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 
Abstract—A novel diakoptic method based on volume integral 

equation (VIE) modeling of subsystems is proposed for 3-D 
electromagnetic analysis. The theoretical foundation of the 
method are the surface and volume equivalence principles, as it 
combines the VIE and surface integral equation (SIE) 
formulations, in conjunction with the method of moments 
(MoM). The method breaks the original structure into a number 
of non-overlapping closed-region subsystems that contain 
inhomogeneous dielectric materials and an open-region 
subsystem. Each subsystem is analyzed completely independently 
applying the double-higher-order large-domain Galerkin 
generalized MoM-VIE-SIE (VSIE) or MoM-SIE solvers. The 
final solution is obtained from diakoptic matrices expressing 
linear relations between the electric and magnetic equivalent 
surface current coefficients on diakoptic surfaces. The proposed 
VSIE-diakoptic method is validated, evaluated, and discussed in 
several characteristic examples. The examples demonstrate that 
the diakoptic method substantially increases the efficiency of the 
conventional MoM-VIE approach. When compared to the pure 
MoM-VIE double-higher-order technique, the diakoptic 
approach enables very considerable accelerations and memory 
savings, while fully preserving the accuracy of the analysis.  

Index Terms—Numerical techniques, electromagnetic analysis, 
diakoptic analysis, volume integral equation, surface equivalence 
principle, method of moments, domain decomposition, higher 
order modeling.  

I. INTRODUCTION 
HE method of moments (MoM) in conjunction with the 
volume integral equation (VIE) formulation is a well-

established approach to computational electromagnetic (CEM) 
modeling of three-dimensional (3-D) dielectric structures, as 
well as composite dielectric and metallic structures [1]. The 
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MoM-VIE methodology is especially suitable in cases 
involving inhomogeneous and complex dielectric materials. In 
such cases, it is a natural choice and is preferred over the 
overall more frequently used MoM methodology based on the 
surface integral equation (SIE) approach [2]. In many other 
cases, the MoM-VIE approach provides a useful alternative to 
the MoM-SIE modeling and on par or sometimes a more 
efficient solution. In fact, there has recently been a great 
renewed interest in VIE modeling in CEM and its 
applications, e.g., [3]-[5]. However, any increase in 
computational efficiency, in terms of either the computation 
time or the memory requirements, while preserving accuracy 
and robustness of this theoretically and conceptually very 
simple and elegant volumetric modeling technology, is always 
desired, especially if it can be done in a systematic, 
methodological fashion.  

This paper proposes a novel diakoptic method based on VIE 
modeling of subsystems, as one possible strategy aimed at 
substantially enhancing the efficiency of the conventional 
MoM-VIE approach. The theoretical foundation of the method 
consists of the surface and volume equivalence principles. The 
numerical foundation of the method is a generalized MoM-
VIE-SIE (VSIE) solver [6]-[9]. The diakoptic approach [10]-
[14] solves a large and complex electromagnetic (EM) system 
as a linear combination of solutions of diakoptic subsystems, 
by means of matrix linear relations between coefficients in 
equivalent electric and magnetic surface current expansions on 
subsystem boundary surfaces (diakoptic surfaces).  

Being based on the surface equivalence principle, the 
proposed diakoptic analysis is similar in spirit to the 
equivalence principle algorithm (EPA) [15]-[18] and the 
nested equivalence principle algorithm (NEPAL) [19], [20]. 
However, unlike in EPA, where the solution is based on 
establishing relations between the entire set of equivalent 
electric/magnetic currents of each domain with all the currents 
in all other domains and incident fields, matrix relations in 
diakoptics are established between electric and magnetic 
currents within each individual domain. Computation of these 
relations is solely based on manipulations with the current 
expansion coefficients. As such, it can be applied to the 
generalized MoM-VSIE method regardless of the geometry 
modeling (straight or curvilinear) and it can be implemented in 
already existing generalized MoM-VSIE codes with virtually 
no changes in those codes, except the partitioning. A 
difference is also that EPA methods introduce another set of 

Volume Integral Equation Based Diakoptic 
Method for Electromagnetic Modeling 

Elene Chobanyan, Student Member, IEEE, Dragan I. Olćan, Member, IEEE, 
Milan M. Ilić, Member, IEEE, and Branislav M. Notaroš, Fellow, IEEE  

T



Revised Manuscript R2 WITHOUT Highlighting Changes WITH biographies 2

basis functions for connecting the regions, while the diakoptic 
approach works with the same basis functions as the MoM-
SIE. While NEPAL solves a VIE, it is based solely on the 
representation of the scattered field by radiation of point 
sources, represented by multipoles, and it is not obvious if and 
how it could be applied to more general or arbitrary VIE 
elements and basis functions. On the other hand, the general 
diakoptic analysis can certainly be seen as belonging, in a 
broader sense, to the class of contemporary domain 
decomposition (DD) methods, including those based on the 
finite element method (FEM) [21]-[27] and those based on the 
finite difference frequency-domain and time-domain (FDFD 
and FDTD) methods [28], [29], as well as DD-SIE methods 
[30], [31]. 

In specific, the VSIE-diakoptic method divides the original 
structure into a number of non-overlapping closed-region 
subsystems, which generally contain inhomogeneous 
dielectric materials and are analyzed by the generalized MoM-
VSIE solver, and an open-region subsystem that encloses the 
other subsystems and is analyzed using the MoM-SIE 
technique. Parts of the original problem are represented by 
matrix linear relations, and diakoptic coefficients are formally 
similar to voltages and currents at ports of a linear multiport 
network. Diakoptic surfaces may completely coincide with the 
SIE surfaces, and this paper explicitly considers only such 
situations in numerical examples. However, in other 
situations, SIE surfaces may be inside diakoptic surfaces, 
where they may be discretized by the pure MoM-SIE method, 
which would introduce non-diakoptic surface-current 
unknowns in the VSIE-diakoptic model. In all cases, the 
unknowns on diakoptic surfaces are the only unknowns in the 
final system of equations. Closed-region diakoptic subsystems 
in the model can, but do not need to, be the same. The 
implemented VSIE-diakoptic numerical discretization is based 
on the double-higher-order large-domain Galerkin-type MoM-
VIE and MoM-SIE modeling described in detail in [6] and [7], 
respectively. The hybridization of the VIE and SIE methods 
which results in a generalized volume-surface integral 
equation (VIE-SIE or VSIE) method is done as outlined in [8], 
[9]. The basic theory and preliminary results of the VSIE-
diakoptic analysis are presented in a summary form in [14].   

One more interesting interpretation of the diakoptic method 
is in order here. Namely, as the relation between the 
equivalent sources at the diakoptic surface is linear and 
includes contributions of the excitations situated in the 
subsystem, it can be written in a formally identical matrix 
form as the Norton (or Thévenin) representation of a linear 
multiport network. It is, therefore, valid for any EM 
environment (system) in which the subsystem may be placed 
(and combined with other subsystems of the same or different 
form), and the proposed diakoptic analysis can be formally 
interpreted as being equivalent to Norton’s theorem in circuit 
theory. However, the diakoptic approach features the full EM-
field generalization of the Norton representation, where, in 
fact, each pair of electric and magnetic equivalent surface 
current coefficients on the diakoptic surface represents a 
generalized port, to which a multiport network analogy is then 

applied. So, the diakoptic approach is not a lumped-element 
approximation of EM fields, but rather a 3-D EM 
generalization, based on a rigorous Maxwell-type solver, of 
Norton’s theorem. 

The diakoptic method manipulates with linear relations 
between expansion coefficients for currents within a 
subsystem and equivalent currents at the diakoptic surface. 
Hence, results for electromagnetic subsystems once used in 
the diakoptic analysis can be stored for future reuse, with a 
minimum computational overhead. We can change one (or 
more) subsystems (e.g., change material composition, 
excitations, dimensions or placement of subcomponents, etc.) 
and rerun the analysis, to re-compute the diakoptic coefficients 
extremely expeditiously. For instance, if any part of the 
system is changed, only coefficients for that part have to be 
recalculated in the diakoptic model. This can be very 
beneficial to design and optimization procedures. 
Additionally, if the problem includes many identical 
subdomains, such as in analysis and design of antenna or 
scatterer arrays, the solution of one constitutive subsystem can 
be efficiently reused for congruent subsystems. 

 This paper has three principal goals. (1) It demonstrates 
that the proposed VSIE-diakoptic method substantially 
increases the efficiency of the conventional MoM-VIE 
approach, and this is the primary goal. When compared to the 
pure MoM-VIE technique implementing the same type of 
discretization (double-higher-order large-domain 
discretization in our case, i.e., [6]), the diakoptic approach 
enables very considerable accelerations and memory savings, 
while preserving the accuracy of the analysis. However, the 
paper does not claim that this is the only or the best strategy to 
enhance the efficiency of the conventional MoM-VIE method. 
(2) The paper also demonstrates that the general diakoptic 
methodology can effectively include VIE-based subsystems, 
and shows how that can be done. (3) Finally, the paper 
combines the general MoM-VIE methodology and the general 
DD methodology, which are two out of several general 
numerical methodologies in CEM. However, the paper does 
not speculate on comparisons in terms of capabilities and 
performance of the presented diakoptics-VIE approach with a 
possible contemporary DD-VIE approach.  

The rest of the paper is organized as follows. Section II 
presents the theory and implementation of the novel VSIE-
diakoptic method starting with the surface and volume 
equivalence principles and a set of VSIE equations for the 
unknown volume and surface equivalent currents. This also 
includes double-higher-order MoM-VSIE modeling of EM 
subsystems and diakoptic surfaces, derivation of linear 
relations between diakoptic coefficients, representation of EM 
subsystems by diakoptic matrices, and solution of the 
diakoptic matrix system. In Section III, the proposed VSIE-
diakoptic method is validated, evaluated, and discussed in 
several characteristic examples.  
II. DIAKOPTIC METHOD BASED ON MOM-VSIE MODELING  

A. Surface and Volume Equivalence Principles 
In the diakoptic analysis, the EM system is subdivided into 
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subsystems by virtue of the surface equivalence principle [32]. 
For the clarity of explanation, we consider a single domain v , 
bounded by a closed surface S , as depicted in Fig. 1(a), so 
two subsystems, v  and its exterior. According to this 
principle, the electric and magnetic fields E  and H  
everywhere can be uniquely evaluated by knowing electric 
and magnetic tangential fields SE  and SH  at S. 

 

   (a)                                                            (b) 

 (c) 
Fig. 1.  Illustration of the surface and volume equivalence principles, as the 
theoretical foundation of the VSIE-diakoptic approach to electromagnetic 
analysis: (a) original EM system, divided into two subsystems by a closed 
surface S (diakoptic surface), on which equivalent surface currents are placed 
in order to radiate the actual fields, (b) equivalent interior problem, which 
includes an inhomogeneous dielectric body taken into account by the radiation 
of equivalent volume currents, and (c) equivalent exterior problem (with 
original fields outside and zero field inside S).  

Let us assume that interior impressed volume electric 
currents of density J  exist only in a domain 0v , which is a 
part of v . For example, these currents can represent an actual 
volume current distribution of a dielectric body located inside 
v . The fields E  and H  can be obtained as being radiated by 
fictitious electric and magnetic equivalent surface currents 
whose density vectors are given by SHnJ e  and 

SEnM e , where n  stands for a normal unit vector on S , 
directed toward the interior region, as shown in Fig. 1(a). As a 
result of subtraction of the equivalent currents and their fields 
from the original problem, the fields E  and H  in v  remain 
unchanged, while the fields in the exterior region are 
annihilated, Fig. 1(b). The surface equivalence principle for 
the exterior region is established in the analogous way, 
Fig. 1(c).  

Assume now that the domain 0v  in Fig. 1(a) actually 
represents an arbitrarily shaped inhomogeneous dielectric 
body, with the permittivity )ε(r  and conductivity )σ(r  of the 

dielectric material being known functions of position (i.e., the 
vector r), while the permeability at all points is 0μ . In 
accordance to the volume equivalence principle [32], the 
dielectric inhomogeneity can be taken into account by the 
radiation of volumetric electric currents of density J , which 
we can consider as the impressed sources when applying the 
surface equivalence principle, in Fig. 1. The constitutive 
(material) relationship for the total electric field at each point 
of the domain 0v  and the tangential total electric and magnetic 
field boundary conditions on the surface S  yield  

   cexcee ε,, DEMJDE               (1)    0,, excee  EMJDEn             (2)    0,, excee  HMJDHn             (3) 
 

where  ee ,, MJDE  and  ee ,, MJDH  are field vectors due 
to volumetric electric current density and surface electric and 
magnetic currents, D  is the equivalent electric displacement 
(or flux density) vector, and cε  is the equivalent complex 
permittivity of the material at that point, while excE and excH  
are excitation electric and magnetic fields resulting from 
arbitrarily positioned sources inside and/or outside of v . The 
vectors J  and D  are related to each other as  

 
,jω DJ C   

c
0c

ε
εε C , ,ω

σjεε c         (4) 
 

with  being the angular frequency of excE  (time-harmonic 
convention te jω  is used) and C  the electric contrast (with 
respect to the surrounding medium) at each point of the object. 
Given the integral expressions for the fields in terms of 
sources  ee ,, MJDE  and  ee ,, MJDH  [6], [7], [14], 
(1)−(3) represent a system of three coupled electric/magnetic 
field integral VSIE equations with the sources D , eJ , and 

eM  as unknown quantities; we discretize and solve this 
system using the MoM.  
B. Double-Higher-Order MoM-VSIE Discretization 

The VSIE-diakoptic method is based on the double-higher-
order (in both geometrical and current approximation) MoM 
modeling. This facilitates utilization of large curved volume 
and surface elements. Volume elements are Lagrange-type 
curved hexahedra of geometrical orders uK , vK , and wK  
( 1,, wvu KKK ), shown in Fig. 2(a). Within each element, 
the vector D  is expanded via divergence-conforming 
hierarchical polynomial vector basis functions in parametric 
coordinates u , v , and w  with arbitrary current-
approximation orders uN , vN , and wN  ( 1,, wvu NNN ) 
[6], [14]. In the MoM-SIE discretization, modeling of S  is 
carried out using Lagrange generalized curved quadrilateral 
elements of geometrical orders uK  and vK  ( 1, vu KK ), in 
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Fig. 2(b), with the currents eJ  and eM  over the patches being 
approximated by divergence-conforming hierarchical 
polynomial vector bases with orders uN  and vN  
( 1, vu NN ) [7]. The K and N orders in one VIE or SIE 
element can be adopted completely independently from each 
other. All orders in different elements are also adopted at will, 
and there is no required connection between VIE and SIE 
orders. In the hybrid MoM-VSIE technique, the equations are 
tested using the Galerkin method.  
 

       (a)                                                            (b) 
Fig. 2.  Lagrange interpolation curved parametric elements for higher order 
VSIE-diakoptic analysis of the EM system in Fig. 1: (a) MoM-VIE 
generalized hexahedral element, determined by I = (Ku + 1)(Kv + 1)(Kw + 1) 
interpolation nodes arbitrarily positioned in space, and (b) MoM-SIE 
generalized quadrilateral patch, defined by I = (Ku + 1)(Kv + 1) nodes.   
C. VSIE-Diakoptic Analysis 

Discretizing (1)−(3) with the MoM, we obtain the following 
linear matrix system of equations: 
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where  d ,  ej , and  em  are column-matrices of unknown 
coefficients that approximate D , eJ , and eM , respectively, 
the generalized MoM-VSIE system matrix,  Z , is partitioned 
into sub-matrices  kZ , 9,...,2,1k , and  lv , 3,2,1l , form 
the excitation column-matrix. The VN  equations in (5) in the 
middle, SN  equations at the top, and SN  equations at the 
bottom are obtained by discretizing (1), (2), and (3), 
respectively. In particular, sub-matrices  5Z  and  mZ , 

9,7,3,1m  correspond to pure VIE and SIE discretizations, 
respectively, while  nZ , 8,6,4,2n , result from the 
generalized VSIE analysis [8], [9], [14].  

A combined field integral equation (CFIE) formulation for 
the diakoptic surface (surface S  in Fig. 1) can be obtained by 
multiplying the first SN  equations in (5) by α, and the last SN  
equations by β, where we adopt 1α   and 00 ε/μβ  . The 
CFIE formulation is used to avoid numerical instabilities at 

resonant frequencies of the diakoptic surface. Summing the 
new equations and moving all the terms associated with  em
to the right-hand side of the matrix equation results in 
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 which allows establishing the following matrix linear relation: 
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jmC
Y

d
j .              (7) 
 Based on (7), each of the subsystems in Fig. 1, i.e., the 

interior subsystem, for which i=1, and the exterior 
subsystem, with i=2, can be described by linear relations 
between coefficients  ej  and  em  cast in matrix form as 

       iiii 0ee  jmYj  ,   2,1i            (8) 
  
where  iY  is the SS NN   diakoptic matrix  Y  in (7) for the 
i-th subsystem and  i0j  is the 1S N  column-matrix that 
contains coefficients representing the excitation in the 
subsystem.  These matrices are numerically calculated by 
considering the coefficients  iem  as excitation and 
coefficients  iej  as the response – in the i-th subsystem. To 
obtain  iY , we excite the subsystem with only one 
coefficient of  iem  set to unity value and all other 
coefficients (as well as all excitations within the subsystem)  
set to zero; with an excitation by the j-th coefficient in  iem , 
the coefficients of eJ  obtained using the generalized MoM-
VSIE solver constitute the j-th column of  iY . From (7), we 
also obtain linear relations between  e1m  and the VIE 
coefficients of D  (i=1), given by 

       01e dmCd  ,                               (9) 
 
where the SV NN   diakoptic matrix  ][C is filled column by 
column by computing the coefficients of D  in the same MoM-
VSIE analysis with  iY . For example, the solution for  ej  
and  d  of the matrix equation 
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forms the first column of matrix  ][ TCY in (7), and so on. In 
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order to obtain the column matrix  ][ T00 dj , we solve the 
above matrix equation with  ]βα[ T231 vvv  on the right-hand 
side. While evaluating the diakoptic matrices, the matrix 
equation (6), i.e., the corresponding system of linear 
equations, is filled and LU (lower-upper) decomposed only 
once, and all the results are obtained with LU substitutions 
using different excitations. Namely, the main matrix on the 
left-hand side in (10) is LU factorized only once for multiple 
right-hand side vectors. Only forward/backward substitutions 
are applied in order to compute all the elements of the 
matrices [Y] and [C]. The complexity of LU is O(N3) and the 
complexity of a pair of forward/backward substitution is 
O(N2). With this, the advantage of utilizing a direct solver in 
the diakoptic approach is straightforward. In addition, the 
proposed VSIE-diakoptic approach can be combined with fast 
direct solvers [33]-[35]. An iterative solver can also be applied 
to subsystems, and the calculation in subsystems can be 
accelerated by fast methods [36]-[38].  

Note that, since the matrix relation in (8) relates the electric 
surface current to the magnetic surface current, it could be 
considered as a form of the generalized impedance boundary 
condition (GIBC) [39], [40]. 

The solution of the original EM problem, in Fig. 1(a), is 
obtained by relating the diakoptic coefficients in expansions of 
the electric and magnetic equivalent surface currents on S  (on 
the diakoptic surfaces, i.e., individual subsystem boundaries). 
These relations come out to be as simple as  

      ee2e1 jjj   and       ee2e1 mmm       (11) 
 

where the use is made of the facts that the signs of equivalent 
sources are opposite (based on the equivalence theorem) and 
so are the normal unit vector directions for the two 
neighboring subsystems. Diakoptic boundary conditions in 
(11) lead to stable VSIE-diakoptic CFIE solutions in all cases 
considered and all tests performed. Note that, theoretically, 
(11) is directly derived from the boundary conditions for both 
fields H and E at the diakoptic surface. Combining (8) and 
(11), the following diakoptic matrix system is obtained: 

          0201e21    jjmYY           (12) 
 

which is solved for  em  using a direct solver. Note that the 
matrices in (10) and (12) that need to be LU factorized (once) 
in the VSIE-diakoptic method are, in general, considerably 
smaller than the main matrix of the pure MoM-VIE technique 
implementing the same type of discretization. Once  em  is 
found,  ej  and  d  can be computed from (8) and (9). Other 
quantities (e.g., electric and magnetic fields) can be calculated 
by post-processing of the coefficients by the MoM-VSIE code.  

Note that when all the subsystems are isolated, there is one 
large exterior subsystem left to be solved by the MoM-SIE 
method. While this open-region subsystem relating all other 
subsystems becomes the bottleneck of the diakoptic method in 

such cases, the complexity of the method, associated with this 
subsystem only, is still significantly reduced in comparison 
with the pure MoM-SIE approach. From a purely 
mathematical standpoint (omitting EM theoretical background 
of the method, which plays a key role in the diakoptic 
technique), using the diakoptic approach we solve two systems 
with SN  and one with )( VNMNS   numbers of unknowns, 
respectively, with M being the number of congruent 
subdomains, as shown in (6)-(12) and Appendix I, instead of 
solving a system with SN2  unknowns. Therefore, in 
diakoptics, the linear size of the system of equations 
associated with the global exterior subsystem is halved. In 
addition, theoretically, any matrix solver that allows us to 
obtain (6), (7), (8), and (9), and to solve (12) can be used with 
the diakoptic approach. 

Note also that transition from (5) to (6)-(7) can be 
considered as the first step of static condensation [41]. 
However, further steps of static condensation would require 
one to substitute vector  ][ Te dj back into (3) and proceed 
further with its solution. In the presented diakoptic technique, 
however, matrix equation (5) is created for each of the 
subsystems constituting interior and exterior of the diakoptic 
surface in Fig. 1, resulting into two matrix equations that are 
solved simultaneously for shared set of unknowns. Depending 
on the subsystem, equations (5) may or may not contain 
unknown coefficients  d . Using the surface equivalence 
principle and the procedure of decomposing the problem into 
subsystems that are solved independently, while taking into 
account their interaction via equivalent surface currents, we 
obtain two relations between  ej  and  em  as shown in (8), 
and then solve the final system in (12) as explained above.  

The presented diakoptic analysis is generalized to the case 
of an arbitrary number of subsystems. Equations (11) are valid 
for a common diakoptic boundary of two neighboring 
subsystems and the matrix representations (8) and (9) stand for 
each subsystem, so the diakoptic system has the same form, 
since each part of a diakoptic surface is always shared by two 
adjacent subsystems. As an illustration, consider three 
subsystems, denoted as 1 , 2 , and 3 , where the second 
and the third subsystem are in touch with the first, but not with 
each other. With the densities of the respective equivalent 
diakoptic current distributions being ( e1j , e1m ), ( e2j , e2m ), 
and ( e3j , e3m ), adjusting equations (11) and (12) leads to  

 
   ee1e3

e2 jjj
j 


  and     ee1e3

e2 mmm
m 


 ,    (13) 

 
     0103

02e13
2    jj

jmYY
Y 






 


 ,        (14) 

 
where matrices   iY and  i0j  correspond to the i-th 
subsystem ( 3,2,1i ).  
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III. NUMERICAL EXAMPLES AND DISCUSSION 
A. Array of Homogeneous Dielectric Cubical Scatterers 

As the first example of the application and validation of the 
VSIE-diakoptics approach, we consider an 88  array of 
homogeneous lossless dielectric cubes of edge lengths 

6λ 0a , where 0λ  is the free-space wavelength, and 
relative permittivity 25.2ε r  , excited by a uniform plane 
electromagnetic wave from the direction described by 

 90θ inc  and 0inc  , as shown in Fig. 3(a). The surface-
to-surface distance between neighboring cubes is 6λ0d , 
in both x- and y-directions.  

 

 (a)     
 

 
(b) 

Fig. 3.  (a) Array of homogeneous dielectric cubical scatterers excited by a 
uniform plane electromagnetic wave (  90θ inc , 0inc  ) and (b) 
normalized bistatic radar cross section (RCS) of the array in the 0  cut, 
computed by the proposed VSIE-diakoptic method, by the pure MoM-VIE 
technique [6], and the pure MoM-SIE technique [7].  

  For the diakoptic analysis, the system in Fig. 3(a) is split into 
65 diakoptic subsystems: 64 interior VSIE subsystems 
coinciding with dielectric cubes and a free-space exterior SIE 
subsystem, which is in touch with all VSIE subsystems. A 
single VIE element is used for every cubical diakoptic 
subsystem, and the orders are adopted to be 

1 wvu KKK  and 3 wvu NNN . Each cubical 
diakoptic surface is modeled by six SIE patches with 

1 vu KK  and 2 vu NN . The number of VIE 

unknowns per subsystem is 108V N  and the total number of 
diakoptic unknowns (summing the unknowns for all diakoptic 
surfaces) amounts to 6,1442 S N , which results in a total of 

252,6Diatot N  unknowns and s98Diatot T  of computation 
time for the analysis. In all computations presented in this 
paper, no parallelization or EM system symmetries are used.  
All computations are performed on an Intel® CoreTM2 Quad 
CPU Q9550 at 2.83 GHz, with 8 GB RAM, under 64-bit 
Windows 7 operating system. Shown in Fig. 3(b) is the 
normalized bistatic radar cross section (RCS) of the array in a 
plane defined by 0 . A comparison is made between the 
diakoptic solution and the results obtained by the pure MoM-
VIE method (with LU decomposition) [6], which require 

6,912VIEtot N  unknowns and s439VIEtot T  of computation 
time, and an excellent agreement is observed. In this example, 
the advantage of the diakoptic approach is not so much in the 
reduction of the number of unknowns, but of the computation 
time (about 4.5 times). Moreover, the computer memory 
(RAM) consumption is MB151Diatot M  for the VSIE-
diakoptic method (note that in the diakoptic approach, the 
largest matrix equation that has to be solved is of the size SN
) and MB647VIEtot M  for the MoM-VIE method. To validate 
the diakoptic solution further, Fig. 3(b) also shows its 
excellent agreement with the RCS computed by means of the 
pure MoM-SIE method (with LU decomposition) [7], which 
takes 6,144SIEtot N  unknowns, s170SIEtot T  of computation 
time, and MB604SIEtot M  of RAM. 

 
B. Array of Homogeneous Dielectric Spherical Scatterers 

As an example of curved structures, we replace the cubical 
scatterers in Fig. 3(a) by spherical ones, as portrayed in Fig. 
4(a), where 31.2λ0a  (sphere diameter), 29.4λ0d ,

4ε r  ,  90θinc , and 0inc  . Each diakoptic subsystem, 
in spite of curvature, is again represented using a single VIE 
generalized hexahedron with 2 wvu KKK  and 

4 wvu NNN , bounded by a diakoptic surface 
constructed from six SIE generalized quadrilaterals with 

2 vu KK  and 2 vu NN , so the numbers of unknowns 
are 240V N , 144,62 S N , and 384,6Diatot N , computation 
time is s174Diatot T , and computer memory consumption is 

MB152Diatot M . The agreement of the RCS results with both 
the pure MoM-VIE ( ,36051VIEtot N , s999,2VIEtot T , 

GB77.3VIEtot M ) and MoM-SIE solutions is, as can be 
observed from Fig. 4(b), again excellent, and the computation 
time with the diakoptic method is reduced by 17.2 times and 
the memory consumption by 24.8 times when compared to the 
MoM-VIE method. The MoM-SIE simulation requires 
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144,6SIEtot N , s333SIEtot T , and MB604SIEtot M . 
 

 (a)          
 

                                                    
(b) 

Fig. 4.  (a) Array of homogeneous dielectric spherical scatterers excited by a 
uniform plane wave (  90θ inc , 0inc  ) and (b) normalized bistatic RCS 
results in the 90  cut, obtained by the VSIE-diakoptic, pure MoM-VIE, 
and pure MoM-SIE method.  
C. Array of Continuously Inhomogeneous Spherical 
Scatterers 

As an example of inhomogeneous structures, that are also 
curved, we next consider a 44  array of continuously 
inhomogeneous dielectric spherical scatterers of diameters 

5.1λ0a , shown in Fig. 5(a). All sphere-to-sphere distances 
are 3λ0d  and  0θinc  and 0inc   for the impinging 
uniform plane wave. The inhomogeneity consists of a linear 
radial variation of the relative permittivity from 1εr   at the 
surface to 6ε r   at the center of the spheres, as depicted in 
the inset of Fig. 5(b). Each scatterer is modeled by seven 
curvilinear hexahedral VIE elements (with 2 wvu KKK
), one element (with 2 wvu NNN ) approximating the 
central sphere (of diameter 20/a ) and six continuously 
inhomogeneous cushion-like elements  (with 

3 wvu NNN ) attached to the central element across the 
six corresponding sides, which can be seen in Fig. 5(a). 

 

 (a)          
 

                                                   
(b) 

Fig. 5.  (a) Array of continuously inhomogeneous dielectric spherical 
scatterers and (b) bistatic RCS results in the 90  cut obtained by the 
VSIE-diakoptic and pure MoM-VIE methods.   

The diakoptic surface enclosing each subsystem consists of 
six SIE patches with 2 vu KK  and 4 vu NN . The 
resulting numbers of unknowns are 630V N  (per 
subsystem), 6,1442 S N  (total), and 774,6Diatot N , and the 
total computation time is s306Diatot T .  In Fig. 5(b), an 
excellent agreement of the RCS calculated using the diakoptic 
method and the results obtained by the pure MoM-VIE 
method, with 080,01VIEtot N  and s983,23VIEtot T , is 
observed. In this case, the acceleration is even more dramatic 
(about 78.4 times) than in previous examples, because the 
MoM-VIE computation of matrix entries for a subsystem 
involving several inhomogeneous hexahedra is considerably 
more time consuming than for subsystems with a single 
homogeneous element. The required RAM for the VSIE-
diakoptic and MoM-VIE solutions is MB162Diatot M  and 

GB6.1VIEtot M , respectively.  
 
D. Diakoptic Decomposition of a Large Dielectric Slab 
As an example of a single solid object decomposed into 
diakoptic subsystems, consider scattering from a dielectric 
slab with relative permittivity 25.2ε r   and dimensions 

ddd λ2λ6λ6  , with dλ  standing for the wavelength in the 
dielectric. The plane wave excitation is as in the previous 
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examples (  90θinc , 0inc  ). The slab is decomposed into 
nine cubical diakoptic subsystems of edge lengths dλ2d , as 
shown in Fig. 6(a). A single VIE element is used for each 
subsystem, with 1 wvu KKK  and 9 wvu NNN  
(  2,430V N per subsystem); it is enclosed by a six-patch 
diakoptic surface, with 1 vu KK  and 6 vu NN  (total 
of 7,7762 S N  diakoptic unknowns). Note that the common 
surface between the neighboring diakoptic subsystems is taken 
into account by finding the limit of SIE integrals for the case 
when two (diakoptic) surfaces are infinitesimally close. 

 

 (a)          
 

                                                    
(b) 

Fig. 6.  (a) Large dielectric slab decomposesd into nine diakoptic subsystems 
and (b) comparison of the VSIE-diakoptic solution for the normalized bistatic 
RCS, in the 0  cut, of the slab with results obtained using the pure MoM-
VIE method.  
 In Fig. 6(b), we observe an excellent agreement of the 
VSIE-diakoptic RCS results for the dielectric slab 
( 10,206Diatot N , s118Diatot T , MB373Diatot M ) with the   solution obtained by the pure MoM-VIE method with 

9 wvu NNN  ( 708,21VIEtot N , s 3,291VIEtot T , 
GB5.7VIEtot M ). Hence the diakoptic method is 27.9 times 

faster and 20.2 times less expensive at memory consumption 
than the pure MoM approach in this case. For additional 
validation of the proposed diakoptic method, Fig. 7 shows the 
near (internal or external) total electric field computed in the 
plane indicated in Fig. 6(a). The VSIE-diakoptic results are 

compared with a pure-MoM-SIE solution ( 936,3SIEtot N , 
s86SIEtot T , MB482SIEtot M ), and we observe an excellent 

agreement. As expected, the SIE solution, with modeling only 
the external, dielectric-air, surface of the slab in Fig. 6(a) and 
no unknowns for modeling the internal boundary surfaces 
between the adopted diakoptic subsystems, as well as no 
volume unknowns, is more efficient than the VSIE-diakoptic 
solution in this example. Note, however, that the results in this 
example and all other examples in this paper are aimed to 
demonstrate considerably higher efficiency of the VSIE-
diakoptic method when compared to the pure MoM-VIE 
technique implementing the same discretization, with the pure 
MoM-SIE method serving just for validation and its numerical 
performance parameters being given for reference. 

 (a) 
          

                                                   (b) 
Fig. 7.  Magnitude of the near total electric field inside and around the 
dielectric slab scatterer computed in the plane indicated in Fig. 6(a), where the 
size of the near-field computation area is dd λ111λ1  , and it cuts through the 
middle of the vertical dimension of the slab: comparison of (a) VSIE-
diakoptic results and (b) pure MoM-SIE reference solution.   
E. Diakoptic Decomposition of a Human Phantom 

Finally, as an example of a complex object decomposed 
into completely different subsystems, consider scattering from 
a human phantom. The excitation of the phantom is by a 
uniform plane wave incident along the x-direction (  90θinc , 

0inc  ) at a frequency of 900 MHz, and the averaged  
equivalent complex relative permittivity of the homogeneous 
lossy dielectric material filling the phantom at this frequency 
is taken to be j19.66  52.72ε rc  . The phantom is 
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decomposed into four diakoptic subsystems as shown in the 
inset of Fig. 8. Subsystems are different (the phantom is not 
symmetric) and are modeled by 1436, 1310, 1050, and 985 
VIE hexahedra and 1124, 1114, 1018, and 976 SIE 
quadrilaterals, respectively (a total of 16,9282 S N  diakoptic 
unknowns). Initial triangular mesh, provided by NEVA 
Electromagnetics [42], is re-meshed in ANSYS ICEM CFD 
15.0.  

 
 

 Fig. 8.  Analysis of a human phantom decomposed into four diakoptic 
subsystems (figure inset): comparison of the VSIE-diakoptic solution for the 
normalized bistatic RCS ( 0  cut) of the phantom with results obtained 
using the pure MoM-VIE method.    

In Fig. 8, a good agreement of the VSIE-diakoptic RCS 
results for the human phantom 
( 33,387Diatot N , s17,584Diatot T , GB7.3Diatot M ) with the  
pure MoM-VIE solution ( 012,16VIEtot N , s135,256VIEtot T , 

GB1.4VIEtot M ) is observed. Hence, the acceleration gained 
with diakoptics in this example is 7.7 times, and because of 
the requirement for storage of all four different subsystem 
matrices, the reduction in RAM consumption is only 11%. 
Note that the number of VIE unknowns for the full system (

VIEtotN ) is smaller than the number of diakoptic unknowns, 
928,162  S N . In this example, there are two advantages of 

the VSIE-diakoptics approach. On one hand, in diakoptics, the 
largest matrix that has to be LU decomposed is of size 

464,8 S N  (see Appendix I). On the other, the burdensome 
computation of the interaction of VIE elements belonging to 
different subsystems is replaced with faster computation of 
interaction between diakoptic surfaces.  

IV. CONCLUSIONS 
This paper has proposed a novel diakoptic method for 3-D 

electromagnetic analysis based on MoM-VSIE modeling. The 
method breaks the original structure into a number of non-
overlapping closed-region subsystems (which may be the 
same or different) containing inhomogeneous dielectric 

materials and an open-region subsystem that encloses all other 
subsystems. Each subsystem is analyzed completely 
independently applying the double-higher-order large-domain 
Galerkin generalized MoM-VSIE or MoM-SIE solvers, and 
the final solution is obtained from diakoptic matrices 
expressing linear relations between electric and magnetic 
equivalent surface current coefficients on diakoptic surfaces.  

The proposed VSIE-diakoptic method has been 
demonstrated, evaluated, and discussed in several 
characteristic examples, including both homogeneous and 
continuously inhomogeneous dielectric structures, objects 
with both flat surfaces/sharp edges and pronounced curvature, 
and both far-field and near-field computations. Numerical 
examples have demonstrated that the proposed VSIE-
diakoptic method substantially increases the efficiency of the 
conventional pure MoM-VIE approach, with the pure MoM-
SIE method serving for validation, as a very different 
technique. When compared to the pure MoM-VIE technique 
implementing the same type of discretization, the diakoptic 
approach enables considerable accelerations and memory 
savings, while fully preserving the accuracy of the analysis. 
The paper has also demonstrated that the general diakoptic 
methodology can effectively include VIE-based subsystems 
and has shown how that can be done.  

APPENDIX I 
A.  Theoretical Analysis of Computational Complexity and 
Acceleration of VSIE-Diakoptics  

Here, we make a theoretical estimate for the maximum 
efficiency of the diakoptic analysis, as compared to the 
standard MoM-VIE analysis, assuming single-level 
decomposition. We also assume that it is possible to subdivide 
the EM system into M congruent (i.e., geometrically identical) 
diakoptic subsystems, which differ only in their (physical) 
position in the original system and are analyzed by the 
generalized VSIE method. These subsystems are “wrapped” 
with a total of DMN  unknowns, namely, each subsystem has 

S2NN D   SIE unknowns on its surface, with SN  standing 
for the number of unknown coefficients for expansion of each 
of the equivalent currents eJ  and eM  on the surface. Every 
VIE subsystem has VN  volumetric unknowns for the 
approximation of the displacement vector D , so the total of 
VIE unknowns is VMN . We assume, further, classical MoM 
codes, which utilize a direct solver based on LU factorization, 
so that the matrix filling and matrix solution have 
computational time complexities of O(N2) and O(N3), 
respectively, where N is the size of the matrix. Hence, the total 
analysis time of the entire VIE problem solved at once is given 
by 3Vsolv2VVVIEtot )()( MNkMNkT  , with Vk  and solvk  
standing for averaged times spent for each procedure per 
unknown coefficient. The total VIE filling and solution times 
are 2VVNk  and 2Vsolv Nk , and those for the SIE are 2DS Nk  and 

2Dsolv Nk , respectively. Therefore, the filling time for each 
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VSIE subsystem matrix can be computed as 
DVsubVS2DsubS2VsubV 2 NNkNkNk  , where subSk , subVSk , and subVk  

are averaged times spent per computation of the corresponding 
matrix element in the subsystem.  

In the proposed VSIE-diakoptic approach, matrices to be 
computed are of sizes VD NN   and DMN , and the sizes of 
matrices that need to be solved are SMN  and SV NN  . 
Taking into account that subVsubVSsubS kkk   (since subSk , 

subVSk , and subVk  are essentially the times required for surface-
surface, surface-volume, and volume-volume integration, 
respectively), the total time needed for the diakoptic analysis 
is  

  
    

 






3
SV

3
Ssolv

2
SS2VsubVDiatot

2
2,max

NNMNk
MNkNkT

.          (15) 

 
Note that VsubV kk  , which is because the computation of 
matrix elements obtained via integration of basis functions 
belonging to the same element or neighboring elements 
requires more time than for those related to the distant 
elements. In our numerical code, the average filling time of 
the entire VIE system is related to the time for its subsystem 
as 3VsubV Mkk  .  

Based on the above, the theoretically maximum acceleration 
of the VSIE-diakoptics as compared to the standard MoM-VIE 
analysis can be estimated as 

        
 

 3
SV

3
SsolvDiafill

3
Vsolv2

VV
Diatot

VIEtot
2 NNMNkT

MNkMNk
T
T ,     (16) 

 
where DiafillT max{  2SS2V3V 2, MNkNMk }is the time 
required for filling of all diakoptic matrices, computed 
simultaneously. Additionally, (16) can be generalized to 
predict acceleration of the system subdivided into non-
congruent subsystems. In such a case, DiafillT  is the maximum 
of all anticipated filling times for the diakoptic matrices. 
TableI gives the actually measured and theoretically 
maximum acceleration values for all examples in the paper, in 
Sections III.A–E. 

Note that the anticipated theoretical acceleration in (16) is 
the maximum acceleration that can possibly be achieved, by 
the respective system subdivision using a given numerical 
VSIE-diakoptic code. The actual acceleration is lower, due to 
the fact that the computation time DiatotT  does not include times 
required for preprocessing, post-processing, and matrix 
assembly (summation of diakoptic subsystem sub-matrices 
and row/column manipulations), as well as the  

NNkNk VsubVS2DsubS 2  portion of the subsystem matrix filling 
time. However, despite of all these omissions and 
simplifications, the simple formula in (16) provides, as can be 
observed from Table I, a good estimate of the efficiency of the 
diakoptic performance. Namely, all actually measured 
acceleration values agree well with the corresponding 
theoretically maximum values in Table I – for all examples in 
the paper. 

We also observe from Table I considerable (measured and 
theoretical) accelerations, while fully preserving the accuracy 
of the analysis, enabled by the diakoptic approach when 
compared to the pure MoM-VIE technique implementing the 
same type of discretization, in all examples in Sections III.A–
E.  

 
TABLE I 

ACTUALLY MEASURED AND THEORETICALLY MAXIMUM ACCELERATION  
Example in Sections III.A–E Measured  

Acceleration 
Theoretically 
Max. Acceleration 

Array of Homogeneous 
Dielectric Cubical Scatterers 

4.5 5.9 
Array of Homogeneous 

Dielectric Spherical Scatterers 
17.2 20.1 

Array of Continuously 
Inhomogeneous Spherical 

Scatterers 
78.4 95.1 

Diakoptic Decomposition of a 
Large Dielectric Slab 

27.9 31.3 
Diakoptic Decomposition of a 

Human Phantom 
7.7 9.4 
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