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Abstract—A geometrical approach to teaching and learning
vector calculus and analysis as applied to electromagnetic fields
is proposed for junior-level undergraduate electromagnetics
education. For undergraduate students, electromagnetics is typ-
ically the most challenging subject in the Electrical Engineering
curriculum, and the most challenging component of the subject is
the application of vector analysis to electromagnetic field theory
and problem solving. According to the geometrical approach, the
students are taught to “read” the figure and to “translate” this to
equations at all times throughout the computation or derivation,
instead of their “crunching” the formulas and numbers without
even visualizing the structure. In performing vector manipu-
lations, integrals, and derivatives, the students are taught to
always deal with real geometrical entities and quantities (arrows,
lengths, angles, points, lines, surfaces, volumes, etc.). They learn
to “translate” the geometry and the electromagnetic physics
attached to it into mathematical models (equations and symbolic
or numerical values) using “first mathematical principles” instead
of just “black-box” formulas as a computer would do. As opposed
to the traditional formal algebraic approach to vector analysis
in electromagnetics, which is very general but also very abstract
and dry, the geometrical approach is problem-dependent but also
much more intuitive and visual, and as such can do a great deal
to increase students’ understanding and appreciation of vector
analysis and its application to electromagnetic theory and problem
solving. This is confirmed by preliminary class testing and assess-
ment of student learning, success, and satisfaction in the courses
Electromagnetic Fields I and II at Colorado State University.

Index Terms—Electromagnetics education, geometrical and
visual approach, undergraduate fields courses, vector analysis.

I. INTRODUCTION

LECTROMAGNETIC theory or the theory of electro-

magnetic fields and waves is a fundamental underpinning
of technical education; at the same time, it is one of the most
difficult subjects for students to master. To undergraduate
students, electromagnetics courses are typically the most
challenging and demanding courses in the Electrical Engi-
neering (EE) curriculum. This material is extremely abstract
and mathematically rigorous and intensive, and students find
it rather difficult to grasp. This is not unique to any particular
school, department, country, or geographical region. It is well
known and established internationally that the electromagnetic
theory or fields course (or course sequence), as it is usually
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referred to, is always, averaged over all students in a class, the
most challenging EE subject in the undergraduate curriculum.

Electromagnetics courses are taught primarily in the junior
year in EE, Electrical and Computer Engineering (ECE),
Physics, and similar departments and schools, typically cov-
ering some or all of the following major topics: electrostatic
fields, steady electric currents, magnetostatic fields, slowly
time-varying (low-frequency) electromagnetic fields, rapidly
time-varying (high-frequency) electromagnetic fields, uniform
plane electromagnetic waves, transmission lines, waveguides
and cavity resonators, and antennas and radiation. The im-
portance of electromagnetic theory, as a fundamental science
and engineering discipline and a foundation of electrical and
computer engineering as a whole, to ECE education can hardly
be overstated. In addition, electromagnetics has immediate
impact on a great variety of cutting-edge technologies and
applications in practically all ECE areas, and a comprehensive
knowledge and firm grasp of electromagnetic fundamentals is
essential for students in a number of other undergraduate and
graduate courses, as well as for ECE graduates as they join the
workforce, now and in the future.

Perhaps the best illustration of a great struggle of educators
and scholars worldwide to find an “ideal” or at least satisfactory
way of teaching and learning electromagnetics, and a proof
that such a way has not yet been found and established, is
the fact that there are is extremely large number of quite dif-
ferent textbooks for undergraduate electromagnetics available
and “active” (about 30 books published in North America
only)—probably more than for any other discipline in science
and engineering. Some initiatives to advance undergraduate
electromagnetics education and surveys and experiences in
teaching/learning electromagnetic fields and waves are pre-
sented in [1]-[6].

Generally, there is a great diversity in the teaching of
undergraduate electromagnetics courses, in content, scope,
and pedagogical philosophy. Some electromagnetics courses
implement the direct or chronological order of topics, which
can briefly be characterized as: first teaching static and then
dynamic topics, or first teaching fields (static, quasistatic, and
rapidly time-varying) and then waves (uniform plane waves,
transmission lines, waveguides, and antennas)—e.g., [7]
and [8]. Some courses follow the inverse (nonchronological)
order of topics in teaching/learning electromagnetics: start with
general Maxwell’s equations and then teach everything else
as applications of these equations, namely, teach all types of
fields as special cases of the general high-frequency electro-
magnetic field—e.g., [9] and [10]. Some instructors employ
the transmission-lines-first approach to teaching the course:
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start with the analysis of transmission lines, based on only pure
circuit-theory concepts, with per-unit-length characteristics
(distributed parameters) of the lines assumed to be known, and
then continue with the chronological order of topics—e.g., [11]
and [12].

Regardless of the ordering of the material, there is also a
great nonuniformity in balancing the coverage and emphasis in
courses in terms of general questions like: more fields versus
more waves, more static versus more dynamic topics, more
breadth versus more depth, more fundamentals versus more ap-
plications, etc. In addition, engineering educators are exploring
various innovative ways of electromagnetics class delivery and
are far from reaching consensus on pedagogical dilemmas like:
traditional lecturing versus interactive in-class explorations and
discussions (active teaching and learning), inclusion of team-
work and peer instruction (collaborative teaching/learning), all
analysis versus considerable design component, more concepts
versus more computation, etc. There are also new challenges
related to a great increase in demand for distance learning, on-
line courses, and other forms of nontraditional course delivery.

Not less importantly, about half the classes worldwide are
now offered as a single mandatory fields and waves course, with
the other half still being offered as a mandatory sequence of two
electromagnetics courses. Another fact that must be taken into
account when considering the state of the art in electromagnetics
teaching is that in a very large number of programs, worldwide,
fields and waves courses are taught by instructors who are not
electromagnetics-trained and are teaching electromagnetics out-
side their personal expertise area. Finally, there is an evident
decline (on average) of the mathematical and problem-solving
preparedness of students taking these courses.

Two general approaches have been pursued to overcome the
problems and challenges outlined above in the methodology and
practice of electromagnetics teaching, with respect to the diver-
sity and nonuniformity of curricular contents, teaching methods,
pedagogical goals, instructor expertise, areas of emphasis, de-
sired outcomes of the course or sequence of courses, the time
available, and the decline in the average student’s prepared-
ness and interest and motivation for fields and waves courses.
According to the first approach, the class material is very sig-
nificantly reduced (many educators say almost trivialized) by
simply skipping or skimming the challenging topics, concepts,
examples, problems, derivations, and applications in order to
attract students’ attention and to remedy (bypass) any deficien-
cies in their mathematical and problem-solving background, as
well as to save class time. Hence, the material is mostly cov-
ered only as an itemized list of final facts and selected for-
mulas, and the examples and problems are of the pure formulaic
(plug-and-chug) type. The second approach provides a rigorous
and complete (as far as possible, given the available time in the
course) treatment of the material and presents it to students in
a consistent and pedagogically sound manner with enough de-
tail, derivations, and explanations to be fully understandable and
appreciable. The examples and problems emphasize physical
conceptual reasoning, mathematical synthesis of solutions, and
realistic engineering context, providing opportunities for stu-
dents to develop their conceptual understanding of the material
and true electromagnetic problem-solving skills. By its general

philosophy and goals, this paper belongs to the second approach
to electromagnetics teaching and learning.

However, whatever the coverage, emphasis, and ordering of
the material in a course or courses, the curricular context, level
of breadth and depth, or the teaching method and pedagogical
approach, the most problematic and most important component
of electromagnetics teaching and learning is vector calculus and
analysis as applied to electromagnetic field computation and
problem solving. This is integral to all class topics and is met in
practically all lectures, recitations (problem-solving sessions),
homework assignments, and tests. It is a consensus of electro-
magnetics educators and scholars that any improvement in the
pedagogy of vector analysis in electromagnetics would be wel-
comed by students and instructors alike.

Vector analysis in electromagnetic fields courses, if presented
in a traditional manner, is extremely poorly received and not
appreciated by students, primarily because of its abstract, dry,
and overcomplicated pure mathematical formalisms, including
multiple integrations, multivariable vector calculations, and
curvilinear coordinate systems. While doing their best to solve
problems, understand derivations, and perform studies, students
will very often admit that with so many mathematical concepts
and degrees of freedom appearing in equations, they, in fact,
have little or no idea what is actually going on in their analysis
or computation. Because of the lack of understanding, they
soon lose confidence, then they lose motivation, and the whole
learning process is sooner or later reduced to their frantically
paging through the textbook in a quest for a suitable final
formula or set of formulas that look applicable and that will be
applied in a nearly random fashion.

This paper proposes a geometrical approach to teaching and
learning vector analysis, including vector algebra, integral mul-
tivariable calculus, and differential vector calculus, as applied to
electromagnetics. It is based on geometrical visualizations and
emphasizes the geometry of the problem, rather than formal al-
gebraic algorithms and brute force algebraic computation. The
students are taught to “read” the figure and to “translate” it
to equations, rather than to “crunch” the formulas and num-
bers without even visualizing the structure with which they are
dealing. In the existing electromagnetics textbooks [7]-[21] and
teaching/learning practices, vector algebra and calculus are used
in topics on electromagnetic fields and waves in a traditional,
formal, purely “algebraic” way. Briefly, the formal algebraic ap-
proach is very general, but also very abstract and dry and analo-
gous to the way a programmer actually “instructs” a computer to
do vector analysis in computer programs. The geometrical ap-
proach, on the other hand, is problem-dependent, but also much
more intuitive and visual, and as such can do a great deal to in-
crease students’ understanding and appreciation of vector anal-
ysis and its application to electromagnetics.

There are hundreds of examples to illustrate this approach, a
few of which are presented in this paper, but overall, the stu-
dents are taught to link the equations to the picture of the real
structure that is under consideration, at all times throughout the
computation or derivation. Hence, in vector analysis of electro-
magnetic problems, including all sorts of vector manipulations,
integrals, and derivatives, the students are, unlike the computer
program, taught to always visualize the structure and deal with
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real geometrical entities and quantities (arrows, lengths, angles,
points, lines, surfaces, volumes, etc.) and then to just “trans-
late” the geometry and the electromagnetic physics attached to
it into mathematical models (equations and symbolic or numer-
ical values) using the “mathematical first principles” (and not
general black-box formulas). Ultimately, in a fundamental elec-
tromagnetic course, the main objective is always to help the stu-
dents really understand a theoretical statement or derivation, or
a solution to a practical problem, and to develop ways of “elec-
tromagnetic thinking,” rather than to offer the computationally
most efficient and most generic toolboxes for different classes
of electromagnetic situations and problems.

The proposed geometrical and visual approach to teaching
and learning vector calculus and analysis as applied to
electromagnetic field computation and problem solving
has been implemented in the new undergraduate textbook
Electromagnetics [22]. However, the book does not explicitly
refer to the approach as such, never identifying it or mentioning
it on the many occasions when it is applied in the book’s
theoretical derivations and problem solving, nor does it explain
and discuss it, either from the pedagogical point of view or to
draw a comparison to the traditional formal algebraic approach
to vector analysis in electromagnetics. In addition, the geomet-
rical approach to vector analysis can be used in conjunction
with any other textbook on electromagnetic fields and waves. It
can also be applied to teaching and learning electromagnetics
at any level.

This paper is organized as follows. Section II presents and
explains the geometrical and visual approach to teaching and
learning vector analysis in electromagnetics. In Section III, the
proposed approach is illustrated and discussed in several charac-
teristic examples of fields class topics including vector algebra,
application of Maxwell’s integral equations, and spatial differ-
ential vector operators. Section IV discusses class testing and
assessment of student learning, success, and satisfaction in class
delivery using the proposed geometrical and visual approach in
the Electromagnetic Fields I and II courses in the ECE Depart-
ment at Colorado State University, Fort Collins. Section V sum-
marizes the main conclusions of the paper and puts them in a
broader perspective of current and future electromagnetics edu-
cation research.

II. GEOMETRICAL AND VISUAL APPROACH TO TEACHING AND
LEARNING VECTOR ANALYSIS IN ELECTROMAGNETICS

In manipulations with vectors, the proposed geometrical
approach to teaching and learning electromagnetic fields and
waves always emphasizes that vectors are real arrows in space
and not only triplets of numbers. The magnitude of a vector
is primarily appreciated and used as the geometrical length
of the arrow in the context of other geometrical quantities in
the figure; a component of the vector is therefore just another
arrow in the figure, whose length is found as the real length
of the vector arrow multiplied by the cosine or sine of a real
angle identified in the figure (and not found by using abstract
general formulas). For example, if the components of a given
vector in an adopted (e.g., cylindrical) coordinate system in
a structure are needed, they are obtained geometrically as the
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corresponding projections of the vector in the real picture of
the structure, and not formally using analytical transformations
(which are not only unintuitive, but often lead to incorrect
answers).

In addition, line, surface, and volume integrals in multivari-
able integral vector calculus are always viewed and solved, ac-
cording to the proposed geometrical approach, as integrals along
a real line, over a real surface, and throughout a real volume,
respectively, and not formally as single, double, and triple inte-
grals with respect to one, two, or three coordinates in an appro-
priate coordinate system using coordinate transformations and
general algebraic-type formulas.

As an example, according to the geometrical approach,
the electric flux through a Gaussian spherical surface in a
problem with spherical symmetry solved applying Gauss’
law (Maxwell’s third equation) in integral form is understood
simply as the vector magnitude £’ times the area of the sphere
surface S, so as ES = FE4wr?, with r being the sphere ra-
dius; in contrast, the formal approach would perform a double
integration with respect to the angles § and ¢ in a spherical
coordinate system, with an elemental surface area d.S obtained
using coordinate transformations. Even in cases where d.5 is
needed in the integral, it is much better to obtain it geometri-
cally, as the area of a “patch” (a surface element of the sphere)
with sides equal in length to the corresponding elemental arcs
in the 8 and ¢ directions (lengths of arcs are computed simply
as the corresponding radius times the angle and are multiplied
together for the patch area) than to use formal coordinate trans-
formations. Similarly, in a volume integral of a function p(r)
over the volume of a sphere, the elemental volume is taken to
be that of a thin spherical shell of radius » and thickness dr,
so the volume element dv = 4xr2dr. This can be visualized
and obtained (with no differential calculus) as the volume
of a thin flat slab (a “flattened” spherical shell) of the same
thickness (dr) and the same surface area (S = 4mr?), so
as dv = Sdr (surface area times thickness of the slab). The
integration is performed only with respect to 7, rather than
formally performing threefold integration. Similar geometrical
visualizations, rather than algebraic algorithms and formulas,
are used with spatial derivatives, including gradient, diver-
gence, and curl, so that these important operators really come
to life and their physical meaning becomes very obvious and
natural.

As a part of the geometrical approach to electromagnetics
education, a general strategy for solving volume and surface
integrals arising in electromagnetic analysis is also employed.
This strategy basically solves an integral of a function f over
a volume v or a surface S by adopting as large a volume cle-
ment dv, or surface elements d.5, as possible, the only restric-
tion being the condition that f is constant in dv or dS [22]. In
other words, the larger the volume or surface element for inte-
gration, the simpler the integration; it is seldom necessary to use
standard elements that are differentially small in all dimensions
or along all (curvilinear) coordinates. This simple strategy is ex-
tremely useful; it is used extensively throughout the fields and
waves course(s) in all sorts of volume and surface integrals that
possess some kind of uniformity and/or symmetry (that is, in
practically all volume and surface integrals in the courses). An
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example is the computation of the total charge ¢ of a nonuni-
form volume charge distribution inside a sphere with the charge
density depending only on the radial distance from the sphere
center, p = p(r), where the largest volume element over which
p = const is a thin spherical shell of volume dv = 4mr2dr,
obtained as explained in the previous paragraph. This adoption
for dv enables the computation of ¢ by integrating only along
r, whereas the adoption of the standard differential volume ele-
ment (elementary curvilinear cuboid) in a spherical coordinate
system (customarily obtained via differential calculus or coor-
dinate transformations) would require two additional integra-
tions, in angles 6§ and ¢, respectively, in the spherical coordinate
system. Moreover, the integration performed in 7 is visualized
geometrically as volumetric integration via layering the sphere,
and not as parametric integration. Another trivial but extremely
frequent (in the fields courses) example is the adoption of v (S)
instead of dv (d.S) in cases when f = const in the entire inte-
gration domain v (5), yielding [ fdv = fuv (e.g., @ = puv, for
p = const).

On the other hand, effective use of different types of sym-
metry in all sorts of electromagnetic computations and applica-
tions is promoted in the courses as being the most useful general
solution technique; students are taught that this should always
be considered prior to actually carrying out any computation and
applied as a part of the analysis whenever possible. Ultimately,
everything in nature is more or less symmetrical, and almost all
industrial products possess a high level of symmetry.

To support the physical and geometrical approach to vector
analysis and computation in electromagnetics, elements of
vector algebra and vector calculus are presented and used
gradually across the course topics. These are presented with
an emphasis on physical insight and immediate links to elec-
tromagnetic field theory concepts, instead of having a purely
mathematical review of vector analysis as a separate topic
(traditionally the first chapter of a textbook). In general, it is
pedagogically much better to have elements of vector algebra
and calculus fully integrated with the development of the
electromagnetic theory, where they actually belong and really
come to life. Hence, the mathematical concepts of gradient,
divergence, curl, and Laplacian, as well as line (circulation),
surface (flux), and volume integrals, are literally derived from
physics (electromagnetics), where they naturally emerge as
integral parts of electromagnetic equations and laws, and where
their physical meaning is almost obvious and can readily be
made very visual. Furthermore, if the vector algebra and vector
calculus are approached geometrically, as proposed in this
paper, even students largely unfamiliar with the concepts of
vector analysis will be able to acquire them directly through
the electric and magnetic field topics in the course.

III. GEOMETRICAL AND VISUAL APPROACH: EXAMPLES
AND DISCUSSION

A. Vector Algebra

As the first example, consider a simple problem of finding the
electric force on each of the three equal point charges @ placed
at the three vertices of an equilateral triangle with sides « in free
space. According to the traditional, formal, purely “algebraic”

approach to teaching/learning vector analysis, the first step is to
find the x- and y-coordinates [since this is a two-dimensional
(planar) problem, the coordinate z can be set to be zero] of the
charge points in an adopted Cartesian coordinate system, and the
position vectors of these points, r; = r1,X+7r1,¥, r2 = 72, X+
ro,¥, and ry = r3.X + r3,¥, with respect to the coordinate
origin. The second step is to apply Coulomb’s law to express
the electric force F15 on charge 2 due to charge 1 [7], [8]
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with ng denoting a unit vector directed from charge 1 toward
charge 2. Similar expressions can be written for forces F.i3
and F.o3. In the third step, the resultant force on charge 3, for
instance, is computed using the principle of superposition, as the
vector sum of partial forces due to charges 1 and 2, respectively,
yielding
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from which Cartesian components of the vector F.3, Fi3, and
I3y, can be easily obtained, with analogous computations for
total forces F.; and F.z, on charges 1 and 2. Finally, the mag-
nitude of F.3 and the angles that it makes with the coordinate
axes are found as

— 2 2
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This approach to evaluation of electric forces due to multiple
charges is very general, as it can be implemented for any
mutual position of the three (or more) equal charges in the
zy-plane, but is also very formal, abstract, and dry. Although
very efficient and versatile computationally, pedagogically it
adds practically nothing to the understanding and mastery of
the underlying physical phenomena, such as mutual interaction
of charged bodies, dependence of the direction and strength
of electric forces on the actual distances and mutual position
of charges, individual actions of partial forces on a charge,
the common action of multiple forces and their balance and
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(a)
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(b)

Fig. 1. Example of evaluation of electric forces due to multiple charges: (a) three equal point charges at the vertices of an equilateral triangle and (b) computation

of the resultant electric force on one of the charges.

imbalance when acting together, which components of vectors
add and which ones cancel, and the actual action of the resultant
force on a charge in terms of the magnitude and orientation of
the vector.

Essentially, the only intuitive and visual structure-dependent
component of the work that the students do, based on the actual
geometry and physics of the problem, is determining the Carte-
sian coordinates of the charge points, which are then input into
the general formulas in (1)—(3). The subsequent purely mathe-
matical “crunching” of these formulas is done in a fashion com-
pletely detached from the actual problem and from the real pic-
ture of the structure that is under consideration. Any errors that
the students make in “crunching” the formulas and numbers will
only effect the final result of the computation and cannot be
identified and connected to a misconception or quantitative mis-
take in a particular component of the analysis. Errors thus cannot
serve as an element of the learning process. The final result for
the magnitude and the line and orientation of action of the total
force on a charge emerges from a “black box,” as a result of
postprocessing the force components, and appears as almost a
surprising and unexpected combination of numerous mutually
unrelated numerical computations. Although students might use
some physical intuition to check the meaningfulness of the re-
sult, this cannot be compared to their intuitively, geometrically,
and visually following the entire analysis and solution process
and checking all partial results as well as the final result.

This approach may be characterized as that taken by a pro-
grammer “instructing” a computer to evaluate electric forces
due to multiple charges. In fact, the above steps and (1)—(3) are
ideally suited for implementation in a computer program, for
example, using MATLAB.

In contrast, in the proposed geometrical and visual approach
to vector analysis, the students are taught to draw and then
“read” the figure of the structure and to just “translate” it to
equations at each stage of the computation. They are also taught
to take advantage of symmetry and any specifics of the problem
at hand whenever possible. In addition, the geometrical ap-
proach generally treats vectors as real arrows in space and not
only triplets (or doublets in 2-D problems) of numbers. For the
example with three charges at the triangle vertices, therefore,
the students are taught that, even with no computation what-
soever, it can be concluded from the symmetry of the problem

and the principal statement of Coulomb’s law that the resultant
forces on the charges, F.i, Fos, and F.3, all have the same
magnitude and are positioned in the plane of the triangle as
indicated in Fig. 1(a) [22]. From Coulomb’s law and Fig. 1(a),
the magnitudes of the individual partial forces on charge 3 (the
lower right-hand charge) are given by

2

Felg = Fegg - (4)

dmega?
and both forces are repulsive, as shown in Fig. 1(b). By virtue of
the principle of superposition, the resultant force on this charge
is obtained graphically; students do this by drawing (sketching)
the force arrows in the figure, as the vector sum of vectors F13
and F.»3, as depicted in Fig. 1(b). The students then realize from
the figure that the vector F .3 is positioned along the symmetry
line between charges 1 and 2, i.e., between vectors F.153 and
F.23, and that it makes the angle « = 7 /6 with both vectors.
They simply read this from the figure (with no formulas). The
magnitude of the resultant vector, F.3, is therefore twice the
component of any of the partial vectors along the symmetry line.
In this, the magnitude of the vector F;3 is considered as the
geometrical length of the corresponding arrow in Fig. 1(b), and
its component along (projection on) the symmetry line is just
another arrow in the figure, whose length is found as the length
of the F.3 arrow times the cosine of the angle o, which results
in

3 — 3()2
Fos = 2(Fa3cosa) = 2Fe13\/— = Fa3V3 = V3@ .
2 4drega?

)

B. Application of Maxwell’s Integral Equations

The next example discusses the application of Gauss’ law in
integral form to determine the electric field due to known charge
distributions. When introducing and explaining the application
of Gauss’ law, in conjunction with the geometrical approach to
electromagnetic field computation, students are told that while
the law is always true, and can be applied to any charge distribu-
tion and any problem, only in highly symmetrical cases can it be
used to analytically solve for the electric field intensity vector
E due to a given charge distribution. Namely, the application of
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Gauss’ law to find E only gives a solution for a closed surface
S (Gaussian surface) that satisfies two conditions: 1) E is ev-
erywhere either normal (perpendicular) or tangential to .S; and
2) E = const on the portion of S on which E is normal. In
these cases, it is possible to bring the field intensity & outside
the integral sign in the law equation and solve for it.

These basic ideas are then applied to numerous problems
with spherical, cylindrical, and planar symmetry, respectively,
involving both uniform and nonuniform charge distributions.
For instance, for a problem with spherical symmetry, such as
finding the field due to a nonuniform volume charge whose den-
sity p varies only in a spherically radial direction in free space,
S is a spherical surface of radius », and £ on S is obtained, from
Gauss’ law, as simply as E(r) = Qs/(0S) = Qs/(dmegr?),
with Qg standing for the total charge enclosed by S, on the
right-hand side of the law equation, which in turn is obtained
applying the general integration strategy outlined in Section II.
Similar discussions are carried out with regards to the applica-
tion of Ampére’s law in evaluating the magnetic field due to
given current distributions and Faraday’s law of electromag-
netic induction.

Applications of Maxwell’s integral equations, if presented
in a traditional fashion, are extremely problematic for students,
mainly because they require multifold integrations in curvi-
linear coordinate systems, and because so many mathematical
concepts, variables, and degrees of freedom appear on both
sides of the integral equation. The geometrical approach, on
the other hand, teaches the students to always expand the
left-hand side of Gauss’ law as the field vector magnitude
times the area of the appropriate Gaussian surface (or its parts),
found completely geometrically (visually) from first principles.
The enclosed charge on the right-hand side of the equation is
determined in the simplest way possible, almost always as the
corresponding charge density times the volume, surface area,
or line length, depending on the nature of the charged structure.
This works analogously for Ampére’s and Faraday’s laws.
Once the students “get” this and realize that the integrals in
Maxwell’s equations appearing in undergraduate fields courses
can practically always be reduced to the most basic geometrical
manipulations, they are equipped to rapidly, smoothly, and joy-
fully use this understanding and knowledge on many occasions
in their courses and homework, in all sorts of theoretical studies
and practical applications in field computations; in analysis of
capacitors, resistors, inductors, ac machines and transformers,
and transmission lines; in boundary-value problems; in wave
propagation; and so on.

C. Spatial Differential Vector Operators

A final example will consider how to introduce the gradient,
one of the most important spatial differential operators, in an
undergraduate electromagnetic fields course, first in Cartesian
coordinates, and then its extension to a curvilinear, e.g., cylin-
drical, coordinate system. Traditionally, elements of vector al-
gebra and vector calculus are presented as a separate set of
topics in lectures (or a separate chapter in a textbook) before the
actual electric and magnetic field topics (chapters). Thus, for in-
stance, the gradient operator might be introduced by considering
the spatial variation of a scalar function, for example, the tem-
perature, T', in Cartesian (2, y, z) coordinates, with Ty (z, y, )
denoting the temperature at a point Pi(z, y, z) in a region of

space and To(z + dz,y + dy. z + dz) that at a nearby point,
Py(x +dz, y +dy, 2+ dz), whose position vector with respect
to P is given by [11]

dl = dax + dyy + dzz. (6)

It is pointed out to the students that, from differential calculus,
the differential temperature amounts to

oT orT arT

—dz + — d;
az " + dy y+ 0z
and, sincedz = x-dl, dy =y -dl,anddz = z - dl, (7) can be
recast as

dI' =T, -1 =

dz )

aT . aT ., oT

d7'= — x-dl+ — y-dl + —z-dl
axx +0yy +8zz
aT aT oT
=—%x+—y¥ z | -dl=vVT-dl. (8
<awx+8;yY+az Z) ‘ ( ®)

The gradient of the scalar function 7' is then introduced as
the above expression in the parentheses, sometimes written
as grad T, but much more frequently using the del or nabla
operator (V), so as VT,

grad T = VT = (?—T)A(-l- or

oz

and is characterized as defining the change in temperature d7°
corresponding to a vector change in position dl in (8).

To convert (9) to a cylindrical coordinate system, shown in
Fig. 2(a), where an arbitrary point is represented by coordi-
nates (7, ¢, z), the student can use relations (transformations)
between Cartesian and cylindrical coordinates [11]

A+6Tﬁ ©
dy Y dz z

r=+/x2 + 9> tan ¢ = y (10)
x
and then differential calculus
ar 9T or 9T o IT 0z (n
dr  Ir dx 0P dx 0z Oz

where 0z /Jx = 0 because z is orthogonal to . From the coor-
dinate relations in (10), the students obtain

or T lol0) 1 .
%_7372_’_&/2 = cos ¢ Frialie sin ¢ (12)
and hence
oT oT  sin¢ 0T
ox cos ¢ or r O¢ (13)

They can use this expression to replace the z-component of the
vector V7' in (9), and a similar procedure can be carried out to
obtain an expression for 9T/ Jy in terms of r and ¢. Finally, the
students employ another set of cylindrical-to-Cartesian coordi-
nate transformations
X = cos ¢r — sin ¢g$ ¥y = sin ¢r + cos ¢qA$ (14)
which completes the conversion of (9) into the expression for
the gradient in cylindrical coordinates
0TA+ 1 8Tq§+ aT ,
— 1+ - — —Z
ar r J¢ 0z
As a part of the proposed physical and geometrical approach
to vector analysis in electromagnetics, on the other side,

grad T = VT = (15)
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Fig. 2. (a) Point M(r, ¢, z) and coordinate unit vectors in a cylindrical coordinate system. (b) Derivation of the differential relationship in (19) between the

electric field intensity vector Ei and the electric potential V' in electrostatics.

elements of vector algebra and vector calculus are introduced
fully integrated with electromagnetic field theory concepts,
where they naturally belong and really come to life. Thus,
the gradient is introduced through a differential relationship
between the electric field intensity vector E and the electric
potential V' in electrostatics. This relationship, in turn, is de-
rived from first principles and geometrical manipulations. The
students consider a movement (displacement) from a point A
in an electrostatic field at which the potential is V)4 to a point B
for an elementary distance d/ = dx along an z-axis, as shown
in Fig. 2(b) [22], with the resulting change in the potential
amounting to the potential at B (new potential) minus the
potential at A (starting potential), that is

dV = Vg — V. (16)
On the other hand, potential difference (voltage) between
points A and B, which equals the line integral of E from A to
B, where the integral sign is actually not needed because the
path is differentially small, can be written as

B
Va—Vg = / E.dl
JA
=E.-dl=FEdlcosa = Fcosadr = E, dzx

(17)

with E, standing for the x-component of E, which equals the

projection of E on the x-axis, £ cos «, in Fig. 2(b). Combining

(16) and (17), the students realize that
%
dz

and, similarly, the projections of the vector EE on the other two
axes of the Cartesian coordinate system are obtained as F, =
—dV/dyand E, = —dV/dz, so the complete vector expression
for the electric field E is given by

B, = (18)

E=FEx+E,;y+E.2
_ 8_V§(+8V .oV
- Jx Oz

sy 7
5 z>— vV o (19)

where the expression in the parentheses is the gradient in Carte-
sian coordinates of the electric potential, V' = V{(x, vy, ), de-
noted as V'V, as in (9).

To find the expression for the gradient in a cylindrical coordi-
nate system, in Fig. 2(a), it is explained to the students that since
¢ is not a length coordinate but an angular one, an incremental
distance d/ corresponding to an elementary increment in the co-
ordinate, d¢, equals dI = rd¢ (the length of an arc of radius r
defined by the angle d¢). They are further told that this is ex-
actly the displacement d/ in Fig. 2(b) in computing the change
in potential AV in (16)—(18), now in the ¢ direction. Therefore,
the ¢-component of the electric field vector at the point M in
Fig. 2(a) equals [22]

v
dl

dV

By = -
' rd¢

(20)

and not just —dV/d¢. The other two cylindrical coordinates,
r and z, are length coordinates, so no modification is needed,
E,. = —dV/dr and E, = —dV/dz. Consequently, the electric
field vector can be computed as the gradient of V. = V(r, ¢, 2)
in cylindrical coordinates, in place of (19), as follows:

E=FE,i+Ey,p+ E.2
AP
v, 19V
or r d¢

:—VV:—( LoV, ﬂz) @1)
0z
which is equivalent to the result in (15).

Pedagogically, the approach in (16)—(21) has multiple advan-
tages over that in (6)—(15), and similar conclusions hold for
derivations and computations involving other spatial differen-
tial operators, e.g., divergence and curl. The gradient operator in
Cartesian coordinates is derived in (16)—(19) from the integral
relationship between the electric field intensity vector and the
potential in electrostatics, namely, from the fact that the voltage
between the two close points equals the component of the elec-
tric field vector along the path between the points times the path
length, in Fig. 2(b). This fact is very familiar to students by the
point in the course when the gradient is introduced. Simple ge-
ometrical manipulations to find the field component from the
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figure, by considering the lengths of the E and E,, arrows in
order to find the magnitudes of the corresponding vectors, are
used as well. In addition, the gradient is literally derived from
physics (electrostatic field theory), giving directly the differen-
tial relationship between E and V. It also makes very obvious
and visual the otherwise very abstract physical meaning of field
components as being equal to the negative of the rate of change
of the potential in that direction. With this approach, further-
more, the extension of the gradient concept to cylindrical (or
spherical) coordinates comes out extremely smoothly and natu-
rally. The entire derivation of the expression in (21) essentially
consists of geometrically and visually identifying the displace-
ment (path) for finding the potential change (voltage) corre-
sponding to an angular increment as the length of the associated
arc in the figure (that is, the radius times the angle), with the
incremental distance d/ in (20) being treated not through differ-
ential calculus but as a real length (of an arc).

The purely mathematical and formal approach to introducing
the gradient in Cartesian coordinates in (6)—(9) lacks all the
above pedagogical components. In addition, the differential
representation for d7" in (7), taken from differential calculus,
is completely artificial, unintuitive, and nonvisual to the stu-
dents, so the introduction of grad 7" in (8) appears as a purely
formal mathematical manipulation. The conversion of the
expression for grad T to cylindrical (or spherical) coordinates
in (10)—(15) is yet another striking example of the complete
dryness and unnecessary pure mathematical complexity of
the traditional formal algebraic approach to vector analysis in
electromagnetics. It is based on Cartesian-to-cylindrical trans-
formations of coordinates, in (10), and cylindrical-to-Cartesian
transformations of coordinate unit vectors, in (14), along with
another artificially invoked formula from differential calculus,
in (11). This sort of approach—when presented in a classroom
or read from a book—will not engage the students at all. It
contains too many formulas, which are completely detached
from physics; moreover, coordinate transformations in (10) and
(14), if taken from a general table (sheet) of formulas, break
a continuous flow of thought and understandable derivation.
Also, formal use of generic analytical transformations by the
students in similar situations (not explicitly worked out in a
book or a lecture/recitation), without the actual picture of the
geometry under consideration, often leads to incorrect answers
and errors. On the other hand, if the relationships in (10) and
(14) were derived and justified from the geometry, the already
large and pedagogically overwhelming number of equations,
(10)—(15), would be even larger, in comparison to just one
simple equation, (20), involved in the geometrical approach
leading to the gradient expression in (21).

IV. CLASS TESTING AND ASSESSMENT

The geometrical approach to teaching and learning vector
analysis as applied to electromagnetics was class tested in the
ECE 341 Electromagnetic Fields I and ECE 342 Electromag-
netic Fields II courses in the Department of Electrical and
Computer Engineering at Colorado State University (CSU)
during the academic years 2008-2009, 2009-2010, and
2010-2011. The content of ECE 341 includes electrostatic
fields in free space and in dielectrics, capacitance, electric en-
ergy, steady electric currents, magnetostatic fields in free space

and in material media, electromagnetic induction, inductance,
magnetic energy, slowly time-varying (quasistatic) electromag-
netic fields, and general Maxwell’s equations. ECE 342 covers
rapidly time-varying electromagnetic fields, propagation of
uniform plane electromagnetic waves in free space and in
various media, wave reflection, transmission, and refraction,
transmission-line theory using frequency- and time-domain
analysis, rectangular metallic waveguides, and fundamentals
of radiation and antennas. The student learning, success, and
satisfaction in these courses have been dramatically improved
when compared to the class delivery not using the geometrical
approach.

Student attendance in all classes was practically 100%
throughout the semester (versus less than 50% with the conven-
tional class delivery), with an extremely high official retention
in classes. The passing rate of students in courses was improved
by about 50%, and the average final course grade by about one
grade point.

Evaluations of the course and instructor by students in classes
taught using the geometrical and visual approach were consis-
tently extremely high, despite students being expected to per-
form at a very high level on all assignments. For instance, stu-
dent evaluation numerical ratings averaged over multiple ques-
tions on student course surveys were about 9.7 (on the scale
from 0 to 10), about a 70% increase from the previous average
score. Also, the percentage of students who “Strongly Agree”
or “Agree” that “Overall, I would rate this course as good” was
100% in every course and every year (which is extremely un-
usual for fields courses), and the same percentage of students
(100%) gave the same combination of responses to the ques-
tion “Overall, I would rate this teacher as good.” In addition,
all written comments by students in their evaluation forms were
extremely positive.

In a recent anonymous unofficial survey of students in the
ECE 341 class, 31 students, out of 32 surveyed, answered posi-
tively to the question “Did the geometrical approach to teaching
and learning vector analysis as applied to electromagnetic fields
help your understanding of electromagnetic field concepts and
solving electromagnetic problems?” (with 19 students stating
“Yes, a lot”), and only one student answered negatively (with no
students with “No opinion”). Note that students in this class are
very well aware of what is meant by the “geometrical approach”
in the course. Almost all of the students surveyed provided com-
ments emphasizing the great difference this approach had made
in their understanding of concepts and their problem-solving
skills, with most of them comparing this approach to that used
in their Electromagnetism Physics class (PH 142), which was
their only other college experience in the similar topics.

The Electromagnetics Concept Inventory (EMCI) [23] is
an assessment tool for measuring students’ understanding of
fundamental concepts in electromagnetics that was developed
within the NSF Foundation Coalition project [24]. Whether
used independently or with EMCI questions incorporated in
class midterm and final exams, this also showed great im-
provements. Unfortunately, as yet there are no nationally and
internationally calibrated, accepted, and established standard
assessment tools for junior-level electromagnetic field courses,
with established and validated performance norms and statistics
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over many institutions and many years of testing. Therefore,
there were no opportunities to evaluate the performance of
students taught electromagnetic fields using the geometrical
approach to vector analysis against national and international
performance norms on standardized assessment tools. Note that
an example of such an established assessment tool is the Force
Concept Inventory (FCI) [25], designed to measure conceptual
understanding of Newtonian Mechanics; the EMCI (like other
Foundation Coalition concept inventories) is inspired by the
FCI and its impact on physics education.

With the geometrical approach to teaching/learning elec-
tromagnetic fields in ECE 341 and 342, student interest in
follow-up elective courses in the electromagnetics, antennas,
and microwaves area has dramatically increased. For example,
the class enrollment in ECE 444 Antennas and Radiation at
CSU rose from six and four in Fall 2007 and Fall 2008 to 13,
13, and 14 in Fall 2009, Fall 2010, and Fall 2011, respectively.
Students’ interest in research opportunities for undergraduates
and in senior design projects in the electromagnetics area has
also dramatically risen. For example, the total number of senior
design students in this area grew from four per year in both
academic years 2007-2008 and 2008—-2009 to eight per year in
both 2011-2012 and 2012-2013.

V. CONCLUSION

This paper has proposed a geometrical approach to teaching
and learning vector calculus and analysis as applied to elec-
tromagnetic field theory and problem solving, and a general
“visual” approach to understanding the physics and using
mathematical models in electromagnetics, for junior-level
electromagnetics courses in the undergraduate Electrical En-
gineering curriculum. As opposed to the traditional formal
algebraic approach, used in the existing electromagnetics
textbooks and teaching/learning practices, the proposed ap-
proach is based on geometrical visualizations and emphasizes
the geometry of the problem, rather than formal algebraic
algorithms and brute-force algebraic computation. It has been
illustrated and discussed via several characteristic examples
of vector algebra, application of Maxwell’s integral equations,
and spatial differential vector operators. It can also be applied
to electromagnetics education at any level.

The ultimate goal of this present work and of the continued
future work in this area is to significantly improve students’
understanding of electromagnetics and their attitude toward it.
Such an improvement has been achieved and confirmed by pre-
liminary class testing and assessment of student learning, suc-
cess, and satisfaction in the Electromagnetic Fields I and II
courses in the ECE Department at Colorado State University.
Of course, for the proposed approach to become an established
way of teaching a very major component of junior-level fields
courses in EE, ECE, and physics curricula, and of electromag-
netics education in general, it needs to be tried by a large number
of instructors in diverse institutions and programs, with diverse
teaching styles and curricular and course objectives. Thus, the
main purpose of this paper is to present this approach to elec-
tromagnetics educators and education researchers and to explain
its perceived advantages and benefits. It is also meant to open a
discussion on this important and timely topic. In general, unlike
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in some other areas of science and engineering, there seems to
be a lack of such discussions in electromagnetics education re-
search (within EE and related disciplines). In addition, the paper
is intended to alert mathematics instructors teaching vector anal-
ysis courses as to the real needs of students being prepared for
electromagnetics courses and to possibly initiate or enhance a
conversation between engineering and mathematics instructors
and educators on this issue. The disconnect between electro-
magnetics and vector mathematics courses is precisely due to
the fact that electromagnetics really needs the geometrical ap-
proach, whereas students are trained to use a more mathemat-
ical methodology invoking coordinate transformations and the
like. The geometrical approach may indeed be useful not only
to electromagnetics instructors, but also (and perhaps even more
s0) to mathematics instructors of (vector) calculus as well, as a
complementary means to expand its appeal to engineering and
physics students. Finally, the goal is to possibly initiate and mo-
tivate the development and dissemination of other ideas, strate-
gies, and implementations in electromagnetic fields instruction
and pedagogy, toward an “ideal” way of teaching and learning
electromagnetics. This is especially important given both the
growing relevance of electromagnetics in emerging technolo-
gies and applications in practically all ECE areas and the evident
decline (on average) of the mathematical and problem-solving
preparedness of students taking fields courses.

REFERENCES

[1] K. F. Warnick, R. H. Selfridge, and D. V. Arnold, “Teaching electro-
magnetic field theory using differential forms,” IEEE Trans. Educ., vol.
40, no. 1, pp. 5368, Feb. 1997.

[2] B. Beker, D. W. Bailey, and G. J. Cokkinides, “An application-en-
hanced approach to introductory electromagnetics,” IEEE Trans.
Educ., vol. 41, no. 1, pp. 31-36, Feb. 1998.

[3] M. Popovi¢ and D. D. Giannacopoulos, “Assessment-based use of
CAD tools in electromagnetic field courses,” I[EEE Trans. Magn., vol.
41, no. 5, pp. 18241827, May 2005.

[4] M. F. Iskander, “Technology-based electromagnetic education,” IEEE
Trans. Microw. Theory Tech., vol. 50, no. 3, pp. 1015-1020, Mar. 2002.

[5] S. Rengarajan, D. Kelley, C. Furse, and L. Shafai, “Electromagnetics
education in North America,” in Proc. URSI Gen. Assembly, New
Delhi, India, Oct. 2005.

[6] J.Mur, A. Uson, J. Letosa, M. Samplon, and S. J. Artal, “Teaching elec-
tricity and magnetism in electrical engineering curriculum: Applied
methods and trends,” in Proc. Int. Conf. Eng. Educ., Gainesville, FL,
Oct. 16-21, 2004.

[7] W. H. Hayt, Jr. and J. A. Buck, Engineering Electromagnetics, 6th
ed. New York: McGraw-Hill, 2001.

[8] M. N. O. Sadiku, Elements of Electromagnetics, 3rd ed. New York:
Oxford Univ. Press, 2001.

[9] N.N. Rao, Elements of Engineering Electromagnetics, 6thed. Upper
Saddle River, NJ: Prentice-Hall, 2004.

[10] M. E. Iskander, Electromagnetic Fields and Waves.
IL: Waveland Press, 2000.

Prospect Hills,

[11] F. T. Ulaby, Fundamentals of Applied Electromagnetics. Upper
Saddle River, NJ: Prentice-Hall, 2001.
[12] U. S. Inan and A. S. Inan, Engineering Electromagnetics. Menlo

Park, CA: Addison-Wesley-Longman, 1999.

[13] D. K. Cheng, Field and Wave Electromagnetics, 2nd ed. Reading,
MA: Addison-Wesley, 1989.

[14] J. D.Kraus and D. A. Fleisch, Electromagnetics With Applications, 5th
ed. New York: McGraw-Hill, 1999.

[15] K. R. Demarest, Engineering Electromagnetics.
NJ: Prentice-Hall, 1998.

[16] S. M. Wentworth, Fundamentals of Electromagnetics With Engi-
neering Applications. New York: Wiley, 2005.

[17] C.R. Paul, Electromagnetics for Engineers With Applications.
York: Wiley, 2004.

Upper Saddle River,

New



NOTAROS: GEOMETRICAL APPROACH TO VECTOR ANALYSIS IN ELECTROMAGNETICS EDUCATION 345

[18] K. E. Lonngren, S. V. Savov, and R. J. Jost, Fundamentals of Electro-
magnetics With MATLAB, 2nd ed. Raleigh, NC: SciTech, 2007.

[19] C. T. A. Johnk, Engineering Electromagnetic Fields and Waves, 2nd
ed. New York: Wiley, 1988.

[20] N. Ida, Engineering Electromagnetics, 2nd ed. New York: Springer,
2004.

[21] D.J. Griffiths, Introduction to Electrodynamics,3rded. Upper Saddle
River, NJ: Pearson-Addison-Wesley, 1999.

[22] B. M. Notaros, Electromagnetics. Upper Saddle River, NJ: Pearson
Prentice-Hall, 2010.

[23] B. M. Notaros, “Concept inventory assessment instruments for electro-
magnetics education,” in [EEE Antennas Propag. Soc. Int. Symp. Dig.,
San Antonio, TX, June 16-21, 2002, vol. 1, pp. 684—-687.

[24] D. L. Evans, D. Gray, S. Krause, J. Martin, C. Midkiff, B. M. Notaros,
M. Pavelich, D. Rancour, T. Reed-Rhoads, P. Steif, R. Streveler, and K.
Wage, “Progress on concept inventory assessment tools,” in Proc. 33rd
ASEE/IEEE FIE, Boulder, CO, Nov. 5-8, 2003, pp. T4G.1-T4G.8.

[25] D. Hestenes and 1. Halloun, “Interpreting the force concept inventory,”
Phys. Teacher, vol. 33, no. 8, pp. 502-506, 1995.

Branislav M. Notaro§ (M’00-SM’03) was born in Zrenjanin, Yugoslavia, in
1965. He received the Dipl.Ing. (B.S.), M.S., and Ph.D. degrees in electrical
engineering from the University of Belgrade, Belgrade, Yugoslavia, in 1988,
1992, and 1995, respectively.

From 1996 to 1999, he was an Assistant Professor with the School of Elec-
trical Engineering, University of Belgrade. He spent the 1998-1999 academic
year as a Visiting Scholar with the University of Colorado at Boulder. He was an
Assistant Professor, from 1999 to 2004, and Associate Professor, from 2004 to
2006, with the Department of Electrical and Computer Engineering, University
of Massachusetts Dartmouth. He is currently a Professor of electrical and com-
puter engineering and Head of the Electromagnetics Laboratory with Colorado
State University, Fort Collins. His publications include more than 100 journal
and conference papers and three workbooks in electromagnetics and in funda-
mentals of electrical engineering (basic circuits and fields). He is the author of
the textbook Electromagnetics (Pearson Prentice-Hall, 2010) for undergradu-
ates, as well as the Electromagnetics Concept Inventory (EMCI), an assessment
tool for electromagnetic fields and waves. His research interests and activities
are in computational electromagnetics, antennas, and microwaves, and in par-
ticular in higher-order computational electromagnetic techniques based on the
method of moments, finite element method, physical optics, domain decomposi-
tion method, diakoptics, and hybrid methods as applied to modeling and design
of antennas, scatterers, and microwave and optical devices and circuits.

Dr. Notaros served as General Chair for the 11th International Workshop
on Finite Elements for Microwave Engineering (FEM), June 4-6, 2012,
Estes Park, CO. He was the recipient of the 2005 IEEE MTT-S Microwave
Prize (best-paper award for IEEE TRANSACTIONS ON MICROWAVE THEORY
AND TECHNIQUES); 1999 IEE Marconi Premium (best-paper award for /EE
Proceedings on Microwaves, Antennas and Propagation); 1999 URSI Young
Scientist Award; 2005 UMass Dartmouth Scholar of the Year Award; 2004
UMass Dartmouth College of Engineering Dean’s Recognition Award; 1992
Belgrade Chamber of Industry and Commerce Best M.S. Thesis Award; 2009,
2010, and 2011 Colorado State University Electrical and Computer Engineering
Excellence in Teaching Awards; 2010 Colorado State University College of
Engineering George T. Abell Outstanding Teaching and Service Faculty
Award; and 2012 Colorado State University System Board of Governors
Excellence in Undergraduate Teaching Award.



