in Theorem 6 and Theorem 7 are near-
optimal for the case when the noise n follows an adversarial (or deterministic)
model. This is since the noise n under the adversarial model can always be aligned
with the signal x, making it impossible to guarantee an estimation error smaller than
the size of n. However, if one is dealing with stochastic noise then it is possible to
improve upon the estimation error guarantees for sparse signals. In order to do that,
we first define a Lagrangian relaxation of (Pε

1 ), which can be formally expressed as

x̂1,2 = arg min
z∈H M

1
2
‖y−Φx‖+ τ‖z‖1. (P1,2)
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The mixed-norm optimization program (P1,2) goes by the name of Basis Pursuit
Denoising (BPDN) [22] as well as Least Absolute Shrinkage and Selection Op-
erator (LASSO) [66]. In the following, we state estimation error guarantees for
both LASSO and OMP under the assumption of an Additive White Gaussian Noise
(AWGN): n∼N

(
0,σ2Id

)
.

Theorem 8 ([6]). Suppose that y = Φx+ n for an arbitrary K-sparse signal x, the
noise n is distributed as N

(
0,σ2Id

)
, and the LASSO is used to obtain an esti-

mate x̂1,2 of x with τ = 4
√

σ2 log(M−K). Then under the assumption that x satis-

fies the sparsity constraint K <
µ
−1
Φ

3 , the LASSO solution satisfies support(x̂1,2) ⊂
support(x) and

‖x− x̂1,2‖ ≤
(√

3+3
√

4log(M−K)
)2

Kσ
2 (11)

with probability exceeding
(

1− 1
(M−K)2

)(
1− e−K/7

)
.

A few remarks are in order now concerning Theorem 8. First, note that the re-
sults of the theorem hold with high probability since there exists a small probability
that the Gaussian noise aligns with the sparse signal. Second, (11) shows that the
estimation error associated with the LASSO solution is O(

√
σ2K logM). This es-

timation error is within a logarithmic factor of the best unbiased estimation error
O(
√

σ2K) that one can obtain in the presence of stochastic noise.4 Ignoring the
probabilistic aspect of Theorem 8, it is also worth comparing the estimation error of
Theorem 6 with that of the LASSO. It is a tedious but simple exercise in probabil-
ity to show that ‖n‖ = Ω(

√
σ2M) with high probability. Therefore, if one were to

apply Theorem 6 directly to the case of stochastic noise, then one obtains that the
square of the estimation error scales linearly with the ambient dimension M of the
sparse signal. On the other hand, Theorem 8 yields that the square of the estimation
error scales linearly with the sparsity (modulo a logarithmic factor) of the sparse
signal. This highlights the differences that exist between guarantees obtained under
a deterministic noise model versus a stochastic (random) noise model.

We conclude this subsection by noting that it is also possible to obtain better
OMP estimation error guarantees for the case of stochastic noise provided one in-
puts the sparsity of x to the OMP algorithm and modifies the halting criterion in
Algorithm 1 from ‖ri‖ ≥ ε to i≤ K (i.e., the OMP is restricted to K iterations only).
Under this modified setting, the guarantees for the OMP algorithm can be stated in
terms of the following theorem.

Theorem 9 ([6]). Suppose that y = Φx+ n for an arbitrary K-sparse signal x, the
noise n is distributed as N

(
0,σ2Id

)
, and the OMP algorithm is input the sparsity

K of x. Then under the assumptions that x satisfies the sparsity constraint

4 It is worth pointing out here that if one is willing to tolerate some bias in the estimate, then the
estimation error can be made smaller than O(

√
σ2K); see, e.g., [18, 31].
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K <
1+µ

−1
Φ

2
−

2
√

σ2 logM ·µ−1
Φ

xmin
, (12)

the OMP solution obtained by terminating the algorithm after K iterations satisfies
support(x̂OMP) = support(x) and

‖x− x̂OMP‖ ≤ 4
√

σ2K logM (13)

with probability exceeding 1− 1
M
√

2π logM . Here, xmin again denotes the smallest (in
magnitude) nonzero entry of x.

2.3 Remarks

Recovery and estimation of sparse signals from a small number of linear measure-
ments y=Φx+n is an area of immense interest to a number of communities such as
signal processing, statistics, and harmonic analysis. In this context, numerous recon-
struction algorithms based upon either optimization techniques or greedy methods
have been proposed in the literature. Our focus in this section has primarily been
on two of the most well known methods in this regard, namely, BP (and BPIC and
LASSO) and OMP. Nevertheless, it is important for the reader to realize that there
exist other methods in the literature, such as the Dantzig Selector [18], CoSaMP
[55], subspace pursuit [25], and IHT [7], that can also be used for recovery and es-
timation of sparse signals. These methods primarily differ from each other in terms
of computational complexity and explicit constants, but offer error guarantees that
appear very similar to the ones in Theorems 4–9.

We conclude this section by noting that our focus in here has been on providing
uniform guarantees for sparse signals and relating those guarantees to the worst-
case coherence of frames. The most important lesson of the preceding results in
this regard is that there exist many computationally feasible algorithms that enable
recovery/estimation of arbitrary K-sparse signals as long as K = O(µ−1

Φ
). There

are two important aspects of this lesson. First, frames with small worst-case coher-
ence are particularly well-suited for making observations of sparse signals. Second,
even Grassmannian frames cannot be guaranteed to work well if K = O(N1/2+δ )
for δ > 0, which follows trivially from the Welch bound. This second observation
seems overly restrictive, and there does exist literature based upon other properties
of frames that attempts to break this “square-root” bottleneck. One such property,
which has found widespread use in the compressed sensing literature, is termed as
the Restricted Isometry Property (RIP) [14].
Definition 2 (Restricted Isometry Property). A unit-norm frame Φ = (ϕi)

M
i=1 in

H N is said to have the RIP of order K with parameter δK ∈ (0,1) if for every K-
sparse x, the following inequalities hold:

(1−δK)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1+δK)‖x‖2
2. (14)
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The RIP of order K is essentially a statement concerning the minimum and max-
imum singular values of all N ×K submatrices of Φ . However, even though the
RIP has been used to provide guarantees for numerous sparse recovery/estimation
algorithms such as BP, BPDN, CoSaMP, and IHT, explicit verification of this prop-
erty for arbitrary frames appears to be computationally intractable. In particular,
the only frames that are known to break the square-root bottleneck (using the RIP)
for uniform guarantees are random (Gaussian, random binary, randomly subsam-
pled partial Fourier, etc.) frames.5 Still, it is possible to verify the RIP indirectly
through the use of the Geršgorin Circle Theorem [5, 44, 71]. Doing so, however,
yields results that match the ones reported above in terms of the sparsity constraint:
K = O(µ−1

Φ
).

3 Beyond Uniform Guarantees: Typical Behavior

The square-root bottleneck in sparse recovery/estimation problems is hard to over-
come in part because of our insistence that the results hold uniformly for all K-
sparse signals. In this section, we take a departure from uniform guarantees and
instead focus on typical behavior of various methods. In particular, we demonstrate
in the following that the square-root bottleneck can be shattered by (i) imposing a
statistical prior on the support and/or the nonzero entries of sparse signals and (ii)
considering additional geometric measures of frames in conjunction with the worst-
case coherence. In the following, we will focus on recovery, estimation, regression,
and support detection of sparse signals using a multitude of methods. In all of these
cases, we will assume that the support K ⊂ {1, . . . ,M} of x is drawn uniformly at
random from all

(M
K

)
size-K subsets of {1, . . . ,M}. In some sense, this is the simplest

statistical prior one can put on the support of x; in words, this assumption simply
states that all supports of size K are equally likely.

3.1 Typical Recovery of Sparse Signals

In this section, we focus on typical recovery of sparse signals and provide guarantees
for both `0 and `1 minimization (cf. (P0) and (P1)). The statistical prior we impose
on the nonzero entries of sparse signals for this purpose however will differ for the
two optimization schemes. We begin by providing a result for typical recovery of
sparse signals using (P0). The following theorem is due to Tropp and follows from
combining results in [70] and [71].

5 Recently Bourgain et al. in [10] have reported a deterministic construction of frames that satisfies
the RIP of K = O(N1/2+δ ). However, the constant δ in there is so small that the scaling can be
considered K = O(N1/2) for all practical purposes.
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Theorem 10 ([70, 71]). Suppose that y = Φx for a K-sparse signal x whose support
is drawn uniformly at random and whose nonzero entries have a jointly continuous
distribution. Further, let the frame Φ be such that µΦ ≤ (c1 logM)−1 for numerical
constant c1 = 240. Then under the assumption that x satisfies the sparsity constraint

K < min

{
µ
−2
Φ√
2
,

M
c2

2‖Φ‖2 logM

}
, (15)

the solution of (P0) satisfies x̂0 = x with probability exceeding 1−M−2log2. Here,
c2 = 148 is another numerical constant.

In order to understand the significance of Theorem 10, let us focus on the case
of an approximately tight frame Φ : ‖Φ‖2 ≈Θ(M

N ). In this case, ignoring the log-
arithmic factor, we have from (15) that `0 minimization can recover an K-sparse
signal with high probability as long as K = O(µ−2

Φ
). This is in stark contrast to The-

orem 3 that only allows K = O(µ−1
Φ

); in particular, Theorem 10 implies recovery of
“most” K-sparse signals with K = O(N/ logM) using frames such as Gabor frames.
In essence, shifting our focus from uniform guarantees to typical guarantees allows
us to break the square-root bottleneck for arbitrary frames.

Even though Theorem 10 allows us to obtain near-optimal sparse recovery re-
sults, it is still a statement about the computationally infeasible `0 optimization. We
now shift our focus to the computationally tractable BP optimization and present
guarantees concerning its typical behavior. Before proceeding further, it is worth
pointing out that typicality in the case of `0 minimization is defined by a uniformly
random support and a continuous distribution of the nonzero entries. In contrast,
typicality in the case of BP will be defined in the following by a uniformly random
support but nonzero entries whose phases are independent and uniformly distributed
on the unit circle C = {w ∈C : |w|= 1}.6 The following theorem is once again due
to Tropp and follows from combining results in [70] and [71].

Theorem 11 ([70, 71]). Suppose that y = Φx for a K-sparse signal x whose support
is drawn uniformly at random and whose nonzero entries have independent phases
distributed uniformly on C . Further, let the frame Φ be such that µΦ ≤ (c1 logM)−1.
Then under the assumption that x satisfies the sparsity constraint

K < min

{
µ
−2
Φ

16logM
,

M
c2

2‖Φ‖2 logM

}
, (16)

the solution of BP satisfies x̂1 = x with probability exceeding 1−M−2log2−M−1.
Here, c1 and c2 are the same numerical constants specified in Theorem 10.

It is worth pointing out that there exists another variant of Theorem 11 that in-
volves sparse signals whose nonzero entries are independently distributed with zero
median. Theorem 11 once again provides us with a powerful typical behavior result.

6 Recall the definition of the phase of a number r ∈ C: sgn(r) = r
|r| .
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Given approximately tight frames, it is possible to recover with high probability K-
sparse signals using BP as long as K = O(µ−2

Φ
/ logM). It is interesting to note here

that unlike Section 2, which dictates the use of Grassmannian frames for best uni-
form guarantees, both Theorem 10 and Theorem 11 dictate the use of Grassmannian
frames that are also approximately tight for best typical guarantees. Heuristically
speaking, insisting on tightness of frames is what allows us to break the square-root
bottleneck in the typical case.

3.2 Typical Regression of Sparse Signals

Instead of shifting the discussion to typical sparse estimation, we now focus on an-
other important problem in the statistics literature, namely, sparse linear regression
[32, 38, 66]. We will return to the problem of sparse estimation in Sect. 3.4. Given
y=Φx+n for a K-sparse vector x∈RM , the goal in sparse regression is to obtain an
estimate x̂ of x such that the regression error ‖Φx−Φ x̂‖2 is small. It is important to
note that the only nontrivial result that can be provided for sparse linear regression is
in the presence of noise, since the regression error in the absence of noise is always
zero. Our focus in this section will be once again on the AWGN n with variance σ2

and we will restrict ourselves to the LASSO solution (cf. (P1,2)). The following the-
orem provides guarantees for the typical behavior of LASSO as reported in a recent
work of Candès and Plan [15].

Theorem 12 ([15]). Suppose that y = Φx+ n for a K-sparse signal x ∈ RM whose
support is drawn uniformly at random and whose nonzero entries are jointly inde-
pendent with zero median. Further, let the noise n be distributed as N (0,σ2Id),
the frame Φ be such that µΦ ≤ (c3 logM)−1, and x satisfies the sparsity constraint
K ≤ M

c4‖Φ‖2 logM for some positive numerical constants c3 and c4. Then the solution

x̂1,2 of LASSO computed with τ = 2
√

2σ2 logM satisfies

‖Φx−Φ x̂‖2 ≤ c5
√

2σ2K logM (17)

with probability at least 1−6M−2log2−M−1(2π logM)−1/2. Here, the constant c5
may be taken as 8(1+

√
2)2.

There are two important things to note about Theorem 12. First, it states that the
regression error of the LASSO is O(

√
σ2K logM) with very high probability. This

regression error is in fact very close to the near-ideal regression error of O(
√

σ2K).
Second, the performance guarantees of Theorem 12 are a strong function of ‖Φ‖
but only a weak function of the worst-case coherence µΦ . In particular, Theorem 12
dictates that the sparsity level accommodated by the LASSO is primarily a function
of ‖Φ‖ provided µΦ is not too large. If, for example, Φ was an approximately
tight frame, then the LASSO can handle K ≈ O(N/ logM) regardless of the value
of µΦ , provided µΦ = O(1/ logM). In essence, the above theorem signifies the use
of approximately tight frames with small-enough coherence in regression problems.
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We conclude this subsection by noting that some of the techniques used in [15] to
prove this theorem can in fact be used to also relax the dependence of BP on µΦ and
obtain BP guarantees that primarily require small ‖Φ‖.

3.3 Typical Support Detection of Sparse Signals

It is often the case in many signal processing and statistics applications that one
is interested in obtaining locations of the nonzero entries of a sparse signal x from
a small number of measurements. This problem of support detection or model se-
lection is of course trivial in the noiseless setting; exact recovery of sparse signals
in this case implies exact recovery of the signal support: support(x̂) = support(x).
Given y = Φx+ n with nonzero noise n, however, the support detection problem
becomes nontrivial. This is because a small estimation error in this case does not
necessarily imply a small support detection error. Both exact support detection
(support(x̂) = support(x)) and partial support detection (support(x̂)⊂ support(x))
in the case of deterministic noise are very challenging (perhaps impossible) tasks. In
the case of stochastic noise, however, both these problems become feasible, and we
alluded to them in Theorem 8 and Theorem 9 in the context of uniform guarantees.
In this subsection, we now focus on typical support detection in order to overcome
the square-root bottleneck.

3.3.1 Support Detection Using the LASSO

The LASSO is arguably one of the standard tools used for support detection by the
statistics and signal processing communities. Over the years, a number of theoretical
guarantees have been provided for the LASSO support detection in [53, 73, 79]. The
results reported in [53, 79] established that the LASSO asymptotically identifies the
correct support under certain conditions on the frame Φ and the sparse signal x.
Later, Wainwright in [73] strengthened the results of [53, 79] and made explicit
the dependence of exact support detection using the LASSO on the smallest (in
magnitude) nonzero entry of x. However, apart from the fact that the results reported
in [53, 73, 79] are only asymptotic in nature, the main limitation of these works is
that explicit verification of the conditions (such as the irrepresentable condition of
[79] and the incoherence condition of [73]) that an arbitrary frame Φ needs to satisfy
is computationally intractable for K = Ω(µ−1−δ

Φ
),δ > 0.

The support detection results reported in [53, 73, 79] suffer from the square-root
bottleneck because of their focus on uniform guarantees. Recently, Candès and Plan
reported typical support detection results for the LASSO that overcome the square-
root bottleneck of the prior work in the case of exact support detection [15].

Theorem 13 ([15]). Suppose that y = Φx+ n for a K-sparse signal x ∈ RM whose
support is drawn uniformly at random and whose nonzero entries are jointly inde-
pendent with zero median. Further, let the noise n be distributed as N (0,σ2Id),
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the frame Φ be such that µΦ ≤ (c6 logM)−1, and let x satisfy the sparsity constraint
K ≤ M

c7‖Φ‖2 logM for some positive numerical constants c6 and c7. Finally, let K be
the support of x and suppose that

min
i∈K
|xi|> 8

√
2σ2 logM. (18)

Then the solution x̂1,2 of LASSO computed with τ = 2
√

2σ2 logM satisfies

support(x̂1,2) = support(x) and sgn(x̂K ) = sgn(xK ) (19)

with probability at least 1−2M−1
(
(2π logM)−1/2 +KM−1

)
−O(M−2log2).

This theorem states that if the nonzero entries of the sparse signal x are signif-
icant in the sense that they roughly lie (modulo the logarithmic factor) above the
noise floor σ , then the LASSO successfully carries out exact support detection for
sufficiently sparse signals. Of course if any nonzero entry of the signal lies below
the noise floor, then it is impossible to tell that entry apart from the noise itself.
Theorem 13 is nearly optimal for exact model selection in this regard. In terms of
the sparsity constraints, the statement of this theorem matches that of Theorem 12.
Therefore, we once again see that frames that are approximately tight and have
worst-case coherence that is not too large are particularly well-suited for sparse sig-
nal processing when used in conjunction with the LASSO.

3.3.2 Support Detection Using One-Step Thresholding

Although the support detection results reported in Theorem 13 are near optimal,
it is desirable to investigate alternative solutions to the problem of typical support
detection. This is because:

1. The LASSO requires the minimum singular value of the subframe of Φ corre-
sponding to the support K to be bounded away from zero [15, 53, 73, 79]. While
this is a plausible condition for the case when one is interested in estimating x, it
is arguable whether this condition is necessary for the case of support detection.

2. Theorem 13 still lacks guarantees for K = Ω(µ−1−δ

Φ
),δ > 0 in the case of deter-

ministic nonzero entries of x.
3. Computational complexity of the LASSO for arbitrary frames tends to be O(M3+

NM2). This makes the LASSO computationally demanding for large-scale model-
selection problems.

In light of these concerns, a few researchers recently revisited the much older
(and oft-forgotten) method of thresholding for support detection [2, 3, 37, 39, 57,
61]. The One-Step Thresholding (OST) algorithm, described in Algorithm 2, has
computational complexity of only O(NM) and it has been known to be nearly op-
timal for M×M orthonormal bases [31]. In this subsection, we focus on a recent
result of Bajwa et al. [2, 3] concerning typical support detection using OST. The
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Algorithm 2 The One-Step Thresholding (OST) Algorithm for Support Detection
Input: Unit-norm frame Φ , measurement vector y, and a threshold λ > 0
Output: Estimate of signal support K̂ ⊂ {1, . . . ,M}

z←Φ∗y {Form signal proxy}
K̂ ←{i ∈ {1, . . . ,M} : |zi|> λ} {Select indices via OST}

forthcoming theorem in this regard relies on a notion of the coherence property,
defined below.

Definition 3 (The Coherence Property [2, 3]). We say a unit-norm frame Φ satis-
fies the coherence property if

(CP-1) µΦ ≤ 0.1√
2logM and (CP-2) νΦ ≤ µΦ√

N
.

In words, (CP-1) roughly states that the frame elements of Φ are not too sim-
ilar, while (CP-2) roughly states that the frame elements of a unit-norm Φ are
somewhat distributed within the N-dimensional unit ball. Note that the coher-
ence property (i) does not require the singular values of the submatrices of Φ to
be bounded away from zero and (ii) can be verified in polynomial time since it
simply requires checking ‖GΦ − Id‖max ≤ (200logM)−1/2 and ‖(GΦ − Id)1‖∞ ≤
‖GΦ − Id‖max(M−1)N−1/2.

The implications of the coherence property are described in the following the-
orem. Before proceeding further, however, we first define some notation. We use
SNR

.
= ‖x‖2/E[‖n‖2] to denote the signal-to-noise ratio associated with the sup-

port detection problem. Also, we use x(`) to denote the `-th largest (in magnitude)
nonzero entry of x. We are now ready to state the typical support detection perfor-
mance of the OST algorithm.

Theorem 14 ([3]). Suppose that y = Φx+ n for a K-sparse signal x ∈ CM whose
support K is drawn uniformly at random. Further, let M ≥ 128, the noise n be dis-
tributed as complex Gaussian with mean 0 and covariance σ2Id, n∼C N (0,σ2Id),
and the frame Φ satisfy the coherence property. Finally, fix a parameter t ∈ (0,1)
and choose the threshold

λ = max
{1

t
10µΦ

√
N · SNR,

1
1− t

√
2
}√

2σ2 logM.

Then, under the assumption that K ≤N/(2logM), the OST algorithm (Algorithm 2)
guarantees with probability exceeding 1− 6M−1 that K̂ ⊂ K and

∣∣K \ K̂
∣∣ ≤

(K−L), where L is the largest integer for which the following inequality holds:

x(L) > max{c8σ ,c9µΦ‖x‖}
√

logM. (20)

Here, c8
.
= 4(1− t)−1, c9

.
= 20

√
2 t−1, and the probability of failure is with respect

to the true model K and the Gaussian noise n.



Finite Frames for Sparse Signal Processing 19

Algorithm 3 One-Step Thresholding (OST) for Sparse Signal Reconstruction
Input: Unit-norm frame Φ , measurement vector y, and a threshold λ > 0
Output: Sparse OST estimate x̂OST

x̂OST ← 0 {Initialize}
z←Φ∗y {Form signal proxy}
K̂ ←{i : |zi|> λ} {Select indices via OST}
x̂OST
K̂
← (Φ

K̂
)†y {Reconstruct signal via least-squares}

In order to put the significance of Theorem 14 into perspective, we recall the
thresholding results obtained by Donoho and Johnstone [31]—which form the basis
of ideas such as the wavelet denoising—for the case of M×M orthonormal bases.
It was established in [31] that if Φ is an orthonormal basis, then hard thresholding
the entries of Φ∗y at λ = Θ

(√
σ2 logM

)
results in oracle-like performance in

the sense that one recovers (with high probability) the locations of all the nonzero
entries of x that are above the noise floor (modulo logM).

Now the first thing to note regarding Theorem 14 is the intuitively pleasing nature
of the proposed threshold. Specifically, assume that Φ is an orthonormal basis and
notice that, since µΦ = 0, the threshold λ =Θ

(
max

{
µΦ

√
N · SNR,1

}√
σ2 logM

)
proposed in the theorem reduces to the threshold proposed in [31] and Theorem 14
guarantees that thresholding recovers (with high probability) the locations of all the
nonzero entries of x that are above the noise floor. The reader can convince oneself
of this assertion by noting that x(`) = Ω

(√
σ2 logM

)
⇒ ` ∈ K̂ in the case of or-

thonormal bases. Now consider instead frames that are not necessarily orthonormal
but which satisfy µΦ = O

(
N−1/2

)
and νΦ = O

(
N−1

)
. Then we have from the the-

orem that OST identifies (with high probability) the locations of the nonzero entries
of x whose energies are greater than both the noise variance (modulo logM) and the
average energy per nonzero entry: x2

(`) = Ω
(

max{σ2 logM,‖x‖2/K}
)
⇒ ` ∈ K̂ . It

is then easy to see in this case that if either the noise floor is high enough or the
nonzero entries of x are roughly of the same magnitude then the simple OST al-
gorithm leads to recovery of the locations of all the nonzero entries that are above
the noise floor. Stated differently, the OST in certain cases has the oracle property
in the sense of Donoho and Johnstone [31] without requiring the frame Φ to be an
orthonormal basis.

3.4 Typical Estimation of Sparse Signals

Our goal in this section is to provide typical guarantees for the reconstruction
of sparse signals from noisy measurements y = Φx+ n, where the entries of the
noise vector n ∈CN are independent, identical complex-Gaussian random variables
with mean zero and variance σ2. The reconstruction algorithm we analyze here
is an extension of the OST algorithm described earlier for support detection. This
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OST algorithm for reconstruction is described in Algorithm 3, and has been recently
analyzed in [4]. The following theorem is due to Bajwa et al. [4] and shows that
the OST algorithm leads to near-optimal reconstruction error for certain important
classes of sparse signals.

Before a formal statement of the theorem, however, we need to define some more
notation. We use Tσ (t) := {i : |xi|> 2

√
2

1−t

√
2σ2 logM} for any t ∈ (0,1) to denote

the locations of all the entries of x that, roughly speaking, lie above the noise floor
σ . Also, we use Tµ(t) := {i : |xi|> 20

t µΦ‖x‖
√

2logM} to denote the locations of
entries of x that, roughly speaking, lie above the self-interference floor µΦ‖x‖. Fi-
nally, we also need a stronger version of the coherence property for reconstruction
guarantees.

Definition 4 (The Strong Coherence Property [3]). We say a unit norm frame Φ

satisfies the strong coherence property if

(SCP-1) µΦ ≤ 1
164logM and (SCP-2) νΦ ≤ µΦ√

N
.

Theorem 15 ([4]). Take a unit-norm frame Φ which satisfies the strong coherence
property, pick t ∈ (0,1), and choose λ =

√
2σ2 logM max{ 10

t µΦ

√
N SNR,

√
2

1−t }.
Further, suppose x ∈ CM has support K drawn uniformly at random from all pos-
sible K-subsets of {1, . . . ,M}. Then provided

K ≤ M
c2

10‖Φ‖2 logM
, (21)

Algorithm 3 produces K̂ such that Tσ (t)∩Tµ(t)⊆ K̂ ⊆K and x̂OST such that

‖x− x̂OST‖ ≤ c11

√
σ2|K̂ | logM+ c12‖xK \K̂ ‖ (22)

with probability exceeding 1− 10M−1. Finally, defining T := |Tσ (t)∩Tµ(t)|, we
further have

‖x− x̂‖ ≤ c11
√

σ2K logM+ c12‖x− xT‖ (23)

in the same probability event. Here, c10 = 37e, c11 =
2

1−e−1/2 , and c12 = 1+ e−1/2

1−e−1/2

are numerical constants.

A few remarks are in order now for Theorem 15. First, if Φ satisfies the strong
coherence property and Φ is nearly tight, then OST handles sparsity that is almost
linear in N: K = O(N/ logM) from (21). Second, the `2 error associated with the
OST algorithm is the near-optimal (modulo the log factor) error of

√
σ2K logM

plus the best T -term approximation error caused by the inability of the OST al-
gorithm to recover signal entries that are smaller than O(µΦ‖x‖

√
2logM). In par-

ticular, if the K-sparse signal x, the worst-case coherence µΦ , and the noise n to-
gether satisfy ‖x− xT‖ = O(

√
σ2K logM), then the OST algorithm succeeds with

a near-optimal `2 error of ‖x− x̂‖= O(
√

σ2K logM). To see why this error is
near-optimal, note that a K-dimensional vector of random entries with mean zero
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and variance σ2 has expected squared norm σ2K; in here, the OST pays an ad-
ditional log factor to find the locations of the K nonzero entries among the en-
tire M-dimensional signal. It is important to recognize that the optimality condition
‖x−xT‖= O(

√
σ2K logM) depends on the signal class, the noise variance, and the

worst-case coherence of the frame; in particular, the condition is satisfied whenever
‖xK \Tµ (t)‖= O(

√
σ2K logM), since

‖x− xT‖ ≤ ‖xK \Tσ (t)‖+‖xK \Tµ (t)‖= O
(√

σ2K logM
)
+‖xK \Tµ (t)‖. (24)

We conclude this subsection by stating a lemma from [4] that provides classes of
sparse signals which satisfy ‖xK \Tµ (t)‖= O(

√
σ2K logM) given sufficiently small

noise variance and worst-case coherence.

Lemma 3. Take a unit-norm frame Φ with worst-case coherence µΦ ≤ c13√
N

for
some c13 > 0, and suppose that K ≤ M

c2
14‖Φ‖2 logM

for some c14 > 0. Fix a con-
stant β ∈ (0,1], and suppose the magnitudes of βK nonzero entries of x are some
α = Ω(

√
σ2 logM), while the magnitudes of the remaining (1−β )K nonzero en-

tries are not necessarily same, but are smaller than α and scale as O(
√

σ2 logM).
Then ‖xK \Tµ (t)‖= O(

√
σ2K logM), provided c13 ≤ tc14

20
√

2
.

In words, Lemma 3 states that OST is near-optimal for those K-sparse signals
whose entries above the noise floor have roughly the same magnitude. This sub-
sumes a very important class of signals that appears in applications such as multi-
label prediction [47], in which all the nonzero entries take values ±α .

4 Finite Frames for Detecting the Presence of Sparse Signals

In the previous sections, we discussed the role of frame theory in recovering and
estimating sparse signals in different settings. We now consider a different problem,
namely the problem of detecting the presence of a sparse signal in noise. In the
simplest form, the problem is to decide whether an observed data vector is a realiza-
tion from a hypothesized noise-only model or from a hypothesized signal-plus-noise
model, where in the latter model the signal is sparse but the indices and the values
of its nonzero elements are unknown. The problem is a binary hypothesis test of the
form {

H0 : y = Φn
H1 : y = Φ(x+n) , (25)

where x ∈ RM is a deterministic but unknown K-sparse signal, the measurement
matrix Φ = {ϕi}M

i=1 is a frame for RN , N ≤M, which we get to design, and n ∈RM

is a white Gaussian noise vector with covariance matrix E[nnT ] = (σ2
n /M)Id.

We assume here that the number of measurements N allowed for detection is
fixed and pre-specified. We wish to decide whether the measurement vector y ∈ RN

belongs to model H0 or H1. This problem is fundamentally different from that of
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estimating a sparse signal, as the objective in detection typically is to maximize the
probability of detection, while maintaining a low false alarm rate, or to minimize
the total error probability or a Bayes risk, rather than to find the sparsest signal that
fits a linear observation model. Unlike the signal estimation problem, the detection
of sparse signals has received very little attention so far, with notable exceptions
being [45, 56, 74]. But in particular, the design of optimal or near-optimal compres-
sive measurement matrices for detection of sparse signals has only been scarcely
addressed [76, 77]. In this section, we provide an overview of selected results by
Zahedi et al. [76, 77], concerning the necessary and sufficient conditions for a frame
Φ to optimize a measure of detection performance.

We look at the general problem of designing the measurement frame Φ to maxi-
mize the measurement signal-to-noise ratio (SNR), under H1, which is given by

SNR =
‖Φx‖2

σ2
n /M

. (26)

This is motivated by the fact that for the class of linear log-likelihood ratio detectors,
where the log-likelihood ratio is a linear function of the data, the detection perfor-
mance is improved by increasing SNR. In particular, for a Neyman-Pearson detector
(see, e.g., [60]) with false alarm rate PF ≤ γ , the probability of detection

Pd = Q(Q−1(γ)−
√

SNR) (27)

is monotonically increasing in SNR, where Q(·) is the Q-function, given by

Q(z) =
∞∫

z

e−w2/2dw. (28)

In addition, maximizing SNR leads to maximum detection probability at a pre-
specified false alarm rate in an energy detector, which simply tests the energy of
the measured vector y against a threshold. Without loss of generality, we assume
that σ2

n = 1 and ‖x‖2 = 1, and we design Φ to maximize the measured signal en-
ergy ‖Φx‖2. To avoid coloring the noise vector n, that is, to keep the noise vector
white, we constrain the measurement frame Φ to be Parseval, or tight with frame
bound equal to one. That is, we only consider frames for which the frame opera-
tor SΦ = ΦΦT is identity. From here on we simply refer to these frames as tight
frames, but it is understood that all tight frames we consider in this section are in
fact Parseval.

In solving the problem, one approach is to assume a value for the sparsity level
K and design the measurement frame Φ based on this assumption. This approach,
however, runs the risk that the true sparsity level might be different. An alternative
approach is not to assume any specific sparsity level. Instead, when designing Φ ,
we prioritize the level of importance of different values of sparsity. In other words,
we first find a set of solutions that are optimal for a K1-sparse signal. Then, within
this set, we find a subset of solutions that are also optimal for K2-sparse signals. We
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follow this procedure until we find a subset that contains a family of optimal solu-
tions for sparsity levels K1, K2, K3, · · · . This approach is known as a lexicographic
optimization method (see, e.g., [33, 43, 48]). The measurement frame design natu-
rally depends on one’s assumptions about the unknown vector x. In the subsequent
section, we review two different design problems, namely a worst-case SNR design
and an average SNR design, following the developments of [76, 77].

We note that lexicographic optimizations have been employed earlier in [46] in
the design of frames that have maximal robustness to erasures of frame coefficients.
The analysis used in deriving the main results for the worst-case SNR design is
similar in nature to that used in [46].

4.1 Wort-Case SNR Design

In the worst-case design for a sparsity level K, we consider the vector x that mini-
mizes the SNR among all K-sparse signals and design the frame Φ to maximize this
minimum SNR. Of course, when minimizing the SNR with respect to x, we have
to find the minimum SNR with respect to both the locations and the values of the
nonzero entries in x. To combine this with the lexicographic approach, we design the
matrix Φ to maximize the worst-case detection SNR, where the worst-case is taken
over all subsets of size Ki of elements of x, where Ki is the sparsity level considered
at the ith level of lexicographic optimization. This is a design for robustness with
respect to the worst sparse signal that can be produced.

Consider the Kth step of the lexicographic approach. In this step, the vector x is
assumed to have up to K nonzero entries, and we assume ‖x‖2 = 1. But otherwise,
we do not impose any constraints on the locations and the values of the nonzero
entries of x. We wish to maximize the minimum (worst-case) SNR, produced by
assigning the worst possible locations and values to the nonzero entries of the K-
sparse vector x. Since we assume σ2

n = 1, this corresponds to a worst-case design
for maximizing the signal energy ‖Φx‖2.

Let B0 be the set containing all (N×M) tight frames. We recursively define the
set BK , K = 1,2, . . ., as the set of solutions to the following worst-case optimization
problem [77]:

max
Φ

min
x
‖Φx‖2,

s.t. Φ ∈BK−1,
‖x‖= 1,
x is K-sparse.

(29)

The optimization problem for the Kth stage (29) involves a worst-case objective re-
stricted to the set of solutions BK−1 from the (K−1)th problem. So, BK ⊂BK−1 ⊂
·· · ⊂B0.

Now let Ω = {1,2, . . . ,M}, and define ΩK to be ΩK = {ω ⊂ Ω : |ω|= K}. For
any T ∈ΩK , let xT be the subvector of size (K×1) that contains all the components
of x corresponding to indices in T . Similarly, given a frame Φ , let ΦT be the
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(N×K) submatrix consisting of all columns of Φ whose indices are in T . Note
that the vector xT may have zero entries and hence is not necessarily the same
as the support of x. Given T ∈ ΩK , the product Φx can be replaced by ΦT xT

instead. To consider the worst-case design, for any T we need to consider the xT

that minimizes ‖ΦT xT ‖2 and then also find the worst T ∈ΩK . Using this notation
and after some simple algebra, the worst-case problem (29) can be posed as the
following max-min problem [77]

(PK)


max

Φ
min
T

λmin(Φ
T
T ΦT ),

s.t. Φ ∈BK−1,
T ∈ΩK ,

(30)

where λmin(Φ
T
T ΦT ) denotes the smallest eigenvalue of the frame sub-Gramian

GΦT
= ΦT

T ΦT .
To solve the worst-case design problem, we first find the solution set B1 for prob-

lem (P1). Then, we find a subset B2 ⊂B1 as the solution for (P2). We continue
this procedure for general sparsity level K.

Sparsity Level K = 1. If K = 1, then any T such that |T |= 1 can be written as
T = {i} with i ∈Ω , and ΦT = ϕi consists of only the ith column of Φ . Therefore,
ΦT

T ΦT = ‖ϕi‖2, and P1 simplifies to

max
Φ

min
i
‖ϕi‖2,

s.t. Φ ∈B0,
i ∈Ω .

(31)

We have the following result.

Theorem 16 ([77]). The optimal value of the objective function of the max-min
problem (31) is N/M, and a necessary and sufficient condition for Φ̂ ∈B0 to lie
in the solution set B1 is for Φ̂ = {ϕ̂i}M

i=1 to be an equal-norm tight frame with
‖ϕ̂i‖=

√
N/M, for i = 1,2, . . . ,M.

Sparsity Level K = 2. The next step is to solve (P2). Given T ∈Ω2, the matrix
ΦT consists of two columns, say, ϕi and ϕ j. So, the matrix ΦT

T ΦT in the max-min
problem (P2) is a (2×2) matrix:

Φ
T
T ΦT =

[
〈ϕi,ϕi〉 〈ϕi,ϕ j〉
〈ϕi,ϕ j〉 〈ϕ j,ϕ j〉

]
.

The solution for this case must lie among the family of optimal solutions for K = 1.
In other words, the optimal solution Φ̂ must be an equal-norm tight frame with
‖ϕ̂i‖=

√
N/M, for i = 1,2, . . . ,M. Therefore, we have

Φ
T
T ΦT = (N/M)

[
1 cosαi j

cosαi j 1

]
,
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where αi j is the angle between vectors ϕi and ϕ j. The minimum possible eigenvalue
of this matrix is

λmin(Φ
T
T ΦT ) = (N/M)(1−µΦ). (32)

where µΦ is the worst-case coherence of the frame Φ = {ϕi}M
i=1 ∈B1, as defined

in (1).
Now, let µmin be the minimum worst-case coherence

µmin = min
Φ∈B1

µΦ (33)

for all frames in B1. We refer to the element of B1 that has the worst-case coherence
µmin as a Grassmannian equal-norm tight frame.

We have the following theorem.

Theorem 17 ([77]). The optimal value of the objective function of the max-min
problem (P2) is (N/M)(1− µmin). A frame Φ̂ is in B2 if and only if the columns
of Φ̂ form an equal-norm tight frame with norm values

√
N/M and µ

Φ̂
= µmin.

In other words, the solution to (P2) is an N×M Grassmannian equal-norm tight
frame.

Sparsity Level K > 2. We now consider the case where K > 2. In this case, T ∈
ΩK can be written as T = {i1, i2, . . . , iK} ⊂Ω . From the previous results, we know
that an optimal frame Φ̂ ∈ BK must be a Grassmannian equal-norm tight frame,
with norms

√
N/M and worst-case coherence µmin.Taking this into account, the

(K×K) matrix Φ̂T
T Φ̂T in (PK), K > 2, can be written as Φ̂T

T Φ̂T = (N/M)[Id +
AT ] where AT is given by

AT =


0 cos α̂i1i2 . . . cos α̂i1ik

cos α̂i1i2 0 . . . cos α̂i2ik
...

...
. . .

...
cos α̂i1ik cos α̂i2ik . . . 0

 , (34)

and cos α̂ihi f is the cosine of the angle between frame elements ϕ̂ih and ϕ̂i f , ih 6= i f ∈
T . It is easy to see that

λmin(Φ̂
T
T Φ̂T ) = (N/M)(1+λmin(AT )). (35)

So, the problem (PK), K > 2, simplifies to

(PK)


max

Φ
min
T

λmin(AT ),

s.t. Φ ∈BK−1,
T ∈ΩK .

(36)

Solving the above problem however is not trivial. But we can at least bound the
optimum value. Given T ∈ΩK , let δ̂ihi f and ∆min be
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δ̂ihi f = µmin−|cosαihi f |, ih 6= i f ∈T , (37)

∆min = min
T ∈ΩK

∑
ih 6=i f∈T

δ̂ihi f . (38)

Also, define ∆̂ in the following way:

∆̂ = min
T ∈ΩK

∑
ih 6=i f∈T

δ̂ihi f .

We have the following theorem.

Theorem 18 ([77]). The optimal value of the objective function of the max-min
problem (PK) for K > 2 lies between (N/M)(1−

(K
2

)
µmin +∆min) and (N/M)(1−

µmin).

Before we conclude the worst-case SNR design, a few remarks are in order.

1. Examples of uniform tight frames and their methods of construction can be found
in [8, 13, 19, 20], and the references therein.

2. In the case where K = 2, Φ̂T
T Φ̂T associated with the frame Φ̂ identified in The-

orem 17, has the largest minimum eigenvalue (N/M)(1−µmin) and the smallest
maximum eigenvalue (N/M)(1+ µmin) among all Φ ∈B1 and T ∈ Ω2. This
means that the solution Φ̂ to (P2) is an RIP matrix of order 2 with optimal RIC
δ2 = µmin.

3. In general, the minimum worst-case coherence µmin of the solution Φ̂ to (PK),
K ≥ 2, is bounded below by the Welch bound (see Lemma 2). However, when
1≤ N ≤M−1 and

M ≤min{N(N +1)/2,(M−N)(M−N +1)/2} (39)

the Welch bound can be met [64]. For such a case, all frame angles are equal and
the solution to (PK) for K ≥ 2 is an equiangular equal-norm tight frame. Such
frames are Grassmannian line packings (see, e.g., [8, 21, 24, 49, 52, 58, 63, 64,
65]).

4.2 Average-Case Design

Let us now assume that in (25) the locations of nonzero entries of x are random
but their values are deterministic and unknown. We wish to find the frame Φ that
maximizes the expected value of the minimum SNR. The expectation is taken with
respect to a random index set with uniform distribution over the set of all possible
subsets of size Ki of the index set {1,2, . . . ,M} of elements of x. The minimum
SNR, whose expected value we wish to maximize, is calculated with respect to the
values of the entries of the vector x for each realization of the random index set.
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Let TK be a random variable that is uniformly distributed over ΩK . Then
pTK (t) = 1/

(M
K

)
is the probability that TK = t for t ∈ΩK . Our goal is to find a mea-

surement frame Φ that maximizes the expected value of the minimum SNR, where
the expectation is taken with respect to the random TK , and the minimum is taken
with respect to the entries of the vector x on TK . Taking into account the simplify-
ing steps used earlier for the worst-case problem and also adopting the lexicographic
approach, the problem of maximizing the average SNR can then be formulated in
the following way.

Let N0 be the set containing all (N ×M) tight frames. Then for K = 1,2, . . . ,
recursively define the set NK as the solution set to the following optimization prob-
lem: 

max
Φ

ETK min
xK
‖ΦTK xK‖2,

s.t. Φ ∈NK−1,
‖xK‖= 1,

(40)

where ETK is the expectation with respect to TK . As before, the (N ×K) matrix
ΦTK is a submatrix of Φ whose column indices are in TK . The above problem can
be simplified to the following [77]:

(FK)

{
max

Φ
ETK λmin(Φ

T
TK

ΦTK ),

s.t. Φ ∈NK−1.
(41)

To solve the lexicographic problems (FK), we follow the same method we used
earlier for the worst-case problem, i.e., we begin by solving problem (F1). Then,
from the solution set N1, we find optimal solutions for the problem (F2), and so
on.

Sparsity Level K = 1. Assume that the signal x is 1-sparse. So, there are
(M

1

)
= M

different possibilities to build the matrix ΦT1 from the matrix Φ . The expectation
in problem (F1) can be written as:

ET1λmin(Φ
T
T1

ΦT1) = ∑
t∈Ω1

pT1(t)λmin(Φ
T
t Φt) =

M

∑
i=1

pT1({i})‖ϕi‖2 =
N
M
. (42)

The following result holds.

Theorem 19 ([77]). The optimal value of the objective function of problem (F1) is
N/M. This value is obtained by using any Φ ∈N0, i.e., any tight frame.

Theorem 19 shows that unlike the worst-case problem, any tight frame is an
optimal solution for the problem (F1). Next, we study the case where the signal x
is 2-sparse.

Sparsity Level K = 2. For problem (F2), the expected value term ET2λmin(Φ
T
T2

ΦT2)
is equal to

∑
t∈Ω2

pT2(t)λmin(Φ
T
t Φt) =

2
M(M−1)

M

∑
j=2

j−1

∑
i=1

λmin(Φ
T
{i, j}Φ{i, j}). (43)
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In general, solving the family of problems (FK), K = 2,3, . . . , is not trivial. How-
ever, if we constrain ourselves to the class of equal-norm tight frames, which also
arise in solving the worst-case problem, we can establish necessary and sufficient
conditions for optimality. These conditions are different from those for the worst-
case problem and as we will show next the optimal solution here is an equal-norm
tight frame for which a cumulative measure of coherence is minimal.

Let M1 be defined as M1 = {Φ : Φ ∈N1,‖ϕi‖ =
√

N/M,∀i ∈ Ω}. Also, for
K = 2,3, . . . , recursively define the set MK as the solution set to the following opti-
mization problem:

(F
′
K)

{
max

Φ
ETK λmin(Φ

T
TK

ΦTK ),

s.t. Φ ∈MK−1.
(44)

We will concentrate on solving the above family of problems instead of (FK), K =
2,3, . . .. We have the following results.

Theorem 20 ([77]). The frame Φ is in M2 if and only if the sum coherence of Φ ,
i.e., ∑

M
j=2 ∑

j−1
i=1 |〈ϕi,ϕ j〉|/(‖ϕi‖‖ϕ j‖), is minimized.

Theorem 20 shows that for problem (F
′
2), angles between elements of the equal-

norm tight frame Φ should be designed in a different way than for the worst-case
problem. For example, an equiangular tight frame of M = 2N in N dimensions, with
vectors of equal norm

√
1/2, has worst-case coherence 1/(2

√
2N−1) and sum co-

herence N
√

2N−1/2, while two copies of an orthonormal basis form a frame with
worst-case coherence 1/2 and sum coherence N/2. While it is not clear whether
copies of orthonormal bases form tight frames with minimal sum coherence, this
example certainly illustrates that Grassmannian frames do not, in general, result in
minimal sum coherence. To the best of our knowledge, no general method for con-
structing tight frames with minimal sum coherence has been proposed so far.

The following lemma provides bounds on the sum coherence of an equal-norm
tight frame.

Lemma 4 ([77]). For an equal-norm tight frame Φ with norm values
√

N/M, the
following inequalities hold:

c|(M/N−1)−2(M−1)µ2
Φ | ≤

M

∑
j=2

j−1

∑
i=1
|〈ϕi,ϕ j〉| ≤ c(M−1)µ2

Φ ,

where

c =
(

(N/M)2

1−2(N/M)

)(
M(M−2)

2

)
.

Sparsity Level K > 2. Similar to the worst-case problem, solving problems (F
′
K)

for K > 2 is not trivial. This is because the solution sets for these problems all lie
in M2, and (F

′
2) is still an open problem. The following lemma provides a lower

bound for the optimal objective function of (F
′
K), K > 2.
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Lemma 5 ([77]). The optimal value of the objective function for problem (F
′
K),

K > 2, is bounded below by (N/M)(1− (K(K−1)/2)µΦ).

We conclude this section by giving a summary. In the worst-case SNR prob-
lem, the optimal measurement matrix is a Grassmannian equal-norm tight frame for
most—and a equal-norm tight frame for all—sparse signals. In the average SNR
problem, we limited ourselves to the class of equal-norm tight frames and showed
that the optimal measurement frame is an equal-norm tight frame that has minimum
sum coherence.

5 Other Topics

As mentioned earlier, this chapter covers only a small subset of the results in the
sparse signal processing literature. Our aim has been to simply highlight the central
role that finite frames and their geometric measures, such as spectral norm, worst-
case coherence, average coherence, and sum coherence, play in the development
of sparse signal processing methods. But many developments, which also involve
finite frames, have not been covered. For example, there is a large body of work
on signal processing of compressible signals. These are signals that are not sparse,
but their entries decay in magnitude according to a particular power law. Many of
the results covered in this chapter on estimating sparse signals have counterparts
for compressible signals. The reader is referred to [17, 23, 26, 27] for examples
of such results. Another example is the estimation and recovery of block-sparse
signals, where the nonzero entries of the signal to be estimated are either clustered
or the signal has a sparse representation in a fusion frame. Again, the majority of the
results on the estimation and recovery of sparse signals can be extended to block-
sparse signals. The reader is referred to [9, 35, 62, 78] and the references therein.
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21. Casazza, P.G., Kovačević, J.: Equal-norm tight frames with erasures. Appl. Comput. Harmon.
Anal. 18(2–4), 387–430 (2003)

22. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J.
Scientific Comput. 20(1), 33–61 (1998)

23. Cohen, A., Dahmen, W., Devore, R.A.: Compressed sensing and best k-term approximation.
J. Amer. Math. Soc. 22(1), 211–231 (2009)

24. Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: Packings in Grass-
mannian spaces. Experimental Mathematics 5(2), 139–159 (1996)

25. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction.
IEEE Trans. Inform. Theory 55(5), 2230–2249 (2009)

26. Devore, R.A.: Nonlinear approximation. In: A. Iserles (ed.) Acta Numerica, vol. 7, pp. 51–
150. Cambridge University Press, Cambridge, U.K. (1998)

27. Donoho, D.L.: Compressed sensing. IEEE Trans. Inform. Theory 52(4), 1289–1306 (2006)
28. Donoho, D.L., Elad, M.: Optimally sparse representation in general (nonorthogonal) dictio-

naries via `1 minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003)
29. Donoho, D.L., Elad, M., Temlyakov, V.N.: Stable recovery of sparse overcomplete represen-

tations in the presence of noise. IEEE Trans. Inform. Theory 52(1), 6–18 (2006)
30. Donoho, D.L., Huo, X.: Uncertainty principles and ideal atomic decomposition. IEEE Trans.

Inform. Theory 47(7), 2845–2862 (2001)
31. Donoho, D.L., Johnstone, I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika

81(3), 425–455 (1994)
32. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Statist. 32(2),

407–451 (2004)
33. Ehrgott, M.: Multicriteria Optimization, 2nd edn. Springer (2005)
34. Eldar, Y., Kutyniok, G.: Compressed Sensing: Theory and Applications. Cambridge Univer-

sity Press (in press)



Finite Frames for Sparse Signal Processing 31

35. Eldar, Y.C., Kuppinger, P., Bölcskei, H.: Block-sparse signals: Uncertainty relations and effi-
cient recovery. IEEE Trans. Signal Processing 58(6), 3042–3054 (2010)

36. Fickus, M., Mixon, D.G., Tremain, J.C.: Steiner equiangular tight frames. Linear Algebra
Appl. (2011). DOI 10.1016/j.laa.2011.06.027

37. Fletcher, A.K., Rangan, S., Goyal, V.K.: Necessary and sufficient conditions for sparsity pat-
tern recovery. IEEE Trans. Inform. Theory 55(12), 5758–5772 (2009)

38. Foster, D.P., George, E.I.: The risk inflation criterion for multiple regression. Ann. Statist.
22(4), 1947–1975 (1994)

39. Genovese, C., Jin, J., Wasserman, L.: Revisiting marginal regression (2009). URL
http://arxiv.org/abs/0911.4080. Submitted for publication (arXiv:0911.4080v1
[math.ST])
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53. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the

lasso. Ann. Statist. 34(3), 1436–1462 (2006)
54. Natarajan, B.K.: Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2),

227–234 (1995)
55. Needell, D., Tropp, J.A.: CoSaMP: Iterative signal recovery from incomplete and inaccurate

samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)
56. Paredes, J., Wang, Z., Arce, G., Sadler, B.: Compressive matched subspace detection. In: Proc.

17th European Signal Processing Conference, pp. 120–124. Glasgow, Scotland (2009)
57. Reeves, G., Gastpar, M.: A note on optimal support recovery in compressed sensing. In: Proc.

43rd Asilomar Conf. Signals, Systems and Computers. Pacific Grove, CA (2009)
58. Renes, J.: Equiangular tight frames from Paley tournaments. Linear Algebra Appl. 426(2–3),

497–501 (2007)
59. Santosa, F., Symes, W.W.: Linear inversion of band-limited reflection seismograms. SIAM J.

Sci. Statist. Comput. 7(4), 1307–1330 (1986)
60. Scharf, L.L.: Statistical Signal Processing. Addison-Wesley, Cambridge, MA (1991)
61. Schnass, K., Vandergheynst, P.: Average performance analysis for thresholding. IEEE Signal

Processing Lett. 14(11), 828–831 (2007)



32 Waheed U. Bajwa and Ali Pezeshki

62. Stojnic, M., Parvaresh, F., Hassibi, B.: On the representaton of block-sparse signals with an
optimal number of meausrements. IEEE Trans. Signal Processing 57(8), 3075–3085 (2009)

63. Strohmer, T.: A note on equiangular tight frames. Linear Algebra and its Applications 429(1),
326–330 (2008)

64. Strohmer, T., Heath Jr., R.W.: Grassmannian frames with applications to coding and commu-
nication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

65. Sustik, M., Tropp, J.A., Dhillon, I.S., Heath Jr., R.W.: On the existence of equiangular tight
frames. Linear Algebra Appl. 426(2–3), 619–635 (2007)

66. Tibshirani, R.: Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B
58(1), 267–288 (1996)

67. Tropp, J., Gilbert, A., Muthukrishnan, S., Strauss, M.: Improved sparse approximation over
quasiincoherent dictionaries. In: Proc. IEEE Conf. Image Processing (ICIP’03), pp. 37–40
(2003)

68. Tropp, J.A.: Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Inform.
Theory 50(10), 2231–2242 (2004)

69. Tropp, J.A.: Just relax: Convex programming methods for identifying sparse signals in noise.
IEEE Trans. Inform. Theory 52(3), 1030–1051 (2006)

70. Tropp, J.A.: Norms of random submatrices and sparse approximation. In: C. R. Acad. Sci.,
Ser. I, vol. 346, pp. 1271–1274. Paris (2008)

71. Tropp, J.A.: On the conditioning of random subdictionaries. Appl. Comput. Harmon. Anal.
25, 1–24 (2008)

72. Tropp, J.A., Wright, S.J.: Computational methods for sparse solution of linear inverse prob-
lems. Proc. IEEE 98(5), 948–958 (2010)

73. Wainwright, M.J.: Sharp thresholds for high-dimensional and noisy sparsity recovery using `1-
constrained quadratic programming (lasso). IEEE Trans. Inform. Theory 55(5), 2183–2202
(2009)

74. Wang, Z., Arce, G., Sadler, B.: Subspace compressive detection for sparse signals. In: IEEE
Int. Conf. Acoust., Speech, Signal Process. (ICASSP), pp. 3873–3876 (2008)

75. Welch, L.: Lower bounds on the maximum cross correlation of signals. IEEE Trans. Inform.
Theory 20(3), 397–399 (1974)

76. Zahedi, R., Pezeshki, A., Chong, E.K.P.: Robust measurement design for detecting sparse sig-
nals: Equiangular uniform tight frames and Grassmannian packings. In: Proc. 2010 American
Control Conference (ACC). Baltimore, MD (2010)

77. Zahedi, R., Pezeshki, A., Chong, E.K.P.: Measurement design for detecting sparse signals.
Physical Communications (2011). DOI 10.1016/j.phycom.2011.09.007

78. Zelnik-Manor, L., Rosenblum, K., Eldar, Y.C.: Sensing matrix optimization for block-sparse
decoding. IEEE Trans. Signal Processing 59(9), 4300–4312 (2011)

79. Zhao, P., Yu, B.: On model selection consistency of lasso. J. Machine Learning Res. 7, 2541–
2563 (2006)



Index

basis pursuit, 7–10, 12–16
denoising, see LASSO
with inequality constraint, 9, 10, 12

coherence, see frame coherence
coherence property, 18

strong coherence property, 20
compressed sensing, 2, 12

square-root bottleneck, see square-root
bottleneck, sparse signal processing

frame coherence
average coherence, 3, 29
sum coherence, 3, 28, 29
worst-case coherence, 3–9, 12, 13, 15, 17,

20, 21, 25, 26, 28, 29

Gabor frame, 7, 14
Geršgorin circle theorem, 5, 13
Grassmannian frame, 4, 6–8, 12, 15, 25, 28
Grassmannian line packings, 26

LASSO, 11, 12, 15–17

Neyman-Pearson detector, 22

one-step thresholding, 17–21
orthogonal matching pursuit, 8–12

restricted isometry property, 12

spark, see unique representation property
sparse signal processing, 2–4, 7, 17, 29

square-root bottleneck, 12–16
sparse signals

estimation
average guarantees, 19–21
uniform guarantees, 9–12

recovery
average guarantees, 13–15
uniform guarantees, 4–9

regression
average guarantees, 15–16

signal detection
average design, 26–29
worst-case SNR design, 23–26

support detection
average guarantees, 16–19

unique representation property, 5, 6

Welch bound, 6, 12, 26

33


