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Abstract—A novel double-higher-order large-domain Galerkin-
type method of moments based on higher order geometrical
modeling and higher order current modeling is proposed for
analysis of composite dielectric and metallic radiation/scattering
structures combining the volume integral equation (VIE) ap-
proach for dielectric parts and the surface integral equation
(SIE) approach for metallic parts of the structure. The technique
employs Lagrange-type interpolation generalized hexahedra and
quadrilaterals of arbitrary geometrical-mapping orders for the
approximation of geometry and hierarchical divergence-con-
forming polynomial vector basis functions of arbitrary expansion
orders for the approximation of currents within the elements.
The double-higher-order VSIE (VIE-SIE) method is extensively
validated and evaluated against the analytical solutions and the
numerical results obtained by alternative higher order methods.

Index Terms—Antennas, curved parametric elements, electro-
magnetic analysis, higher ordermodeling, method ofmoments, nu-
merical techniques, polynomial basis functions, scattering, volume
integral equations, wire-plate-dielectric structures.

I. INTRODUCTION

T HE method of moments (MoM) for discretizing integral
equations in electromagnetics is an extremely powerful

and versatile general numerical methodology for electromag-
netic-field simulation in antenna and scattering applications
[1]–[5]. For antennas and scatterers composed of metallic
and homogeneous linear dielectric parts, the MoM is most
frequently applied in conjunction with the surface integral
equation (SIE) approach [2], [6], [7], where both electric and
magnetic equivalent (artificial) surface currents appear as
unknowns in SIEs. An alternative approach to MoM analysis
of dielectric scatterers is the volume integral equation (VIE)
approach [8]–[11], where, employing the volume equivalence
principle, a structure containing linear dielectric materials
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of arbitrary inhomogeneity and complexity is represented
by a distribution of unknown volume electric (polarization
and conduction) current (the real current) radiating in free
space. The analysis of composite dielectric and metallic ra-
diation/scattering structures can be performed combining the
VIE for dielectric parts and the SIE for metallic parts, giving
rise to a hybrid VIE-SIE or VSIE formulation, which solves
simultaneously for the volume current throughout the dielectric
domains and the surface current over the metallic surfaces of
the composite structure [12]–[14].
However, practically all the existing three-dimensional

(3-D) MoM-VIE and MoM-VSIE simulation tools for di-
electric/metallic structures are low-order or small-domain
(subdomain) techniques—the structure is modeled by volume
(and surface) geometrical elements that are electrically very
small and the volume (and surface) electric currents within
the elements are approximated by low-order (zeroth-order and
first-order) basis functions. More precisely, the elements (cells
and patches) are on the order of in each dimension,
being the wavelength in the medium. This results in a very
large number of unknowns (unknown current-distribution
coefficients) needed to obtain results of satisfactory accuracy,
with all the associated problems and enormous requirements in
computational resources. In addition, commonly used 3-D VIE
elements are in the form of cubes, bricks (parallelepipeds), and
tetrahedra, all with planar sides, and thus they do not provide
enough flexibility and efficiency in modeling of structures with
pronounced curvature.
An alternative which can greatly reduce the number of un-

knowns for a given problem and enhance further the accuracy
and efficiency of the MoM-VIE analysis in antenna/scattering
applications is the higher order or large-domain (entire-domain)
computational approach [15]. According to this approach, a
structure is approximated by a number of as large as possible
geometrical elements, and the approximation of current (or
field) components within individual elements is in the form of
a single (three-fold) functional series of sufficiently high order.
Only relatively recently the computational electromagnetics
(CEM) community has started to extensively investigate and
employ higher order surface and volume elements and higher
order basis functions in the frame of MoM, including the SIE
formulation [16]–[19], VIE approach [20]–[29], and VSIE
hybrid [30]–[34], as well as the finite element method (FEM)
[35]–[38].
This paper proposes a novel higher order and large-do-

main Galerkin-type MoM-VIE technique for 3-D analysis of
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radiation/scattering structures based on higher order geomet-
rical modeling and higher order current modeling, which we
refer to as a double-higher-order VIE method. The volume
geometrical elements are Lagrange-type interpolation gen-
eralized hexahedra of arbitrary geometrical-mapping orders.
The basis functions for volume currents are hierarchical di-
vergence-conforming 3-D polynomial vector basis functions
of arbitrary expansion orders. The method enables as large as
about VIE generalized hexahedra with curvature
modeling using high (e.g., fourth) geometrical-mapping orders
and -refined current distributions of high (e.g., sixth) orders
of basis functions. Additionally, a whole spectrum of element
sizes, geometrical orders, and current-approximation orders
can be used at the same time in a single simulation model of a
complex structure, making this method essentially a combined,
low-to-high, order method and enabling -refinement of
solutions.
The proposed technique represents a generalization of the

MoM-VIE technique [21], where trilinear hexahedra (volume
elements of the first geometrical order) are used with higher
order polynomial current expansions. It also represents a VIE
version of the double-higher-order SIE method [17], on one
side, and a MoM version of the double-higher-order FEM [37],
on the other side. In fact, this is a double-higher-order VIE-SIE
or VSIEmethod, as it includes the corresponding SIE discretiza-
tion of metallic surfaces, and in that sense may be considered
a generalization of the MoM-VSIE technique [30], which uses
volume and surface elements of the first geometrical order in
conjunction with polynomial large-domain volume and surface
current approximations.
On the other hand, when compared with the alternative

higher order VIE and VSIE scattering techniques [24]–[29],
[33], and [34], the proposed technique is a wire-plate-dielec-
tric antenna/scattering code. In addition, the present work
demonstrates a dramatic improvement of results when using
geometrical modeling of the 4th order instead of the 2nd order
geometrical modeling, as well as the first single-element,
literally entire-domain, models of 3-D scatterers of general
shapes (note that such an entire-domain solution to open-region
problems is unique not only looking at existing VIE methods
but at all available CEM methods overall). Other examples
demonstrate versatility of the proposed method in analysis of
electrically larger and more complex and practical structures.
Section II of this paper presents the theoretical background

and numerical components of the new double-higher-order
VSIE technique. In Section III, the technique is validated and
its accuracy and efficiency evaluated and discussed in several
characteristic examples.

II. NOVEL DOUBLE-HIGHER-ORDER VSIE METHOD FOR
COMPOSITE DIELECTRIC/METALLIC STRUCTURES

A. Two-Potential Volume Integral Equation Formulation for
the Equivalent Displacement Vector

Consider an electromagnetic structure consisting of arbi-
trarily shaped dielectric and metallic parts, situated in free
space. Let the relative permittivity, , and conductivity, , of
the dielectric material be known functions of position, while the

permeability at all points is . In addition, let the structure be
excited by a time-harmonic electromagnetic field of complex
electric field intensity vector and angular frequency .
This field may be a combination of incident plane waves (for
a scattering structure) or the impressed field of one or more
lumped generators (for an antenna structure). It induces volume
electric (polarization and conduction) current, of density , to
flow throughout the volume of the structure. This current and
the associated charge are, in turn, the sources of the scattered
electric field, of intensity vector . From the constitutive
equation for the current, is related to the total electric field
intensity at any point in the material as [21]

(1)

where is the equivalent electric displacement vector,
and and are the equivalent complex permittivity and elec-
tric contrast (with respect to free space), respectively, of the ma-
terial at that point. The scattered field can be computed as if the
sources were radiating in free space (volume equivalence prin-
ciple), using Lorenz potentials

(2)

(3)

Here, is the domain with volume current and charge ( oper-
ates on sources as a function of primed coordinates only),
are surfaces of discontinuity in (where surface chargemay ac-
cumulate), with the unit normal vector, , directed frommedium
2 (with current ) into medium 1 (with current ), and is the
free-space Green’s function

(4)

being the free-space wave number and the distance of
the field point from the source point. With this, (1) gives the
following two-potential VIE with as unknown:

(5)

Note that if divergence-conforming bases are used in the VIE
model, it is advantageous to discretize , or, in fact, the equiv-
alent displacement current density, , in place of ,
because the normal component of is continuous

across the surfaces .
Onmetallic surfaces—that may have distributed loadings, the

volume current density degenerates into the surface current
density, , and the VIE (5) into a SIE given by [30]

(6)

where is the appropriate surface impedance. For bare sur-
faces made of a perfect electric conductor (PEC), , and
the tangential component of the total electric field on the surface
is zero. In analysis of structures composed of both dielectric and
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Fig. 1. Generalized curved parametric hexahedral VIE element of geometrical
orders , and , determined by

interpolation nodes arbitrarily positioned in space; cubical
parent domain is also shown.

metallic parts, (5) and (6) constitute a hybrid VIE-SIE or VSIE
system of integral equations, which are coupled together be-
cause potentials and at any point of the structure are func-
tions of both and .We discretize and solve the VSIE system
simultaneously for and using the method of moments.

B. Higher Order 3-D Geometrical Modeling and Higher
Order Basis Functions for Volume Current Modeling

As basic building blocks for geometrical modeling in 3-D
VIE computations, we propose Lagrange-type generalized
curved parametric hexahedral volume elements of arbitrary
geometrical orders , and ,
determined by points (inter-
polation nodes) arbitrarily positioned in space and analytically
described as [37]

(7)

where are position vectors of interpolation
nodes, represent Lagrange interpolation polynomials in the
coordinate, with the nodes defined as

, and similarly for and , and
are constant vector coefficients related to . Note that

the orders , and can be adopted anisotropically (i.e.,
they do not need to be the same) within an element. Equation (7)

Fig. 2. A sphere modeled by (a) 1000 trilinear hexahedra [
in (7)] and (b) a single triquadratic hexahedron [

in (7)].

defines a mapping from a cubical parent domain to the general-
ized hexahedron, as illustrated in Fig. 1.
Geometrically higher order elements obviously allow better

flexibility and accuracy in modeling of complex curved struc-
tures. As a simple example, Figs. 2(a) and (b) show a sphere
modeled by 1000 trilinear hexahedra
and a single triquadratic hexahedron ,
respectively. In this paper, we use the equidistant distribution of
interpolation nodes along each coordinate in the 3-D parametric
space, while the use of specific non-equidistant node distribu-
tions, which would provide additional modeling flexibility and
accuracy in some VIE applications, is possible as well. In ad-
dition, any other choice of higher order volume expansions for
geometrical modeling that can be represented as a triple sum of
3-D power functions (e.g., parametric hexahedra using
spline functions for describing the geometry) can also readily
be implemented in our VIE method.
We represent the displacement vector inside every general-

ized hexahedron (Fig. 1) in the model as [21]

(8)

where are divergence-conforming hierarchical-type vector
basis functions defined by

(9)

, and are the adopted orders of the polynomial cur-
rent approximation in the -, -, and -direction, respectively,
which are entirely independent from the element geometrical
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orders ( , and ), are unknown current-distribu-
tion coefficients, and is the Jacobian of the covariant trans-
formation, found from unitary vectors and along the
parametric coordinates

(10)

with given in (7). Basis functions defined in (9) are hierar-
chical functions (each lower-order set of functions is a subset of
all higher-order sets). Note that, although orders , and

can be arbitrary, values up to 6 (or slightly higher) are gen-
erally used to ensure optimal convergence [39].
Note that the lowest order of approximation

in (8)–(10) yields the 3-D rooftop functions on gen-
eralized hexahedral cells (which, for such basis functions, then
must be very small). For any and

, the basis functions (for )
and (for ) serve for adjusting the continuity
boundary condition for the normal component of the vector
over sides and , respectively, of the element (di-
vergence conformity), while the remaining basis functions (for

) are zero at the hexahedron sides and serve for
improving the current approximation throughout the volume.
From (8)–(10), this vector component for the side , for
instance, is

(11)

where denotes the -component of at the side (the - and
-components of are tangential to the side), and the
angle between the parametric line and parametric surface
at the same point. Since the respective unitary vectors tangential
to the side, and , are the same for the
two adjacent elements sharing the side, the continuity condition
between the elements, for , can readily (auto-
matically) be enforced, regardless of the adopted geometrical
orders, current-expansion orders, or local orientations of the el-
ements. Shown in Fig. 3 is an example of an element of the
first geometrical order in all directions

and an element of the second geometrical
order in all directions
that are adjacent in the mesh and share a common face. More-
over, the two elements have different current-approximation or-
ders in all respective dimensions (
and ). The continuity of the
normal displacement vector component across the common face
is imposed by equating the corresponding normal-vector coef-
ficients, in (11), associated with and , so that these
coefficients are common for the two elements, with additional
corrections (sign change) due to possibly different element ori-
entations. For elements with different current-expansion orders,

Fig. 3. A connection of two generalized hexahedral elements with different
geometrical orders, current-approximation orders, and orientations.

the normal-vector coefficients are matched only up to the lesser
of the corresponding orders and are set to zero for the remaining
normal-vector basis functions. This order reduction pertains to
the common face only and does not influence the expansions
throughout the rest of the volumes of the higher order elements.
In VIEmodeling, the use of bases automatically (for any numer-
ical solution) satisfying the continuity of the normal component
of at joints of elements in the model actually ensures that
theoretically nonexistent surface charges at a boundary between
elements across which the properties of the dielectric are con-
tinuous functions (e.g., for homogeneous elements made of the
same dielectric) cannot be obtained as a consequence of inac-
curate numerical solution of a problem. It also enables accurate
computing of the surface charge density as
( directed from element 2 toward element 1) at element in-
terfaces with a discontinuity in . Of course, the
VIE methodology inherently does not require imposition of any
normal-component continuity boundary condition across ele-
ment interfaces in the model. For example, VIE solutions for
, in (1), as unknown quantity, such as the higher order method
in [20], do not impose any continuity across element boundaries
and do not seek for nor benefit from the use of divergence-con-
forming bases; however, these solutions are generally numeri-
cally less stable and accurate and require more unknowns than
those with the imposition of the continuity and the associ-
ated bases. Finally, since the vector in air is not modeled, the
boundary condition for on the interface dielectric/air is
not enforced automatically but numerically, taking into account
the surface charge on the interface.
Note also that the sum limits in (8) that correspond to the

variations of a displacement vector component in the directions
across that component are by one smaller than the order cor-
responding to the variation in the other parametric coordinate.
This mixed-order arrangement, which ensures equal approxima-
tion orders for volume charge densities corresponding to the -,
-, and -directed current basis functions, has been found to be
a preferable choice for modeling of volume currents in all appli-
cations. It enables considerable reductions in the overall number
of unknowns, at no expense in terms of the accuracy of current
and charge modeling throughout the elements. Note finally that
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similar higher order basis functions in the curl-conforming form
are used in the FEM analysis [37], as well as that the 2-D (sur-
face) version of the bases is employed in the SIE solution [17].
Finally, what is extremely important, in our VSIE technique

for analysis of composite metallic and dielectric radiation/scat-
tering structures, generalized curvilinear quadrilateral elements
with 2-D higher order basis functions for SIE modeling of the
surface current density over metallic surfaces are formally
treated as degenerate generalized hexahedral elements, in
Fig. 1, having the -dimension suppressed, with the displace-
ment vector , in (8), or the displacement current density,
having only - and -components, with the -component
suppressed. In addition, thin metallic wires are formally treated
as double-degenerate hexahedra with only the -component of
the vector standing for the line current intensity, , along
the generatrices of wires (the reduced-kernel approximation
for wires) [23]. This approach is formally implemented in all
interactions of volume and surface elements (and wires) and the
associated testing and basis functions, to dramatically reduce
the number of possible combinations in treatments of elements
of different nature in topological analysis of the structure in
preprocessing, filling the MoM matrix through multiple levels
of integration and packing the MoM generalized impedances
and voltages, and field computations in postprocessing.

C. Generalized Galerkin Impedances and Potential Integrals
for Double-Higher-Order Hexahedral VIE Elements

In order to determine the unknown coefficients in (8), the
VSIE system in (5) and (6) is tested by means of the Galerkin
method, i.e., using the same functions used for current expan-
sion. The VIE-VIE type of generalized Galerkin impedances
(the system matrix elements) corresponding to the volume-cur-
rent testing and basis functions and defined on the th
and th generalized hexahedral volume elements ( and ),
respectively, in the model are given by [21]

(12)

where and are potentials due to the basis function and
the last two integral terms are obtained expanding
and applying the divergence theorem, with being the sur-
face of the th element, oriented outward. Similar expressions
hold for VIE-SIE, SIE-VIE, and SIE-SIE generalized Galerkin
impedances. To illustrate the procedure for computing these im-
pedances, we consider, without the loss of generality, only the
-components of basis and testing functions. Furthermore, we
consider the functions in the following simplified form:

(13)

The generalized Galerkin impedances corresponding to the
complete, divergence-conforming, basis functions in (9) can be
obtained as a linear combination of those corresponding to the
simplified, three-dimensional power functions in (13).

Upon substituting (13) and (7), the second integral term in
(12) corresponding to the testing function defined by indices

, and on the th hexahedron and the basis function
defined by indices , and on the th hexahedron in the
model becomes

(14)

where , and are the geometrical orders and
, and the current approximation orders along

the -, -, and -coordinate, respectively, and are the geo-
metrical vector coefficients in the polynomial expansion of the
th hexahedron, while ,

and are the corresponding parameters for the th hexahe-
dron, which is assumed, for simplicity, to be filled with a homo-
geneous dielectric of contrast . The source-to-field distance
is computed as

(15)

Similarly, the third integral term in (12) is transformed to
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(16)

where, according to (3), the first integral term in this newly
developed expression corresponds to the portion of the poten-
tial due to the volume charges inside the th hexahedron,
while the second and third terms are associated with the con-
tributions to due to the surface charges on the sides of this
hexahedron defined by and , respectively.
Moreover, in packing the generalized Galerkin impedances for
divergence-conforming basis functions in (9), the latter two
terms are taken into account (and are actually computed in
the first place) only for basis functions (for

) and (for ), respectively, and
only if the dielectric properties vary across the respective side
of the hexahedron (e.g., for sides belonging to dielectric-air
interfaces in the model). Analogous final expressions are ob-
tained for the remaining two terms of the VIE-VIE generalized
Galerkin impedance. Of crucial importance is that all these
impedance terms, as well as VIE-SIE, SIE-VIE, and SIE-SIE
ones, for basis/testing functions in (13), as well as for those in
(9), can be represented as linear combinations of 3-D/3-D basic
Galerkin potential integrals with only simple power functions
and Green’s function as integrands

(17)

where are the 3-D basic potential integrals, evaluated as

(18)

and the corresponding 3-D/2-D, 2-D/3-D, and 2-D/2-DGalerkin
integrals. This is extremely important because Galerkin inte-
grals with only simple power functions and Green’s function as
integrands enable rapid and accurate recursive and nonredun-
dant procedures for evaluation of the generalized MoM imped-
ances. Equally important is the fact that there is no need for
computing the corresponding field integrals, which is not the
case in SIE analysis of dielectric and composite metallic/dielec-
tric structures, where the computation of hyper-singular field
integrals is needed to find the electric and magnetic fields in
coupled electric/magnetic field integral equations (EFIE/MFIE)
with electric and magnetic surface currents as unknowns [17].

In specific, efficient algorithms for recursive construction of
the generalized Galerkin impedances and the VSIE system ma-
trix are developed in order to avoid redundant operations related
to the indices , and for geometrical representations and
, and for current expansions within the impedances, as well
as the summation indices in the Gauss-Legendre integration for-
mulas used for numerical integration, for any pair, and , of
hexahedral elements in the model. In addition, since the coor-
dinates and , as well as the corresponding indices, in the
integrals in (17) and (18), and analogously for other integrals
in the technique, are cyclic, the same sequence of the integrals
(for all the required values of the subscripts ,
and ) for a given pair of hexahedra can be used also for the
evaluation of the generalized impedances relating to the - and
-components of the vector in the two hexahedra (note that
there are nine combinations for the impedances corresponding
to the three components of the testing and basis vector functions
in the two elements). In addition, the same sequence of the
integrals can be used both in the impedances in (14) and in the
3-D/3-D part of the impedances in (16). So, for any hexahedron
pair in the model, first and only once the entire sequence of the
basic Galerkin integrals is evaluated, and these integrals are
then introduced (packed) into all impedances containing them.
In the next level of packing, the impedances for basis/testing
functions in (13) are recursively and nonredundantly combined
into the final Galerkin impedances for functions in (9).
A rapid and accurate combined numerical/analytical method

is developed for the integration over curved higher order gen-
eralized hexahedral elements, for the integrals in (18). When
the distance in (15) is relatively small or zero, the procedure
of extracting the singularity is performed, which consists of an-
alytical integration of a principal singular part of the integrand
over a (generally not rectangular) parallelepiped whose para-
metric description is close to that of the generalized hexahe-
dron in the vicinity of the singular point, and numerical inte-
gration of the rest using Gauss-Legendre quadrature formulas.
The sides of the parallelepiped that corresponds to the gener-
alized hexahedron specified in (7) are obtained by translating
the straight segments , and shown in Fig. 4,
where these segments, in turn, are obtained differentiating the
curves defined by , and at
the point . In other words, the parallelepiped is de-
fined by the unitary vectors , and of the generalized
hexahedron, (10), at the singular point, and hence its parametric
equation:

(19)

where , and are the coordinates of the singular
point and

, and . For
close to close to , and close to , the point

of the curved hexahedron coincides with or is very
close to the point of the parallelepiped. Therefore,
in extracting the singularity in the integrals, we subtract and
add a term of the form (instead of ), where
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Fig. 4. Finding the parallelepiped whose parametric description is close to that
of a curved higher order generalized hexahedral VIE element in the vicinity of
the singular point (note that the case presented here is for

—for the singularity extraction procedure in (20) to solve the
3-D basic potential integrals over curved hexahedra.

is the source-to-field distance for inte-
gration throughout the volume of the parallelepiped [22]

(20)

with being determined as [of course, for the obser-
vation (field) point inside the generalized hexahedron or on its
surface, ]. In (20), the first integral is well behaved in the
vicinity of the point and can be rather accurately
integrated numerically, over the domain ,
which represents the domain of both the curved hexahedron and
the parallelepiped. However, to further enhance the accuracy
of the numerical integration, we subdivide this domain into a
number of integration subdomains by means of coordinate sur-
faces , and , respectively. Note that this

Fig. 5. Normalized monostatic radar cross section (RCS) of a dielectric
sphere ( is the free-space wavelength): comparison of numerical solutions

obtained by three double-higher-order VIE models (A, B, and C) with the ana-
lytical solution in the form of Mie’s series.

technique remains practically the same when is a near-sin-
gular integral, namely, when the observation point is outside the
generalized hexahedron but very close to its surface.

III. NUMERICAL RESULTS AND DISCUSSION

Note that a direct solver is utilized for the solution of the
MoM-VSIE system of equations in all examples.

A. Homogeneous Dielectric Scatterer

As the first example of curved dielectric structures, consider
a lossless homogeneous spherical dielectric scatterer of radius
, shown in the top inset of Fig. 5. Relative permittivity of the
dielectric is . Fig. 5 presents the monostatic radar cross
section (RCS) of the scatterer, normalized to , as a function
of being the free-space wavelength. The numerical
results obtained by three higher order VIE solutions, with the
sphere modeled using (A) one curved hexahedron with geo-
metrical orders [Fig. 2(b)], orders

for the polynomial approximation of
the displacement vector in the element, and only
unknowns (without the use of symmetry), (B) one hexahedron
with and ,
and (C) seven large elements, with the central element in the
form of a cube and six cushion-like
curved hexahedral elements attached
to the cube sides (the mesh is shown in the lower right inset
of Fig. 5) and in all of the elements

, are compared with the analytical solution in
the form of Mie’s series. Note that the single-element models
A and B (lower left inset of Fig. 5) are literally entire-domain
curved CEM models. Note also that the model B is aimed to
illustrate the solution behavior when the geometrical approxi-
mation is improved, while the principal purpose of the solution
C is to evaluate an -refinement of the model, with both the
number of elements increased ( -refinement) and the current
approximation in the elements enhanced ( -refinement). We ob-
serve, in Fig. 5, that, as compared to the exact solution (Mie’s
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TABLE I
RCS SOLUTION ERROR AND MOM MATRIX CONDITION NUMBER FOR A

SINGLE-ELEMENT SPHERE MODEL VERSUS ELEMENT GEOMETRICAL ORDERS

TABLE II
RCS ERROR AND CONDITION NUMBER FOR A SINGLE-ELEMENT SPHERE

MODEL VERSUS CURRENT EXPANSION ORDERS

series), models A and B perform well up to the frequency at
which and 1.02, respectively, where
is the wavelength in the dielectric, which demonstrates a dra-
matic improvement of results when using geometrical modeling
of the 4th order instead of the 2nd order geometrical modeling.
In the latter case, when , the central dimension of
the single hexahedral element used to model the sphere is about

(sphere diameter), which indicates that
the proposed double-higher-order VIE technique allows using
curved elements that are as large as across. We also
observe a very significant improvement of results employing
the -refined model C, which gives a good agreement with
Mie’s series solution up to the frequency at which .
The largest dimension of the hexahedra in this model is ap-
proximately for cushion-like hexahedra,
while the size of the cubical element in the middle amounts to

. In addition, note that among the three models of the
sphere, models A and B have geometrical degeneracy around
the corners of the hexahedral elements, which reflects on the
current expansion through the Jacobian and influences the accu-
racy of the solution. Note also that computation of the Jacobian
is actually not needed except in the first integral term in (12),
since the Jacobians cancel out in final expressions for all other
integral terms, as can be seen in (14) and (16).
As an additional evaluation of convergence properties of the

double higher-order VIE analysis, Table I gives the percentage
error of RCS computation relative to the Mie’s series solution,

% and condi-
tion number of the MoM matrix for the sphere of diameter

modeled by a single curved hexahedron whose geo-
metrical orders are varied from to

, while keeping the current approximation
orders constant, .
Table II shows the error and condition number for constant

geometrical orders, , and current expan-
sion orders varied from to

. We observe in Tables I and II an excellent conver-
gence of the VIE method with increasing both geometrical and
current-approximation orders. Also, as expected, the condition
number is almost unaffected by the geometrical orders, while it
rapidly increases with increasing the orders of basis functions.

Fig. 6. Normalized bistatic radar cross section in two characteristic planes of
a dielectrically coated PEC sphere ( cm, GHz):
comparison of the double-higher-order VSIE results with the exact Mie’s series
solution; figure inset shows a higher order VSIE mesh of the scatterer using six
large cushion-like conformal hexahedral VIE elements and six curved quadri-
lateral SIE patches.

However, the orthogonality and conditioning properties of the
simplest hierarchical divergence-conforming polynomial vector
basis functions, in (9), can be improved as in [29], [40], [41], for
instance, and this is needed when iterative solvers are used.

B. Composite Metallic/Dielectric Structure

As an example of composite metallic/dielectric structures,
that also possess curvature, consider a dielectrically coated PEC
sphere excited by a plane wave, of frequency GHz, as
shown in the inset of Fig. 6. The radii of the PEC sphere and the
coated sphere are cm and cm, respectively, and
the relative permittivity of the dielectric of the coating is .
The coating is modeled using only six large cushion-like con-
formal hexahedral VIE elements with
and , and the PEC surface is modeled by
six curved quadrilateral SIE patches with and

, as depicted in the figure inset, resulting in a
total of unknowns. The size of the volume and
surface elements in the model ranges between

. Fig. 6 shows the computed bistatic RCS of the scatterer
in two characteristic planes, where an excellent agreement of the
double-higher-order VSIE results with the exact solution in the
form of Mie’s series is observed (the average absolute RCS er-
rors, over all angles, are 0.45 dB and 0.13 dB in planes
and , respectively).

C. Continuously Inhomogeneous Dielectric Scatterer

As an example of inhomogeneous dielectric structures, that
are also curved, consider a continuously inhomogeneous di-
electric spherical scatterer of radius m and a linear ra-
dial variation of relative permittivity from at the sur-
face to at the center of the sphere, as depicted in the
inset of Fig. 7. The scatterer is situated in free space and illu-
minated by a uniform plane wave. The sphere is modeled by 7
curvilinear hexahedral elements of the fourth geometrical order
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Fig. 7. Normalized bistatic radar cross section in two characteristic planes of a
continuously inhomogeneous dielectric sphere (shown in the inset): comparison
of the double-higher-order inhomogeneous-VIE solution and WIPL-D results
for a five-layer piecewise homogeneous SIE model, as well as the Mie series
solution for the five-layer model.

. In specific, the central sphere (of ra-
dius ) is modeled using a single VIE element, and a layer
of six inhomogeneous cushion-like VIE elements are attached
to the corresponding sides of the central element. The current
approximation orders are for the small
central element and for all the “cush-
ions,” which results in a total of unknowns.
The VIE solution for the continuously inhomogeneous model is
compared with a SIE solution for the approximately equivalent
piecewise homogeneous layered model consisting of five con-
centric dielectric layers defined by radii m,
m, m, m, and m, with relative per-
mittivities ,
and , respectively. The layered sphere is modeled
in WIPL-D (commercial higher order SIE code [2]) by 678 bi-
linear quadrilateral elements with and the total
count of unknowns. Shown in Fig. 7 is the sim-
ulated bistatic RCS of the scatterer in two characteristic planes
at MHz, where we observe an excellent agreement of
the double-higher-order inhomogeneous-VIE, layered-SIE, and
layered-Mie-series solutions. The average absolute RCS differ-
ences (over all angles) between the VIE solution for the con-
tinuously inhomogeneous model and the Mie-series solution for
the five-layer model are 0.1 dB and 0.13 dB in planes
and , respectively, while the corresponding differences
between the WIPL-D and Mie-series solutions for the layered
model amount to 0.12 dB and 0.1 dB.

D. Wire Antenna Coupled to an Inhomogeneous Dielectric
Body

As an antenna example, consider an eight-turn helical dipole
antenna near an inhomogeneous dielectric sphere composed of
three concentric dielectric layers, as shown in the inset of Fig. 8
[42]. The sphere is modeled by 8 cubical
and 72 curvilinear triquadratic

hexahedral VIE elements, as indicated in Fig. 8, with the orders

Fig. 8. Analysis of an eight-turn helical dipole antenna ( mm,
mm, mm, mm, mm, MHz) near

an inhomogeneous, three-layer, dielectric sphere ( cm, cm,
cm, ) [42], modeled by 8 cubical and

72 curvilinear hexahedral VIE elements (figure inset shows a cross section of
the VIE model): comparison of results for the radiation (gain) pattern of the
antenna in the plane and for the antenna input impedance obtained by
the double-higher-order VSIE method with reference FEM-MoM results [42].

, and varied from 2 to 3 for different elements and
in different directions, and the helical antenna is modeled by 72
straight SIEwire segments [42] with for each
of the segments, which results in a total of un-
knowns. Shown in Fig. 8 is the simulated radiation (gain) pat-
tern of the antenna in the plane, as well as the sim-
ulation results for the antenna impedance, at MHz,
obtained by the proposed higher order VSIE technique and by
the higher order FEM-MoM technique
[42], respectively, and an excellent agreement of the two sets of
results is observed, for both the far field (the average absolute
gain difference in the entire plane is 0.28 dB) and the
impedance of the antenna, with the VSIE and FEM-MoM so-
lutions implementing identical volumetric geometrical models
of the layered sphere but, of course, discretizing very different
equations throughout its volume.

E. Finite Array of Dielectric Scatterers (PBG Waveguide)

As the next example, consider an infrared (IR) photonic band
gap (PBG) waveguide realized, as a combination of PBG wave-
guide concepts proposed in [43] and [44], as a pattern of 72
circular dielectric (GaAs) rods, with , in an air back-
ground shown in Fig. 9(a). The height of each cylinder is

m, diameter is nm, and the distance between
the axes of adjacent cylinders is nm. The array of rods
is situated between two PEC plates of size 4.8 8.5 m, per-
pendicular to the cylinder axes. The distance between the plates
is m, and they are positioned symmetrically in all
directions with respect to the PBG array. The structure is ex-
cited by a nm long wire dipole at its edge [Fig. 9(a)],
with the dipole being parallel to the axes of cylinders. In the
double-higher-order VSIE model, each cylinder is modeled by
a single curved hexahedral volume element with

and , as depicted in Fig. 9(b),
which yields a total count of unknowns (with
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Fig. 9. (a) IR PBG waveguide realized as a pattern of circular dielectric
rods between two PEC plates (plates not shown) in an air background

(the structure is excited by a wire dipole at its edge) and (b) modeling of each
cylinder by a single curved hexahedral VIE element of the second geometrical
orders.

Fig. 10. Magnitude of the near electric field of the PBG structure in Fig. 10(a)
computed, in the plane indicated in Fig. 10(a), at frequencies (a)–(b)

THz, (c)–(d) THz, and (e)–(f) THz, by (a), (c), (e) the
double-higher-order VSIE technique [based on the model of cylinders shown in
Fig. 10(b)] and by (b), (d), (f) the double-higher-order SIE technique [17].

no use of symmetry), including the SIE unknowns for mod-
eling the wire dipole and the PEC plates. The near-field dis-
tributions calculated in the plane cutting across the dielectric
rods at 2/3 of their height, perpendicularly to their axes [this
plane is sketched in Fig. 10(a)], at frequencies THz,

Fig. 11. VIE modeling of a human bone : (a) bone
geometry, (b) trilinear VIE model, and (c) triquadratic curved VIE model.

Fig. 12. Magnitude of the electric field in the plane indicated in Fig. 11(a) near
or inside a bone model excited by a plane wave with a normal incidence to the
plane at GHz: comparison of VIE results obtained using models in
Fig. 11(b) and (c) and a fully -refined WIPL-D reference solution.

THz, and THz, respectively, are shown
in Fig. 10, where PBG effects are clearly observed. Field plots
in Figs. 10(a) and (b) show no propagation through the struc-
ture at the frequency (stop band of the waveguide within the
stop band of the PBG lattice), Figs. 10(c) and (d) depict wave-
guide propagation at the frequency (waveguide pass band
within the PBG stop band), while the plots in Figs. 10(e) and (f)
demonstrate unobstructed propagation through the PBG struc-
ture at the frequency (inside the pass band of the PBG lattice).
Moreover, at all frequencies, the double-higher-order VSIE so-
lutions [Figs. 10(a), (c), and (e)] are compared to the results [in
Figs. 10(b), (d), and (f)] obtained by the double-higher-order
SIE technique [17], with the surface of each cylinder modeled
by six curved quadrilateral patches with and

. A good agreement of the
two sets of numerical results is observed.

F. Human Bone Model

As an example of curved, geometrically complex dielectric
objects, consider a human bone model, shown in Fig. 11(a), il-
luminated by a plane wave at a frequency GHz. This is
also an example of bodies with high electric contrast and losses,
namely, the bone permittivity and conductivity are
and S/m [45]. The electrical dimensions of the bone
are . The results obtained by
a trilinear 1,024-element VIE model,



CHOBANYAN et al.: DOUBLE-HIGHER-ORDER LARGE-DOMAIN VOLUME/SURFACE INTEGRAL EQUATION METHOD 6061

Fig. 13. Analysis of a parabolic satellite dish antenna excited by a cylindrical
waveguide section ( GHz) and covered by a hemispherical dielectric

radome (6-mm thick): comparison of results for the radiation pattern
(gain) of the antenna in the plane obtained by the double-higher-order
VSIE method (model with 48 curved hexahedral VIE elements, 120 curved
quadrilateral SIE patches, and two SIE wire segments) with reference WIPL-D
pure-SIE results.

shown in Fig. 11(b), with , and a tri-
quadratic curved 128-element VIE
model, shown in Fig. 11(c), with , are
compared with a fully -refined WIPL-D reference solution.
Note that the average dimensions of elements in the trilinear and
triquadratic models are and , respec-
tively. Fig. 12 shows the near (internal or external) total electric
field computed in the plane indicated in Fig. 11(a). We observe
a good agreement between the two higher order VIE solutions
and the reference solution, with a large saving in the number of
unknowns, instead of , in
favor of the model with curved VIE elements.

G. Satellite Dish Antenna With a Dielectric Radome

As the final example, consider a satellite antenna with a par-
abolic dish reflector, excited by a cylindrical waveguide section
of diameter m and length m, and covered by a
hemispherical dielectric radome depicted in the inset of Fig. 13.
The reflector dish opening and the radome surface diameters
are m and m respectively. The radome is
6 mm thick and its permittivity is . The operating fre-
quency is GHz, and . The VSIE
model consists of 170 elements, namely, 48 hexahedral VIE el-
ements with , and

, 120 quadrilateral SIE patches with
and , and two SIE wire segments with
and , and resulting in a total of un-
knowns. More specifically, the VIE radome model is a layer of
48 thin volumetric blocks, with maximal dimensions amounting
to and different current approximation orders in ra-
dial direction and directions tangential to the radome
surface . The radiation (gain) pattern of the
antenna in the plane computed by the VSIE is com-
pared in Fig. 13 with the pure SIE solution by WIPL-D, which

requires unknowns, and we observe an excel-
lent agreement of the two sets of results.

IV. CONCLUSION

This paper has proposed a double-higher-order large-domain
Galerkin-type method of moments for modeling of composite
wire-plate-dielectric radiation/scattering structures. Themethod
is based on the volume integral equation approach for dielec-
tric parts and the surface integral equation approach for metallic
parts of the composite structure. It employs Lagrange-type inter-
polation generalized hexahedra and quadrilaterals of arbitrary
geometrical-mapping orders for the approximation of geom-
etry and hierarchical divergence-conforming polynomial vector
basis functions of arbitrary expansion orders for the approxima-
tion of currents within the elements. The results obtained by the
double-higher-order VSIE method have been validated against
the analytical solutions and the numerical results obtained by
the double-higher-order SIE and FEM-MoM techniques, as well
as the WIPL-D results. Numerical examples have demonstrated
that the double-higher-order VIE and VSIEmodeling provides a
useful alternative to other, more frequently used, types of CEM
techniques and either on par or a more efficient solution in many
cases, even when compared to techniques implementing similar
types of higher order numerical discretization. It has also been
demonstrated that both components of the double-higher-order
VIE/SIE modeling, i.e., higher order geometrical modeling and
higher order current modeling, are essential for accurate and ef-
ficient MoM-VSIE computations.
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